Kinetics and mechanism of ligand substitution in $[Cr(\pi-ligand)(CO)_3]$ complexes (ligand = naphthalene, pyrene, thiophene, 2,6-dimethylpyridine, or cycloheptatriene) and of *fac/mer* isomerization in $[M(CO)_3L_3]$ (M = Cr, Mo or W; L = phosphite, phosphine or isocyanide)[†] DALTON

James A. S. Howell,* Paul C. Yates, Neil F. Ashford, Denis T. Dixon and Richard Warren Chemistry Department, University of Keele, Keele, Staffordshire ST5 5BG, UK

Kinetic studies of the reaction $[Cr(\pi-ligand)(CO)_3] + 3L \longrightarrow [Cr(CO)_3L_3] + \pi-ligand revealed a second-order rate law with the <math>\pi$ -ligand lability decreasing in the order naphthalene > thiophene > cycloheptatriene > 2,5-dimethylpyridine. In terms of the entering ligand, the rates increased in the order PrCN < P(OMe)_3 < PBu_3. Rates of intramolecular exchange in the $[M(CO)_{6-x}{P(OMe)_3}_x]$ series increased in the order x = 3 < 1 < 2 and M = Mo < W < Cr. These results are consistent with molecular modelling of the trigonal twist pathway for $[Cr(CO)_{6-x}(PR_3)_x]$ complexes (x = 1-3, R = H or Me).

The chromium group metals form a rich variety of $[M(\pi-ligand)(CO)_3]$ (ligand = mono or polycyclic arene, heteroarene, triene) and $[M(\pi-diene)(CO)_4]$ complexes which, in addition to their synthetic utility in organic synthesis,¹ also function as transfer reagents or catalyst precursors for a variety of transformations. For example, the easily prepared $[Cr(C_{10}H_8)(CO)_3](C_{10}H_8 = naphthalene)$ has been used both as a stoichiometric reagent for arene exchange² and as a precursor for metal-catalysed isomerization, cycloaddition, hydrogenation and halogenoalkane addition reactions.³ There has thus been a considerable interest in the kinetic lability⁴⁻⁶ and relative ordering of thermodynamic stability ⁷ of such complexes as aids for systematic synthesis and for the design of homogeneous catalytic processes.

We have previously reported a kinetic study of uncatalysed arene exchange in labile $Cr(\pi-ligand)(CO)_3$ complexes, ^{5a} and present here our results on the kinetics and mechanism of ligand displacement in this same series by phosphine, phosphite and cyanide donor ligands. During preparation of this manuscript a study which includes the kinetics and thermodynamics of the reaction of certain of these substrates with PBu₃ was reported.^{6j} The initial products of these reactions are predominantly the *fac*-[Cr(CO)₃L₃] complexes, and in view of the recent interest in intramolecular isomerization of octahedral metal complexes,⁸ we present also our kinetic and computational results regarding the *fac/mer* isomerization in the [M(CO)₃L₃] series (M = Cr, Mo or W; L = phosphine, phosphite or isocyanide).

Results and Discussion

Substitution reactions

The reactions in Scheme 1 were monitored in decalin by UV/VIS spectroscopy using the disappearance of the redorange substrate (see Experimental section). For reactions studied at less than 50 °C (naphthalene, thiophene, cycloheptatriene), the rate of *fac* \longrightarrow *mer* isomerization of the product [Cr(CO)₃L₃] complex is slow, and the small amounts of *mer* isomer observed are derived directly from the substitution reaction (see below); calibration with pure *fac*-[Cr(CO)₃- $[Cr(\pi-ligand)(CO)_3] + 3L \longrightarrow [Cr(CO)_3L_3] + ligand$

Scheme 1 Ligand = pyrene, naphthalene, thiophene or 2,5-dimethylthiophene, $L = P(OMe)_3$; ligand = cyclohepta-1,3,5-triene, $L = P(OMe)_3$, PBu₃ or PrCN; ligand = 2,6-dimethylpyridine (dmpy), $L = PBu_3$

 $\{P(OMe)_3\}$] shows a yield of >90% fac isomer in all cases. For complexes requiring temperatures greater than 50 °C, \rightarrow mer isometrization proceeds at a rate which is fac significant compared to the rate of substitution, and at t_{∞} , fac-mer mixtures which are at or close to thermodynamic equilibrium are obtained. This does not interfere with monitoring of the substitution reaction, except in the case of the reaction of [Cr(dmpy)(CO)₃] with PBu₃ where changes in the UV/VIS spectrum due to isomerization overlap with changes associated with the disappearance of the yellow substrate. The rate of substitution of this complex by PBu₃ at 70 °C is about 50 times slower than the reaction of $[Cr(C_7H_8)(CO)_3]$ with PBu₃. The corresponding complexes of styrene and octamethylnaphthalene are inert towards phosphite substitution at temperatures up to 90 °C.

