Synthesis of heteropolynuclear complexes with 1,1,1tris(diphenylphosphinomethyl)ethane. Crystal structure of [(OC)₄Mo{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}AuCl]

Eduardo J. Fernández,^a M. Concepción Gimeno,^b Peter G. Jones,^c Antonio Laguna,^{*,b} Mariano Laguna^b and Elena Olmos^a

^a Departamento de Química, Universidad de La Rioja, 26001 Logroño, Spain

^b Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón,

Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain

^c Institut für Anorganische und Analytische Chemie der Technischen Universität, Postfach 3329,

38023 Braunschweig, Germany

Treatment of $[M(CO)_4\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}]$ (M = Mo or W) with neutral or cationic gold-(1) or -(III) derivatives afforded bi- or tri-nuclear complexes containing the triphosphine $(Ph_2PCH_2)_3CMe$ (tdppme) acting as a μ -*P*,*P'*,*P''* ligand, a co-ordination mode poorly represented thus far. The binuclear derivative $[(OC)_4Mo(tdppme)AuCl]$ further reacts with 1 equivalent of Tl(acac) (acac = acetylacetonate) to afford $[(OC)_4Mo(tdppme)Au(acac)]$. This complex acts as a deprotonating agent in reactions with various starting materials containing phosphines such as $(Ph_2P)_2CH_2$ or $(Ph_2P)_3CH$, leading to the formation of trinuclear methanide complexes. The crystal structure of $[(OC)_4Mo(tdppme)AuCl]$ has been established by X-ray crystallography.

The chemistry of diphosphines such as $(Ph_2P)_2CH_2^{1,2}$ or its methanide $(Ph_2P)_2CH^-$ (ref. 3) has been extensively developed and some gold complexes have already been described.^{3,4} In contrast, the chemistry of triphosphines such as $(Ph_2P)_3CH$ or its methanide derivative $(Ph_2P)_3C^-$ has been far less studied.⁵ As part of our studies with triphosphines we have previously reported on the synthesis of heterometallic species where these compounds bridge chromium, molybdenum or tungsten centres and a gold(1) atom.⁶

A small number of transition-metal complexes with the triphosphine $(Ph_2PCH_2)_3CMe(tdppme)$ have been synthesized, and in most cases the co-ordination is as a tridentate-chelating ligand, fixing three co-ordination positions and not affecting the reactivity in the rest of the molecule.⁷ Furthermore, the same co-ordination mode appears in the heteropolynuclear clusters described with this tridentate ligand, ^{7a,8} which contain gold-rhodium, -iridium or -ruthenium bonds suported by bridging hydrides. However, little attention has been paid to the study of other co-ordination modes in heteropolynuclear complexes.

We have recently described gold(I) and/or gold(III) complexes containing tdppme in different co-ordination modes, some of them being unprecedented (μ -*P*,*P*'; μ -*P*,*P*',*P*" or *P*).⁹ Other coordination modes of the phosphine as a μ_3 or *P*,*P'* ligand are poorly represented.¹⁰ Amongst the latter type of complex the derivatives [M(CO)₄(tdppme-*P*,*P'*)] (M = Mo or W)^{10b} present a free phosphorus which can act as a ligand towards gold-(I) or -(III) species giving rise to heterometallic derivatives. Here we describe several heteropolynuclear compounds with the triphosphine acting as a μ -*P*,*P'*,*P*" ligand and the use of one of these derivatives, [(OC)₄Mo(tdppme)Au(acac)] (acac = acetylacetonate), as a deprotonating agent in the synthesis of new methanide complexes.

Results and Discussion

The preparation of the starting materials $[M(CO)_4(tdppme)]$ (M = Mo or W) was as previously described, by reaction of $[M(CO)_6]$ with tdppme in refluxing ethanol.^{10b} We have prepared them by an alternative procedure, which consists of the substitution of the piperidine ligands in $[M(CO)_4(pip)_2]$ (M = Mo or W) by the phosphine under mild conditions.

NAI TOI

The phosphorus atom of the molybdenum complex can be oxidized by H_2O_2 , affording $[Mo(CO)_4 {(Ph_2PCH_2)_2C-MeCH_2PPh_2(O)}]$ 1 (Scheme 1, Table 1). [When the same reaction is carried out with the tungsten complex a mixture of the corresponding oxidized derivative and $(OPh_2PCH_2)_3CMe$ is obtained, and their similar solubilities prevent their separation.] Complex 1 is a colourless air-stable solid, soluble in chlorinated solvents and acetone, and slightly soluble in diethyl ether. Its IR spectrum shows three bands for the terminal CO groups, characteristic of *cis*-tetracarbonyl derivatives,¹¹ and a broad signal at 1149 cm⁻¹, corresponding to the v(P=O) vibration.¹²

The oxidation of the free phosphorus is easily demonstrated in its ${}^{31}P-{}^{1}H$ NMR spectrum (see Table 2), because of the displacement of the resonance (P_A) to low field ($\Delta \approx 53$ ppm). The phosphorus atoms bonded to the molybdenum centre (P_x) do not show the same effect, because of the length of the hydrocarbon chain, and no coupling between A and X is observed. The ¹H NMR spectrum (Table 2) shows three signals with relative intensity 3:2:4. The first is a singlet corresponding to the methyl protons; the second, a doublet due to the methylene group bonded to the oxidized phosphorus, and the last signal appears as the AB part of an ABX system (where X is a phosphorus atom). This resonance corresponds to the four methylene protons of the six-membered ring and its simulated spectrum agrees with experiment. In the positive-ion fast atom bombardment (FAB) mass spectrum the parent peak appears protonated at m/z = 851 (20%) and peaks corresponding to the loss of each carbonyl group are also observed.