The product $[Cr(CO)_3{P(OMe)_3}_3]$ has been characterized by reaction on a synthetic scale. While infrared spectra of reaction solutions clearly indicate the presence of fac- $[Cr(CO)_3(PBu_3)_3]$ {v_{co} 1930, 1842 cm⁻¹ (decalin); cf. [Cr-(CO)₃(PMe₃)₃] 1923, 1821 cm⁻¹ (CHCl₃)⁹}, attempts at isolation are frustrated by instability in the absence of an excess of PBu₃. Though the lower homologues $[Cr(CO)_3(PR_3)_3]$ (R = H, Me or Et) have been characterized, ⁹⁻¹¹ use of more sterically demanding ligands such $P(C_6H_{11})_3$ permits isolation of $16e^{-}[Cr(CO)_{3}{P(C_{6}H_{11})_{3}}_{2}]$ which in solution adds twoelectron ligands to provide 18e⁻[Cr(CO)₃] complexes with low activation energies.¹² We thus attribute the instability of [Cr(CO)₃(PBu₃)₃] to facile phosphine dissociation. The complex [Cr(CO)₃(PrCN)₃] was identified in situ by the strong v_{co} absorption at 1938 cm⁻¹ (decalin) {cf. [Cr(CO)₃(EtCN)₃] 1919, 1794 cm⁻¹ (EtCN)¹³}. The lower homologues (MeCN, EtCN) were unsuitable for the kinetic work due to the immiscibility of the free cyanides with decalin.

Under pseudo-first-order conditions, all the above reactions proceed to completion with the exception of that of $[Cr(C_7H_8)(CO)_3]$ with PrCN, where an equilibrium constant of 7.7 × 10⁻³ dm⁶ mol⁻² at 110 °C may be measured by UV/VIS spectroscopy. The equilibrium is confirmed by infrared studies (Fig. 1) which show an appropriate response to increasing [PrCN] at t_{∞} . Reaction of PrCN with [Cr-

[†] Supplementary data available (No. SUP 57164, 4 pp.): first-order rate constants for substitution reactions. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1996, Issue 1.

Non-SI units employed: mmHg \approx 133 Pa, psi \approx 6895 Pa, dyn = 10⁻⁵ N.

Fig. 1 Infrared spectra of equilibrium mixtures formed on reaction of $[Cr(C_7H_8)(CO)_3]$ and $[Cr(C_{10}H_8)(CO)_3]$ with PrCN (decalin, 110 °C, [PrCN] = 0.2 mol dm⁻³)

 $(C_{10}H_8)(CO)_3$ also yields an equilibrium which is displaced much more substantially to the right (Fig. 1). A similar equilibrium is established in the reaction of this complex with tetrahydrofuran.^{3a,h} These results are consistent with thermo-chemical data¹⁴ which show that $[Cr(CO)_3L_3]$ complexes are more stable than $[Cr(C_7H_8)(CO)_3]$ in the order MeCN $(17.6 \text{ kJ mol}^{-1}) < PEt_3$ $(148) \approx P(OMe)_3$ (157) and that $[Cr(C_7H_8)(CO)_3]$ is more stable than $[Cr(C_{10}H_8)(CO)_3]$ by 53.5 kJ mol⁻¹. In our hands, reaction of $[Cr(C_7H_8)(CO)_3]$ with PrCN in dichloroethane proceeds with complete consumption of starting material; examination of the infrared spectrum at t_{∞} shows only the presence of [Cr(CO)₆], indicative of substitution followed by a chlorination/decomposition which drives the reaction to completion. Such an instability of zerovalent Group 6 complexes in dichloroethane has been noted previously.^{6g} In toluene as solvent, a quantitative yield of $[Cr(C_6H_5Me)(CO)_3]$ is observed, indicative of rate-determining initial substitution to give [Cr(CO)₃(PrCN)₃] followed by rapid exchange with solvent.¹⁵ Though it has been shown that $[Mo(C_6H_5Me)(CO)_3]$ is 29.7 kJ mol⁻¹ less stable than $[Mo(C_7H_8)(CO)_3]$,¹⁶ the high toluene concentration used in this study forces the reaction to completion.

Plots of k_{obs} against [L] for the reaction of $[Cr(C_7H_8)(CO)_3]$ with P(OMe)₃, PBu₃ and PrCN are shown in Fig. 2 and are consistent with the rate-determining associative process shown in Scheme 2(*a*). Application of the steady-state approximation to intermediate A yields the rate equation (1) which if $k_2[L] \gg k_{-1}$ reduces to (2). There is no spectroscopic evidence for detectable concentrations of any intermediates, but to

(a) $[M(\eta^{n}-\text{ligand})(\text{CO})_{3}] \xrightarrow{k_{1} + L}_{k_{-1} - L} [M(\eta^{x}-\text{ligand})(\text{CO})_{3}L]$ $S \qquad A \qquad + L \downarrow k_{2}$ $\text{ligand} + [M(\text{CO})_{3}L_{3}] \xleftarrow{\text{fast}}_{+L} [M(\eta^{y}-\text{ligand})(\text{CO})_{3}L_{2}]$ R

$$\begin{bmatrix} M(\eta^{n}-\text{ligand})(\text{CO})_{3} \end{bmatrix} \xrightarrow{k_{1}}_{k_{-1}} \begin{bmatrix} M(\eta^{x}-\text{ligand})(\text{CO})_{3} \end{bmatrix}$$

$$S \qquad A'$$

$$k_{2} + L \parallel k_{-2} - L$$

$$\text{ligand} + \begin{bmatrix} M(\text{CO})_{3}L_{3} \end{bmatrix} \xleftarrow{\text{fast}}_{+2L} \begin{bmatrix} M(\eta^{x}-\text{ligand})(\text{CO})_{3}L \end{bmatrix}$$

$$Scheme 2$$

$$\frac{-d[S]}{dt} = \frac{k_1 k_2 [S][L]^2}{k_{-1} + k_2 [L]}$$
(1)

$$-\mathbf{d}[\mathbf{S}]/\mathbf{d}t = k_1[\mathbf{S}][\mathbf{L}] \tag{2}$$

maintain an 18e⁻ configuration at the metal values of x = 4and y = 2 are required for η^6 -donors and x = 3 and y = 1 for the η^5 -donor thiophene.

The plot for the reaction of $[Cr(C_7H_8)(CO)_3]$ with $P(OMe)_3$ exhibits some negative curvature with increasing phosphite concentration, as do all plots of k_{obs} against $[P(OMe)_3]$ for the other $[Cr(\pi-ligand)(CO)_3]$ complexes studied. This might be taken as confirmatory evidence for an alternative mechanism [Scheme 2(b)] in which ring slippage without M-L bond formation yields the initial intermediate A'. Application of the steady-state approximation to A' yields the rate law (3).

 Table 1
 Derived rate constants and activation parameters for the substitution reaction $[Cr(\pi-ligand)(CO)_3] + 3L \longrightarrow [Cr(CO)_3L_3] + ligand$

Ligand	I	T/⁰C	$10^{3}k_{1}/\text{dm}^{3}$	$\Lambda H^{\ddagger}/k \mathrm{I} \mathrm{mol}^{-1}$	$\Delta S^{\ddagger}/J K^{-1} mol^{-1}$
		1/0		Z0 2 (2 4)	
Cycloheptatriene	$P(OMe)_3$	31.2	0.247 (0.008)	/0.3 (2.4)	-114(8)
		37.1	0.436 (0.03)		
		48.4	1.16 (0.03)	<i></i>	
	PBu ₃	31.0	1.26 (0.02)	66.1 (2.6)	-117 (8)
		40.6	4.13 (0.03)		
		50.4	8.70 (0.07)		
	PrCN	88.5	0.0713 (0.0009)	81.6 (2.4)	- 78 (6)
		100.0	0.172 (0.006)		
		110.0	0.344 (0.007)		
Naphthalene	P(OMe) ₃	23.5	0.674 (0.02)	67.8 (6.6) [41.4]	-120(22)[-140]
	- ())	31.2	1.33 (0.06)		
		37.1	2.37 (0.03)		
Pyrene	P(OMe)	56.6	0.239 (0.04)	86.9 (3.6) [56.4]	-146(10) [-123]
-)	- () 3	68 7	0 735 (0 04)		
		78.0	1 77 (0 05)		
Thionhene	P(OMe)	37 1	0.969 (0.04)	68 2 (3 0) [46 4]	-114(10) [-120]
Thiophene	1 (01/10)3	47.0	234(0.04)	00.2 (0.0) [-0]	111(10)[120]
		56.6	2.34 (0.04) 4.03 (0.20)		
2.5 Dimetholdhianhana		27.1	4.93(0.20)	91 2 (9 0) F57 7 7	145 (28) F 1117
2,5-Dimetnyithiophene	$P(Oivie)_3$	37.1	0.220(0.04)	81.5 (8.0) [<i>31.1</i>]	=143 (28) [=111]
		47.0	0.084 (0.03)		
		56.6	1.52 (0.02)		