Gold(1) phosphine complexes

The tetrahydrothiophene (tht) ligand in $[AuX(tht)](X = Cl \text{ or } C_6F_5)$ or $[Au(tht)_2]ClO_4$ can be displaced by the free phosphorus of $[M(CO)_4(tdppme)](M = Mo a \text{ or } W b)$ to give the mixed neutral complexes $[(OC)_4M{(Ph_2PCH_2)_2CMe-thermal or M b)}$

Scheme 1 M = Mo a or W b; R = C₆F₅. (*i*) (Ph₂PCH₂)₃CMe; (*ii*) H₂O₂; (*iii*) [AuX(tht)]; (*iv*) [Au(PPh₃)(tht)]ClO₄; (*v*) $\frac{1}{2}$ [Au(tht)₂]ClO₄; (*vi*) [Au(C₆F₅)₃(tht)] (**5**) or $\frac{1}{2}$ [Au(C₆F₅)₂(μ -Cl)₂] (**6**); (*vii*) Tl(acac); (*viii*) [Au(C₆F₅)₃(dppm)]; (*ix*) [Mo(CO)₄{(Ph₂P)₂CHPPh₂}]

Table I Analytical data and some properties of complexes	19
---	----

			s (%) ª			
Compound	Yield (%)	C	Н	M.p. (°C) ^b	$\Lambda_{\rm M}$ ^c / Ω^{-1} cm ² mol ⁻¹	
$1 [Mo(CO)_{4} {(Ph_{2}PCH_{2})_{2}CMeCH_{2}Ph_{2}P(O)}]$	66	64.2	4.85	155 (decomp.)	3	
$2a [(OC)_4 Mo \{(Ph_2PCH_2)_2 CMe(CH_2PPh_2)\} AuCl]$	91	(63.7) 50.35 (50.75)	(4.65) 3.7 (3.7)	188 (decomp.)	5	
2b [(OC) ₄ W{(Ph_2PCH_2) ₂ CMe(CH_2PPh_2)}AuCl]	74	46.55	3.35	196	3	
$3a [(OC)_4Mo\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}Au(C_6F_5)]$	68	50.7	(3.4) 3.6 (3.3)	96 (decomp.)	17	
3b [(OC) ₄ W{(Ph_2PCH_2) ₂ CMe(CH_2PPh_2)}Au(C_6F_5)]	56	48.05	3.35	90	21	
4a [$Mo(CO)_4[(Ph_2PCH_2)_2CMe(CH_2PPh_2)]_2Au]ClO_4$	7 9	54.75	3.9	155 (decomp.)	127	
4b [{ $W(CO)_4$ [(Ph_2PCH_2) ₂ $CMe(CH_2PPh_2)$]} ₂ Au]ClO ₄	66	50.75	3.95	142	160	
$5a [(OC)_4Mo \{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}Au(C_6F_5)_3]$	72	(30.55) 49.6 (49.45)	2.3	152 (decomp.)	28	
5b [(OC) ₄ W{(Ph_2PCH_2) ₂ CMe(CH_2PPh_2)}Au(C_6F_5) ₃]	74	46.45	2.8	125 (decomp.)	13	
$\textbf{6a} [(OC)_4Mo\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}Au(C_6F_5)_2Cl]$	55	48.7	(2.45) 3.1 (2.8)	115 (decomp.)	25	
6b $[(OC)_4W{(Ph_2PCH_2)_2CMe(CH_2PPh_2)}Au(C_6F_5)_2Cl]$	72	46.55	3.05	116 (decomp.)	43	
7 [(OC) ₄ Mo{(Ph_2PCH_2) ₂ CMe(CH_2PPh_2)}Au(acac)]	76	53.25	4.0	80	1	
$ \label{eq:constraint} 8 [(OC)_4 Mo \{(Ph_2PCH_2)_2 CMe(CH_2PPh_2)\} Au(Ph_2PCHPPh_2) Au(C_6F_5)_3] $	71	50.2	2.75	145	2	
$9 [(OC)_4 Mo \{(Ph_2PCH_2)_2 CMe(CH_2PPh_2)\}Au \{Ph_2PC(PPh_2)_2\}Mo(CO)_4]$	75	57.35 (57.2)	3.1 (3.2)	125	33	
" Calculated values are given in parentheses. ^b Or decomposition. ^c In aceto	ne.					

 (CH_2PPh_2) AuX] (X = Cl 2a, 2b or C₆F₅ 3a, 3b) or the trinuclear cationic [{M(CO)₄[(Ph₂PCH₂)₂CMe(CH₂PPh₂)]}₂-Au]ClO₄ 4a, 4b. In contrast, when a similar reaction is carried out using [Au(PPh₃)(tht)]ClO₄ as starting material, an equimolecular mixture of [Au(PPh₃)₂]ClO₄ and 4 is obtained in equilibrium with the expected derivative [(OC)₄M{(Ph₂P-CH₂)₂CMe(CH₂PPh₂)}Au(PPh₃)]ClO₄. Thus, this complex cannot be isolated as a pure product. stable at room temperature. They are soluble in dichloromethane, chloroform, acetone and diethyl ether (2, 3). Their acetone solutions are neutral (2, 3) or show conductivities typical of 1:1 electrolytes (4). In their IR spectra the same pattern in the CO region is observed, and they also show a band assignable to $v(Au-Cl)^{13}$ at 333 cm⁻¹ (2), the characteristic pattern of C₆F₅ groups bonded to gold(1) at 1501vs, 955vs and $\approx 800m$ cm⁻¹ (3) or absorptions corresponding to the perchlorate anion¹⁴ at 1100vs (br) and 623m cm⁻¹ (4).

Complexes 2-4 are isolated as white or pale yellow solids, air-

Table 2 Infrared and ¹H^b and ³¹P-{¹H}NMR^c data for complexes 1-9

		¹ Η (δ, <i>J</i> /Hz)							
				2 CH ₂ P				³¹ P-{ ¹ H}	(δ, <i>J</i> /Hz)
Compound	$\tilde{v}(CO)/cm^{-1}$	CH ₃	M-P-CH ₂	AB	H _A	H _B	J _{AB}	2 M-P _x	P _A -Au
1	2019s, 1920s, 1900vs	0.86 (s)	2.19 (d. Jup 10.7)	2.65 (ABX)	2.57 (J _{HP} 2.7)	2.73 (J _{нр} 7.2)	13.6	19.6 (s)	25.9 (s)
2a	2020s, 1923s, 1899vs	1.0 (s)	$2.37 (d, J_{HP} 11.2)$	2.67 (ABX)	$2.65 (J_{HP} 0)$	$2.69(J_{HP} 2.2)$	3.05	20.9 (s)	17.1 (s)
2b	2016s, 1920s, 1889vs	1.01 (s)	$2.36 (d, J_{HP} 11.0)$	2.78 (m)				1.2 (s)	16.9 (s, J _{PW} 113.8)
3a	2020s, 1922s, 1898vs	1.01 (s)	2.38 (d, J_{HP} 10.7)	2.73 (ABX)	2.68 (J _{HP} 5.3)	2.78 (J _{нр} 5.0)	14.1	20.5 (s)	25.6 (m)
3b	2016s, 1915s, 1891vs	1.0 (s)	$2.36 (d, J_{HP} 10.0)$	2.81 (m)				0.9 (s)	25.4 (m, J _{PW} 112.1)
4 a	2020s, 1924s, 1896vs	0.97 (s)	2.66 (m)	2.41 (m)				20.1 (s)	29.9 (s)
4b	2015s, 1888vs, 1835s	0.99 (s)	2.61 (m)	2.51 (m)				0.5 (s)	29.7 (s, J _{PW} 113.5)
5a	2020s, 1925s, 1893vs	1.64 (s)	2.28 (d, J _{HP} 11.8)	2.15 (ABX)			14.6	22.2 (s)	2.3 (m)
5b	2016s, 1921s, 1885vs	1.65 (s)	2.28 (d, J _{HP} 12.1)	2.28 (ABX)	2.18 (J _{HP} 4.9)	2.38 (J _{HP} 4.2)	14.5	2.0 (s)	1.5 (m, J _{PW} 112.9)
6a	2020s, 1923s, 1896vs	1.33 (s)	2.84 (d, J _{HP} 12.2)	2.50 (ABX)	2.42 (J _{HP} 3.7)	$2.58 (J_{HP} 0)$	12.3	21.1 (s)	14.0 (m)
6b	2016vs, 1917s, 1885vs	1.38 (s)	2.84 (d, J _{HP} 12.4)	2.61 (ABX)	2.52 (J _{HP} 5.2)	2.70 (J _{HP} 5.2)	15.7	1.5 (s)	13.9 (m, J _{PW} 112.6)
7ª	2020s, 1924s, 1898vs	1.10 (s)	2.25 (d, J _{HP} 10.9)	2.52 (m)				20.2 (s)	22.6 (s)
8 ^e	2020s, 1925s, 1898vs	0.99 (s)	2.35 (d, J _{HP} 11.2)	2.65 (ABX)	2.61 (J _{HP} 5.1)	2.69 (J _{HP} 5.1)	12.3	21.0 (s)	28.5 (s)
9 ^f	2020vs, 1895vs, 1847s	0.74 (s)	1.93 (d, J _{HP} 10.4)	1.79 (m)				20.8 (s)	26.6 (s)
	2004vs, 1895vs, 1847s			3.09 (m)					

^{*a*} In CH₂Cl₂ solutions; v = very, s = strong. ^{*b*} In CDCl₃ solutions, δ from external SiMe₄; s = singlet, m = multiplet, d = doublet. ^{*c*} In CDCl₃ solutions, δ from external 85% H₃PO₄; t = triplet. ^{*d*} The ¹H NMR spectrum also presents resonances corresponding to the acetylacetonate ligand at δ 2.19 (s, 2CH₃) and 4.51 (m, CH). ^{*c*} Au-P_B, δ 33.2 (d, J_{BY} 14.6, J_{AB} 316.5 Hz); P_Y-Mo, δ 16.9 (m). ^{*f*} Au-P_B, δ 33.4 (t, J_{BY} 0, J_{AB} 315.8 Hz); P_Y-Mo, δ 19.9 (m).

Fig. 1 Molecular structure of complex 2a showing the atom numbering scheme. Radii are arbitrary; hydrogen atoms are omitted for clarity

The ³¹P-{¹H} NMR spectra of complexes 2-4 show two different phosphorus environments corresponding to an AX₂ system with $J(AX) \approx 0$. For 2b, 3b and 4b the upfield resonance (P_x) displays tungsten satellites with J(PW) = 114, 112 and 113 Hz, respectively. For the pentafluorophenyl derivatives 3 the signal of the phosphorus bonded to gold(1) (P_A) appears as a multiplet because of coupling to the fluorine atoms. The ¹H NMR spectra are very similar to those observed for complex 1, although in some cases the ABX system is not resolved, and only a multiplet is observed (Table 2). The ¹⁹F NMR spectra of 3 display a typical pattern for C₆F₅: two multiplets for the *o*-and *m*- and a triplet for the *p*-fluorine nuclei.

The positive-ion fast atom bombardment (FAB) mass spectra of complexes 2-4 show the molecular-ion peaks at m/z = 1069 (2a, 52), 1152 (2b, 5), 1198 (3a, 20) and 1284 (3b, 90%) or the molecular cation peaks at m/z = 1863 (4a, 20) and 2037 (4b, 26%). Some of them also present signals corresponding to loss of carbonyl groups; the peak corresponding to the fragment [Au(tdppme)]⁺ at m/z = 821 always appears with high intensity.