Refers to k_1 of Scheme 2(a); two standard derivations in parentheses. Values for reaction with PBu₃ from ref. 6(j) are in square brackets.

$$\frac{-d[S]}{dt} = \frac{k_1 k_2 [S][L]}{k_{-1} + k_2 [L]}$$
(3)

The implication of the kinetic results is that both limiting conditions $(k_{-1} \gg k_2[L] \text{ and } k_2[L] \gg k_{-1})$ can be attained over the ligand concentration used. We believe, however, that such an interpretation is in error; for $[Cr(C_{10}H_8)(CO)_3]$, putative values of the limiting rate constant (ca. $5 \times 10^{-3} \text{ s}^{-1}$ at 37.1 °C) differ considerably from the rate constants for what should be the same ligand-independent slippage pathway which mainly carries the arene-exchange reaction of $[Cr(C_{10}H_8)(CO)_3]$ (ca. 1 × 10⁻⁵ s⁻¹ at 160 °C). The origin of the curvature is not known, but may be due to an increase in relative permittivity with increasing [P(OMe)₃], as suggested in a previous study of this reaction.⁶ For the P(OMe)₃ reactions, the derived second-order rate constants (Table 1) were calculated from the linear portion of plots of k_{abs} against [L]. Activation parameters are also reported. Such parameters have previously been reported for the reaction of $[Cr(C_7H_8)(CO)_3]$ with $P(OMe)_3$ in cyclohexane^{6f} and with MeCN in dichloromethane.⁶⁴ Included for comparison in square brackets are recently reported values for reaction of these substrates with PBu₃.⁶

Several points of interest may be noted.

(a) For the reaction of $[Cr(C_7H_8)(CO)_3]$ with PBu₃, P(OMe)₃ and PrCN, ΔH^{\ddagger} values increase with decreasing basicity of the ligand. The substantially negative ΔS^{\ddagger} values for all the reactions are consistent with an associative process. It is of interest that while other ΔH^{\ddagger} values for the P(OMe)₃ and PBu₃ reactions differ by 20–30 kJ mol⁻¹ for reactions of the aromatic π -donor complexes, those of the conjugated cycloheptatriene complex differ by only about 4 kJ mol⁻¹.

(b) The decreased lability of the 2,5-dimethylthiophene and thiophene complexes is primarily enthalpy controlled. This may reflect the greater thermodynamic stability of the dimethyl complex $(12.5 \text{ kJ mol}^{-1})$.^{6*i*} In the [Mo(arene)(CO)₃] series, methyl disubstitution also increases thermodynamic stability by approximately 12 kJ mol⁻¹,¹⁵ and decreases kinetic lability.^{6*a*}

(c) The relative ordering of π -ligand lability established for ligand *exchange* (2,6-dimethylpyridine > pyrene > 2,5-

Scheme 3

dimethylthiophene > naphthalene > cycloheptatriene) is different from the ordering for the ligand substitution reactions described herein (naphthalene > thiophene > cycloheptatriene > 2,5-dimethylthiophene > pyrene > 2,6-dimethylpyridine). The ΔH^{\ddagger} values for the exchange process, which is essentially unimolecular in character, are substantially higher {117 kJ mol⁻¹ for exchange ⁵ versus 68 kJ mol⁻¹ for substitution in the case of $[Cr(C_{10}H_8)(CO)_3]$. Such differences in order are not surprising. Recent results ⁶ on the associative substitution of polycyclic [Cr(arene)(CO)₃] complexes with PBu₃ show a clear correlation of decreasing rate of reaction with increasing loss of resonance energy on formation of the presumed $18e^{-}$ [Cr(η^4 -arene)(CO)₃(PBu₃)] intermediate. In contrast, computational results on dissociative ring slippage (which carries the greater part of the arene-exchange reaction) show a discrete minimum not at η^4 but at η^2 in the case of $[Cr(C_{10}H_8)(CO)_3]$ and predict $\eta^6 \longrightarrow \eta^3 \longrightarrow \eta^1$ slippage to be preferred for the pyrene and pyridine complexes.^{5a}