The crystal structure of complex **2a** has been determined by X-ray crystallography and the molecule is shown in Fig. 1;

selected bond lengths and angles are collected in Table 3. The molybdenum atom approaches octahedral co-ordination quite closely, with a maximum deviation from ideal angles of 7.5°. The presence of a six-membered chelate ring causes no distortion arising from the bite angle of the phosphine, with an almost ideal value of 90.14(6)° [P(2)-Mo-P(3)]. There are two slightly different ranges of Mo-CO bond distances; the shortest [1.991(7) and 1.997(8) Å] are to the carbonyl groups trans to the phosphorus atoms, whereas the bond lengths to the cis carbonyls are 2.029(8) and 2.041(8) Å. The Mo-P distances, 2.509(2) and 2.537(2) Å are very dissimilar but similar values were found in the complex [Mo(CO)₄{(Ph₂P)₂CH₂}]¹⁵ [2.501(2) and 2.535(3) Å]. The co-ordination at the gold centre is linear, P(1)-Au-Cl 177.47(7)°. The bond lengths at the gold atom, Au-Cl 2.284(2) and Au-P(1) 2.232(2) Å, are of the same order as those found in the complex [Mo(CO)₄{(Ph₂P)₂CHP-Ph₂AuCl}]⁶ [2.2749(14) and 2.2249(13) Å, respectively]. The intramolecular Au • • • Mo distance is very long, 7.406(2) Å.

Gold(III) phosphine complexes

Mixed gold(III) and molybdenum or tungsten derivatives can be obtained by ligand-displacement or bridge-cleavage reactions. Thus, treatment of $[M(CO)_{4}(tdppme)]$ (M = Mo a or W b) with $[Au(C_6F_5)_3(tht)]$ (1:1) or $[{Au(C_6F_5)_2(\mu-Cl)}_2]$ (2:1) leads to the neutral dinuclear products $[(OC)_4 M \{(Ph_2PCH_2)_2C Me(CH_2PPh_2)$ $Au(C_6F_5)_2X$ $(X = C_6F_5 5a, 5b \text{ or } Cl 6a, 6b)$ as white or yellow air-stable solids. They are soluble in chlorinated solvents, acetone and diethyl ether and nonconducting in acetone solutions. Their IR spectra show the same pattern, corresponding to cis-tetracarbonyl derivatives in the terminal CO region and with bands at 1507vs, 969vs, \approx 805m and 795m cm⁻¹ from the C₆F₅ groups bonded to the gold(III) centre; the last two show the characteristic pattern for $Au(C_6F_5)_3$ groups ¹⁶ in 5, and confirming a *cis* disposition ¹⁷ in 6. In the spectra of 6 a v(Au-Cl) absorption at 336m (6a) or 332m cm^{-1} (6b) also appears.

The ³¹P-{¹H} NMR spectra of these complexes show an AX₂ system without coupling between the different phosphorus atoms, and in all cases the resonance corresponding to the phosphorus *trans* to C_6F_5 (P_A) appears as a multiplet caused by the coupling to the ¹⁹F nuclei. The signal due to the phosphorus atoms bonded to tungsten (P_X) in **5b** and **6b** shows satellites [J(PW) = 113 Hz]. The ¹⁹F NMR spectra confirm the presence of two types of C_6F_5 groups with a relative integration

Table 3	Selected	bond lengths (Å)	and angles (°) for c	complex 2a
Au - P(1)		2.232(2)	Au-Cl	2.284(2)
Mo-C(6)		1.991(7)	Mo-C(7)	1.997(8)
Mo-C(8)		2.029(8)	Mo-C(9)	2.041(8)
Mo-P(2)		2.509(2)	Mo-P(3)	2.537(2)
P(1)-C(2	1)	1.810(7)	$P(1) - \hat{C}(11)$	1.815(7)
P(1) - C(4))	1.838(6)	P(2) - C(41)	1.822(7)
P(2) - C(3)	1)	1.835(7)	P(2) - C(2)	1.834(6)
P(3) - C(5)	1)	1.829(7)	P(3) - C(3)	1.843(7)
P(3)-C(6	1)	1.851(7)	C(1) - C(5)	1.538(9)
C(1) - C(4))	1.543(9)	C(1) - C(3)	1.544(8)
C(1)-C(2)	1.552(8)	C(6) - O(1)	1.148(8)
C(7)-O(2)	1.146(9)	C(8)-O(3)	1.135(8)
C(9)-O(4)	1.146(9)		
P(1)-Au-	-Cl	177.47(7)	C(6)-Mo-C(7)	88.7(3)
C(6)-Mo	-C(8)	86.4(3)	C(7)-Mo-C(8)	86.9(3)
C(6)-Mo	-C(9)	93.1(3)	C(7)-Mo-C(9)	87.8(3)
C(8)-Mo	-C(9)	174.8(3)	C(6)-Mo-P(2)	83.8(2)
C(7)-Mo	-P(2)	172.5(2)	C(8)-Mo-P(2)	91.9(2)
C(9)-Mo	-P(2)	93.2(2)	C(6)-Mo-P(3)	173.4(2)
C(7)-Mo	-P(3)	97.3(2)	C(8)-Mo-P(3)	91.1(2)
C(9)-Mo	P(3)	90.0(2)	P(2)-Mo-P(3)	90.14(6)
C(21)-P(I)-C(11)	103.8(3)	C(21)-P(1)-C(4)	106.5(3)
C(11)-P(1)C(4)	104.5(3)	C(21)P(1)-Au	112.5(2)
C(11)-P(1)–Au	110.7(2)	C(4)-P(1)-Au	117.7(2)
C(41) - P(2)	2)–C(31)	100.9(3)	C(41)-P(2)-C(2)	100.5(3)
C(31) - P(2)	2)–C(2)	105.5(3)	C(41)–P(2)–Mo	111.4(2)
C(31)-P(2	2)–Mo	118.3(2)	C(2)–P(2)–Mo	117.7(2)
C(51)-P(2	3)–C(3)	105.8(3)	C(51)-P(3)-C(61)	97.4(3)
C(3) - P(3))–C(61)	98.3(3)	C(51)–P(3)–Mo	116.3(2)
C(3) - P(3))–Mo	117.2(2)	C(61)P(3)Mo	118.7(2)
C(5)-C(1))–C(4)	109.6(5)	C(5)-C(1)-C(3)	112.0(5)
C(4)-C(1))–C(3)	110.2(5)	C(5)-C(1)-C(2)	111.0(5)
C(4)-C(1))-C(2)	102.5(5)	C(3)-C(1)-C(2)	111.2(5)
C(1)-C(2))–P(2)	119.4(5)	C(1)-C(3)-P(3)	121.4(5)
C(1)-C(4))– P (1)	121.7(4)	O(1)-C(6)-Mo	174.5(6)
O(2)-C(7))Mo	174.5(6)	O(3)-C(8)-Mo	173.5(6)
O(4)-C(9)–Mo	176.5(6)		

of 2:1 for 5 or 1:1 for 6. The ¹H NMR spectra are very similar to those found for the compounds described above, although for 5a it is not possible to calculate the values for $\delta(A)$, $\delta(B)$, J(AX) and J(BX), because the ABX system and the doublet of the methylene group are superposed.

In all the mass spectra (FAB+) the molecular-ion peaks appear at m/z = 1532 (5a, 5), 1618 (5b, 8), 1400 (6a, 6) and 1486 (6b, 13%). There are also peaks corresponding to the loss of CO or C₆F₅ groups, or to the fragments [M(tdppme)]⁺ (M = Au and Mo 5 or Au and W 6), in accord with the bridging nature of the ligand.

Methanide complexes

We have previously reported the use of acetylacetonate gold complexes, such as $[Au(acac)(PPh_3)]$, in the synthesis of methanide complexes^{6,18} and they are recognized as good deprotonating agents. Taking this fact into account, we have synthesized the acetylacetonate gold(1) derivative $[(OC)_4-Mo\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}Au(acac)]$ 7 by the reaction of equimolecular amounts of **2a** and Tl(acac), in order to use it as a deprotonating reagent. Complex 7 was isolated as an air-stable white solid, non-conducting in acetone solution. Its IR spectrum shows, besides three carbonyl bands, two broad vibrations at 1655vs and 1641vs cm⁻¹, consistent with the presence of the acetylacetonate anion bonded through the C³ atom.¹⁹

Its ³¹P-{¹H} NMR spectrum is very similar to that of the starting complex **2a**; the signal of the phosphorus bonded to gold(1) (P_A) is displaced to low field ($\Delta = 5.5$ ppm). In its ¹H NMR spectrum the three resonances of the phosphine protons appear as described above, and there are also two new signals corresponding to the acetylacetonate ion at $\delta 2.19$ (s, 2CH₃) and

4.51 (m, CH). The molecular-ion peak is not present in the mass spectrum (FAB+) of 7, but some peaks can be assigned to fragments corresponding to loss of the acac or CO groups.

We have recently reported the reaction of $[Au(C_6F_5)_3$ -(dppm)] (dppm = Ph₂PCH₂PPh₂) and the diauracyclic acetylacetonate complex [(acac)AuCH(Ph₂PAuPPh₂)₂CHAu-(acac)] (2:1), which results in deprotonation of the phosphine and co-ordination of the free phosphorus to the gold(i) centre to give the hexanuclear derivative $[(C_6F_5)_3Au-(Ph_2PCHPPh_2)AuCH(Ph_2PAuPPh_2)_2CHAu(Ph_2PCHPPh_2) Au(C_6F_5)_3].^{4d}$ In contrast, treatment of $[Au(C_6F_5)_3(dppm)]$ with $[Au(acac)(PPh_3)]$ results in an unresolved mixture of $[(C_6F_5)_3Au(Ph_2PCHPPh_2)Au(PPh_3)]$ and $[(C_6F_5)_3Au\{Ph_2-PCH(AuPPh_3)PPh_2\}Au(PPh_3)]^+.^{20}$

The reaction of $[Au(C_6F_5)_3(dppm)]$ with complex 7 in an equimolecular ratio gives the trinuclear derivative $[(OC)_4-Mo\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}Au(Ph_2PCHPPh_2)Au(C_6-F_5)_3]$ 8 as a pure yellow product. It is moderately stable in the solid state, but decomposes in solution. Its IR spectrum presents, besides the pattern of $cis-M(CO)_4L_2$ complexes, absorptions corresponding to the $Au(C_6F_5)_3$ fragment. Its ³¹P-{¹H} NMR spectrum shows a singlet corresponding to two phosphorus atoms bonded to molybdenum (P_x), a multiplet due to the phosphorus linked to the gold(III) centre (P_y), and the two phosphorus of the gold(I) environment appear as an AB system (Table 2). Its ¹⁹F NMR spectrum presents the typical pattern of the Au(C_6F_5)_3 fragment.

Similarly to the last reaction, $[Mo(CO)_4\{(Ph_2P)_2CHPPh_2\}]$ reacts with acetylacetonatogold(I) complexes, giving the expected methanide derivatives.⁶ Thus, treatment of $[Mo-(CO)_4\{(Ph_2P)_2CHPPh_2\}]$ with an equimolecular amount of complex 7 results in the synthesis of the trinuclear methanide $[(OC)_4Mo\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}Au\{Ph_2PC(PPh_2)_2\}-Mo(CO)_4]$ 9 as a pale yellow solid. The IR spectrum presents bands corresponding to two different *cis*-Mo(CO)_4L₂ groups, and a new vibration at 879m cm⁻¹, due to the $(PPh_2)_3C^$ system.⁵⁴ In its ³¹P-{¹H} NMR spectrum two signals of the phosphorus atoms of the metallocycles and an AB system corresponding to the P-Au-P unit appear. Its mass spectrum (FAB +) shows the molecular-ion peak at m/z = 1808 (4%).