Finally, the reaction between $[Cr(C_7H_8)(CO)_3]$ and $P(OMe)_3$ (1:10 mole ratio) in toluene has been monitored by ³¹P NMR spectroscopy at 31 °C, a temperature where mer \implies fac isomerization $[k_i + k_{-i} (\text{Scheme 3}) = 1.7 \times 10^{-5}$ s⁻¹] is an order of magnitude slower than the rate of substitution $[k_1 + k_2 \text{ (Scheme 3)} = 24.7 \times 10^{-5} \text{ s}^{-1}]$. In the early stages of the reaction (up to 10% conversion), approximately 15% of the product is the mer isomer, indicating a direct formation from $[Cr(C_7H_8)(CO)_3]$. Change of ligand to naphthalene or 2,5-dimethylthiophene reduces this to about 5%, as does a change of metal from chromium to molybdenum or tungsten. Such a stereochemical leakage is not surprising. The final stage of displacement of ligand from the $[M(\eta^{y})$ ligand)(CO)₃L₂] intermediate **B** in Scheme 2 is likely to be dissociative in character, yielding a fluxional, $16e^{-}$ [M(CO)₃L₂] intermediate.

Fig. 3 The ³¹P NMR spectrum of the equilibrium mer/fac-[Cr(CO)₃{P(OMe)₃}₃] mixture (toluene)

mer/fac Isomerization

The fac isomers were obtained by reaction of the free pro-ligand with $[M(C_7H_8)(CO)_3]$ $[L = P(OMe)_3, M = Cr, Mo \text{ or } W;$ L = MeNC, M = Cr]. For the phosphite complexes, rate constants for isomerization were measured in decalin by UV/VIS spectroscopy. Equilibrium constants were measured by ³¹P NMR analysis of equilibrated solutions. The spectrum at equilibrium of $[Cr(CO)_3{P(OMe)_3}_3]$ is illustrated in Fig. 3; in all cases, the *mer* isomer exhibits an A_2B spectrum from which ${}^{2}J_{P-P}$ values were extracted by computer simulation (see Experimental section). The complex fac-[Cr(CO)₃(PBu₃)₃] was generated in toluene in situ and fac/mer isomerization monitored by ³¹P NMR spectroscopy in the presence of an excess of PBu₃. In contrast to the phosphite complexes, the ³¹P spectrum of mer-[Cr(CO)₃(PBu₃)₃] is first order. The fac/mer isomerization of [Cr(CO)₃(CNMe)₃] proceeds with considerable decomposition in decalin, but smoothly in toluene and was monitored by ¹H NMR spectroscopy. Rate and equilibrium constants and activation parameters for the phosphite complexes are collected in Table 2. Data for the chromium compound are consistent with those reported previously.¹⁶ Equilibrium constants are independent of temperature in the range studied. Rate constants are independent of the concentration of added pro-ligand, indicating an intramolecular mechanism proceeding through either a trigonal prism or bicapped tetrahedron. Recent two-dimensional NMR work on $[Cr(CO)_2(CX){P(OMe)_3}_3]$ (X = S or Se)^{16a} complexes has provided convincing evidence for a trigonal-prismatic intermediate or transition state.

Several features may be noted which are also common to the $[Cr(CO)_4L_2]$ series.^{4b}

(a) The position of equilibrium is depedent primarily on steric factors; the decrease in K in the order $PBu_3 > P(OMe)_3 > CNMe$ parallels the decreasing cone angle of these ligands $(132 > 128 > 95^{\circ})$.¹⁷ In terms of the metal, values of K for a given ligand (Cr \ge Mo \approx W) parallel the increase in radius between first- and second/third-row metals¹⁸ though an electronic contribution may also be important. Calculations on $[Cr(CO)_4(PH_3)_2]$ indicate a slightly greater stability of the *cis* isomer (<5 kJ mol⁻¹) which increases to 37 kJ mol⁻¹ for $[Mo(CO)_4(PH_3)_2]$;^{84,e} fac- $[Mo(CO)_3(PH_3)_3]$ is calculated to be 69 kJ mol⁻¹ more stable than the *mer* isomer.⁸⁹

(b) The complex $[Cr(CO)_3(PBu_3)_3]$ isomerizes at approximately 10 times the rate of $[Cr(CO)_3\{P(OMe)_3\}_3]$. It has been shown previously ^{19a,b} that the rate of cis/trans isomerization of $[Mo(CO)_4(PR_3)_2]$ complexes increases in the order $R = Me \ll Bu \approx Et$ which parallels the order of increasing cone angle. Structural examination of these three complexes and other cis- $[Mo(CO)_4L_2]$ complexes ^{19b} shows generally an increasing distortion from octahedral co-ordination with increasing cone angle. Thus, the observed rate acceleration is consistent with increasing relief of interligand steric strain in the trigonal-prismatic transition state.