Experimental

All the reactions were performed at room temperature (except when indicated) and under dry nitrogen for the synthesis of the methanide complexes 8 and 9 and all the solvents were dried by standard methods. Infrared spectra were recorded in the range 4000–200 cm⁻¹ on a Perkin-Elmer 883 spectrophotometer using Nujol mulls between polyethylene sheets and in dichloromethane solutions for the CO vibrations. Conductivities were measured in ca. 5×10^{-4} mol dm⁻³ solutions with a Jenway 4010 digital conductimeter. The carbon and hydrogen analyses were carried out with a Perkin-Elmer 240C microanalyser. Proton, ¹⁹F and ³¹P-{¹H} NMR spectra were recorded on Bruker ARX 300 spectrometer in CDCl₃ and chemical shifts are cited relative to SiMe₄ (external, ¹H), 85% H₃PO₄ (external, ³¹P) and CFCl₃ (external, ¹⁹F). Mass spectra were recorded on a VG Autospec instrument, with the FAB technique, using 3-nitrobenzyl alcohol as matrix. Yields, elemental analyses, melting points and conductivities for the new complexes are listed in Table 1. The following compounds were prepared according to the published procedures: cis-[M(CO)₄(pip)₂],¹¹ $[AuCl(tht)]^{21}$ $[Au(C_6F_5)(tht)]^{22}$ $[Au(PPh_3)(tht)]ClO_4^{23}$ $\begin{bmatrix} Au(tht)_2]ClO_4, ^{23} \\ H_2)CMe(CH_2PPh_2)_2 \end{bmatrix}, ^9 \\ \begin{bmatrix} Au(C_6F_5)_3(tht)], ^{16} \\ [Au(C_6F_5)_2(\mu-Cl)]_2 \end{bmatrix}, ^{24} \\ \begin{bmatrix} Au(C_6F_5)_2(\mu-Cl)]_2 \end{bmatrix}, ^{24} \\$ $(C_6F_5)_3(dppm)]^{25}$ and $[Mo(CO)_4\{(Ph_2P)_2CHPPh_2\}].^6$

Syntheses

 $[M(CO)_4 \{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}] (M = Mo \text{ or } W).$ To a suspension of 0.5 mmol of *cis*-[M(CO)_4(pip)_2] (M = Mo, 0.189; or W, 0.233 g) in dichloromethane (40 cm³) was added (Ph₂PCH₂)₃CMe (0.312 g, 0.5 mmol). After refluxing the mixture for 1 h a small quantity of solid was filtered off through Celite and the solution concentrated *in vacuo*. Addition of hexane gave a white (Mo) or pale yellow (W) solid, which was filtered off and washed with hexane. Yield: 96 (Mo) or 86% (W).

 $[Mo(CO)_4\{(Ph_2PCH_2)_2CMeCH_2PPh_2(O)\}]$ 1. To a dichloromethane solution of $[Mo(CO)_4\{(Ph_2PCH_2)_2CMe(CH_2P-Ph_2)\}]$ (0.166 g, 0.2 mmol) was added two drops of H_2O_2 (35% in water). The solution was stirred for 15 min, filtered through a 1 cm layer of anhydrous magnesium sulfate and concentrated to *ca*. 5 cm³. Addition of hexane (20 cm³) led to precipitation of complex 1 as a white solid.

 $[(OC)_4M\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}AuCl]$ (M = Mo 2a or W 2b). To a solution of 0.2 mmol of $[M(CO)_4\{(Ph_2PCH_2)_2-CMe(CH_2PPh_2)\}]$ (M = Mo, 0.166; or W, 0.184 g) in dichloromethane (20 cm³) was added [AuCl(tht)] (0.064 g, 0.2 mmol). After stirring for 1 h at room temperature the solution was concentrated under reduced pressure and hexane was added (20 cm³) to precipitate the products as white (2a) or yellow (2b) solids.

[(OC)₄M{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}Au(C₆F₅)] (M = Mo 3a or W 3b). Addition of [Au(C₆F₅)(tht)] (0.090 g, 0.2 mmol) to 0.2 mmol of [M(CO)₄{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}] (M = Mo, 0.166; or W, 0.184 g) in dichloromethane afforded complex 3a or 3b after 1 h of stirring. The solvent was then partially removed *in vacuo*, whereupon the products were obtained by addition of hexane (20 cm³) as a white (3a) or yellow (3b) solid. ¹⁹F NMR: 3a, δ –116.0 (m, *o*-F), –155.1 [t, *p*-F, ³*J*(FF) 20.0] and –162.2 (m, *m*-F); 3b, δ –116.0 (m, *o*-F), –155.0 [t, *p*-F, ³*J*(FF) 19.8 Hz] and –162.3 (m, *m*-F).

 $[\{M(CO)_4[(Ph_2PCH_2)_2CMe(CH_2PPh_2)]\}_2Au]ClO_4 \quad (M = Mo 4a or W 4b). To a dichloromethane solution containing 0.2 mmol of [M(CO)_4 {(Ph_2PCH_2)_2CMe(CH_2PPh_2)}] (M = Mo, 0.166; or W, 0.184 g) was added [Au(tht)_2]ClO_4 (0.047 g, 0.1 mmol). The solution was stirred for 1 h and then concentrated to$ *ca*. 5 cm³ followed by addition of diethyl ether, which gave 4a or 4b as a pale yellow solid.

 $[(OC)_4M\{(PPh_2CH_2)_2CMe(CH_2PPh_2)\}Au(C_6F_5)_3] \quad (M = Mo \ 5a \ or \ W \ 5b). Method \ 1. Reaction \ of \ [Au(C_6F_5)_3(tht)] (0.157 g, 0.2 mmol) with 0.2 mmol \ of \ [M(CO)_4\{(Ph_2PCH_2)_2C-Me(CH_2PPh_2)\}] \quad (M = Mo, \ 0.166; \ or \ W, \ 0.184 \ g) \ in dichloromethane (20 \ cm^3) \ produced \ after \ 1 \ h \ a \ colourless (5a) \ or \ yellow (5b) \ solution, which was \ concentrated \ under \ reduced \ pressure. Addition \ of \ hexane (20 \ cm^3) \ gave \ a \ white \ (5a) \ or \ yellow (5b) \ precipitate, \ which \ was \ filtered \ off \ and \ washed \ with \ hexane.$

Method 2. To a suspension of 0.2 mmol of cis- $[M(CO)_4(pip)_2]$ (M = Mo, 0.076; or W, 0.093 g) in dichloromethane (20 cm³) was added $[Au(C_6F_5)_3\{(Ph_2PCH_2)CMe(CH_2PPh_2)_2\}]$ (0.265 g, 0.2 mmol). After stirring the mixture for 1 h at reflux temperature it was filtered through a 1 cm layer of Celite to remove a small quantity of solid. The solvent was then partially evaporated and hexane (20 cm³) added to obtain the product as a white (**5a**) or yellow (**5b**) solid. ¹⁹F NMR: **5a**, δ -120.0 and -121.8 (m, o-F), -156.3 and -157.1 [t, p-F, ³J(FF) 19.9 and 20.0] and -159.8 and -161.2 (m, m-F); **5b**, δ -119.8 and -121.6 (m, o-F), -156.1 and -156.8 [t, p-F, ³J(FF) 20.1 and 20.0 Hz] and -159.5 and -160.9 (m, m-F).

 $[(OC)_4M\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}Au(C_6F_5)_2Cl] (M = Mo 6a or W 6b). Addition of [{Au(C_6F_5)_2(\mu-Cl)}_2] (0.113 g, 0.1 mmol) to a dichloromethane solution of 0.2 mmol of [M(CO)_4\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}] (M = Mo, 0.166; or [M(CO)_4(Ch_2PCH_2)_2CMe(CH_2PPh_2)]]$

W, 0.184 g) afforded complex **6a** or **6b** after 1 h at room temperature. The solution was concentrated *in vacuo* and addition of hexane (20 cm³) led to precipitation of a white (**6a**) or yellow (**6b**) solid. ¹⁹F NMR: **6a**, $\delta - 121.0$ and -122.6 (m, *o*-F), -155.4 and -156.2 [t, *p*-F, ³*J*(FF) 20.0 and 19.9] and -159.5 and -160.9 (m, *m*-F); **6b**, $\delta - 121.0$ and -122.5 (m, *o*-F), -155.4 and -156.2 [t, *p*-F, ³*J*(FF) 19.8 and 20.0 Hz] and -159.5 and -160.9 (m, *m*-F).

 $[(OC)_4Mo\{(PPh_2CH_2)_2CMe(CH_2PPh_2)\}Au(acac)]$ 7. To a solution of complex 2a (0.213 g, 0.2 mmol) in dichloromethane (20 cm³) was added an excess of Tl(acac) (0.121 g, 0.4 mmol). The mixture was stirred for 1 d and TlCl removed by filtration through Celite; the solvent was then evaporated under reduced pressure and hexane was added to precipitate complex 7 as a white solid.

[(OC)₄M{(Ph₂PCH₂)₂CMe(CH₂PPh₂)}Au(Ph₂PCHPPh₂)Au-(C₆F₅)₃] **8.** Addition of complex 7 (0.113 g, 0.1 mmol) to a freshly dried diethyl ether solution of [Au(C₆F₅)₃(dppm)] (0.108 g, 0.1 mmol) at room temperature and under nitrogen produced **8** after 3 h as a yellow precipitate, which was filtered off and washed with diethyl ether. ¹⁹F NMR: δ –120.3 and -120.7 (m, o-F), -159.2 and -160.1 [t, p-F, ³J(FF) 19.4 and 20.2 Hz] and -162.2 and -162.7 (m, m-F).

 $[(OC)_4Mo\{(Ph_2PCH_2)_2CMe(CH_2PPh_2)\}Au\{Ph_2PC(PPh_2)_2\}$ -Mo(CO)₄] 9. To a solution of $[Mo(CO)_4\{(Ph_2P)_2CHPPh_2\}]$ (0.078 g, 0.1 mmol) in freshly dried dichloromethane (20 cm³) and under a nitrogen atmosphere was added complex 7 (0.113 g, 0.1 mmol). After 1 h of stirring the yellow solution formed was filtered through a 1 cm layer of Celite to remove a small quantity of solid, the solvent was then partially evaporated and hexane (20 cm³) added, which gave 9 as a yellow solid.

Crystal structure determination of compound 2a·CH₂Cl₂

Crystal data and data-collection parameters. $C_{46}H_{41}AuCl_3$ -MoO₄P₃, M = 1149.95, monoclinic, space group $P2_1/n$, a = 14.624(5), b = 12.758(4), c = 24.745(6) Å, $\beta = 106.64(3)^\circ$, U = 4423(2) Å³, Z = 4, $D_c = 1.727$ Mg m⁻³, F(000) = 2264, λ (Mo-K α) = 0.710 73 Å, $\mu = 3.93$ mm⁻¹, T = -130 °C.

A crystal 0.60 × 0.30 × 0.20 mm was mounted in inert oil on a Stoe-STADI4 diffractometer, and used to collect 8137 intensities to $2\theta_{max}$ 50° (monochromated Mo-K α radiation). An absorption correction based on ψ scans was applied, with transmission factors 0.745–0.913. Merging equivalents gave 7793 independent reflections ($R_{int} = 0.036$). Cell constants were refined from the ± ω angles of 52 reflections in the range 20 20–22°. Weighting scheme employed: $w = 1/\sigma^2(F_o^2) +$ 0.0348 $P^2 + 19.5659P$, where $P = (F_o^2 + 2F_c^2/3)$.

Structure solution and refinement. The structure was solved by the heavy-atom method and subjected to full-matrix leastsquares refinement on F^2 (program system SHELXL 93).²⁶ All non-hydrogen atoms were refined anisotropically; hydrogen atoms were included using a riding model. Refinement proceeded to $wR(F^2) = 0.108$, conventional R(F) 0.043, for 518 parameters and 396 restraints (light-atom displacement parameters and ring planarity). S = 1.06; maximum $\Delta \rho \ 1.6$ e Å⁻³.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc., Dalton Trans.*, 1996, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/174.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (PB94-0079) for financial support and the Instituto de Estudios Riojanos for a grant (to E. O.).

References

- 1 R. J. Puddephatt, Chem. Soc. Rev., 1983, 12, 99.
- 2 B. Chaudret, B. Delavaux and R. Poiblanc, Coord. Chem. Rev., 1988, 86, 193.
- A. Laguna and M. Laguna, J. Organomet. Chem., 1990, 394, 743.
 (a) H. Schmidbaur, A. Wohlleben, U. Schubert, A. Frank and G. Huttner, Chem. Ber., 1977, 110, 2751; (b) E. J. Fernández, M. C.
- G. Hutther, Chem. Ber., 1977, 110, 2737, (b) E. J. Fefnandez, M. C.
 Gimeno, P. G. Jones, A. Laguna, M. Laguna and J. M. López-de-Luzuriaga, J. Chem. Soc., Dalton Trans., 1992, 3365; (c) E. J.
 Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and J. M. López-de-Luzuriaga, Angew. Chem., Int. Ed. Engl., 1994, 33, 87; (d) E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna, M. Laguna, J. M. Lopez-de-Luzuriaga and M. A. Rodríguez, Chem. Ber., 1995, 128, 121; (e) E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and E. Olmos, Inorg. Chim. Acta, 1995, 238, 173.
- 5 (a) H. H. Karsch, A. Appelt and G. Müller, Angew. Chem., Int. Ed. Engl., 1985, 24, 402; (b) H. H. Karsch, A. Appelt, G. Müller and J. Riede, Organometallics, 1987, 6, 316; (c) J. Forniés, R. Navarro, M. Tomás and E. P. Urriolabeitia, J. Chem. Soc., Dalton Trans., 1994, 505; (d) E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and J. M. López-de-Luzuriaga, J. Chem. Soc., Dalton Trans., 1993, 3401; (e) E. J. Fernández, M. C. Gimeno, P. G. Jones, B. Ahrens, A. Laguna, M. Laguna and J. M. López-de-Luzuriaga, J. Chem. Soc., Dalton Trans., 1994, 3487; (f) A. Stützer, P. Bissinger and H. Schmidbaur, Chem. Ber., 1992, 125, 367.
- 6 E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and E. Olmos, J. Chem. Soc., Dalton Trans., 1994, 2891.
- 7 (a) A. Albinati, L. M. Venanzi and G. Wang, Inorg. Chem., 1993, 32, 3660; (b) L. F. Rhodes and L. M. Venanzi, Inorg. Chem., 1987, 26, 2692; (c) J. Ellermann, H. A. Lindner and M. Moll, Chem. Ber, 1979, 112, 3441; (d) J. Ellermann and H. A. Lindner, Z. Naturforsch., Teil B, 1976, 31, 1350; (e) O. Walter, T. Klein, G. Huttner and L. Zsolnai, J. Organomet. Chem., 1993, 458, 63; (f) H. Schmidbaur, A. Stützer and P. Bissinger, Z. Naturforsch., Teil B, 1992, 47, 640.

- 8 A. Albinati, F. Demartin, P. Janser, L. F. Rhodes and L. M. Venanzi, J. Am. Chem. Soc., 1989, 111, 2115; A. Albinati, J. Eckert, P. Hofmann, H. Rüegger and L. M. Venanzi, *Inorg. Chem.*, 1993, 32, 2377.
- 9 E. J. Fernández, M. C. Gimeno, A. Laguna, M. Laguna, J. M. López-de-Luzuriaga and E. Olmos, J. Organomet. Chem., 1996, 514, 169.
- 10 (a) S. T. Liu, H. E. Wang, L. M. Yiin, S. C. Tsai, K. J. Liu, Y. M. Wang, M. C. Cheng and S. M. Peng, *Organometallics*, 1993, 12, 2277; (b) J. Chatt, G. J. Leigh and N. Thankarajan, *J. Organomet. Chem.*, 1971, 29, 105; (c) M. K. Cooper, K. Henrick, M. McPartlin and J. L. Latten, *Inorg. Chim. Acta*, 1982, 65, L185.
- 11 D. J. Darensbourg and R. L. Kump, Inorg. Chem., 1978, 17, 2680.
- 12 K. Nakamoto, Infrared and Raman Spectra of Inorganic and
- Coordination Compounds, 4th edn., Wiley, New York, 1986, p. 341. 13 R. Usón, A. Laguna and J. Vicente, *Rev. Acad. Cienc. Zaragoza*, 1976. 31, 211.
- 14 B. J. Hathaway and A. E. Underhill, J. Chem. Soc., 1961, 3091.
- 15 K. K. Cheung, T. F. Lai and K. S. Mok, J. Chem. Soc. A, 1971, 1644.
- 16 R. Usón, A. Laguna, M. Laguna, E. J. Fernández, P. G. Jones and
- G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1982, 1971. 17 R. Usón, A. Laguna, J. García and M. Laguna, Inorg. Chim. Acta,
- 1979, 37, 201.
 18 M. C. Gimeno, A. Laguna, M. Laguna, F. Sanmartín and P. G. Jones, *Organometallics*, 1993, 12, 3984; E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and J. M. López-de-Luzuriaga, *Organometallics*, 1995, 14, 2918.
- 19 K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn., Wiley, 1986, pp. 264 and 265.
- 20 E. J. Fernández, M. C. Gimeno, A. Laguna, M. Laguna and J. M. López-de-Luzuriaga, unpublished work.
- 21 R. Usón and A. Laguna, Organomet. Synth., 1989, 3, 322.
- 22 R. Usón, A. Laguna and J. Vicente, J. Chem. Soc., Chem. Commun., 1976, 353.
- 23 R. Usón, A. Laguna, M. Laguna, J. Jiménez, M. P. Gómez, A. Sainz and P. G. Jones, J. Chem. Soc., Dalton Trans., 1990, 3457.
- 24 R. Usón, A. Laguna, M. Laguna and A. Abad, J. Organomet. Chem., 1983, 249, 437.
- 25 R. Usón, A. Laguna, M. Laguna and E. Fernández, *Inorg. Chim.* Acta, 1980, **45**, L177.
- 26 G. M. Sheldrick, SHELXL 93, A Program for Crystal Structure Refinement, University of Göttingen, 1993.

Received 29th April 1996; Paper 6/02969H