(c) The rate of isomerization increases in the order Mo < W < Cr. The much more substantial negative entropy value for the tungsten complex may be noted. This has been observed previously in a study of ¹³CO scrambling in $[M(CO)_4(^{13}CO)(PEt_3)]$ (M = Cr or W)²⁰ and has been attributed to a highly sterically strained intermediate with little lengthening of the W-P bond compared to considerable lengthening in the Cr-P case. The data here indicate that molybdenum is more similar to chromium, with the higher activation enthalpy reflecting the greater Mo-P bond enthalpy.

Combined with data on ¹³CO scrambling in $[W(CO)_4$ -(¹³CO){P(OMe)_3}]²⁰ and *cis/trans* isomerization in $[W(CO)_4{P(OMe)_3}_2]$,^{4b} the present results indicate that the rate of intramolecular isomerization in the $[W(CO)_{6-x}-{P(OMe)_3}_x]$ series increases in the order x = 3 < 1 < 2.

A qualitative angular-overlap analysis of the octahedral \longrightarrow trigonal prismatic transition^{4b} suggests that in terms of electronic factors the barrier is determined primarily by loss of σ stabilization and might therefore be expected to increase in the order x = 1 < 2 < 3. The discontinuous nature of the experimentally observed trend may thus indicate the importance of steric factors. This possibility has been investigated by molecular mechanics methods, using as a basis the published structures of [Cr(CO)₅(PH₃)],²¹ cis-[Cr(CO)₄(PH₃)₂]²² and fac-[Cr(CO)₃(PH₃)₃].²¹ The analogous PMe₃ complexes were

Complex	T/°C	$10^{5}k_{1}/s^{-1}$	$10^{5}k_{-1}/s^{-1}$	Kª	$\Delta H_1^{\ddagger b}$	ΔS_1^{\ddagger}	ΔH_{-1} [‡]	ΔS_{-1} [‡]
$[Cr(CO)_3 \{P(OMe)_3\}_3]$	52.5	8.08	1.13	7.2	87.2 (10.4)	- 55 (30)	87.0 (9.2)	-72 (72)
	64.0	30.6	4.20	7.3				
	75.0	81.8	11.4	7.2				
	87.2	198	27.0	7.3				
$[Cr(CO)_3(PBu_3)_3]$	60.0	251	20.2	12.4	—			
[Cr(CO) ₃ (CNMe) ₃]	75.0	12.7	76.2	0.17				
[Mo(CO) ₃ {P(OMe) ₃ } ₃]	100.0	2.50	0.83	3.0	99.0 (10.0)	- 70.0 (25)	99.0 (9.4)	- 79 (25
	110.0	5.26	1.76	3.0				
	120.0	13.9	4.62	3.0				
	130.0	27.6	9.20	3.0				
$[W(CO)_3 \{P(OMe)_3\}_3]$	80.0	3.87	0.92	4.2	69.1 (7.0)	-134 (21)	69.3 (8.4)	-146(23)
	90.0	8.80	2.10	4.2				
	100.0	14.9	3.60	4.1				
	110.0	27.5	6.60	4.2				

K = [mer]/(jac]. ΔH^{*} in kJ mol⁻², ΔS^{*} in J K⁻² mol⁻² with standard deviations in parentnesses

Fig. 4 Rotational profiles for (a) $[Cr(CO)_5(PH_3)]$, (b) $[Cr(CO)_5(PMe_3)]$, (c) $[Cr(CO)_4(PH_3)_2]$, (d) $[Cr(CO)_4(PMe_3)_2]$, (e) $[Cr(CO)_3(PH_3)_3]$ and (f) $[Cr(CO)_3(PMe_3)_3]$

generated from these by replacement of hydrogen by methyl. Owing to the increased degrees of freedom associated with variation of the M–P–O–C dihedral angle,²³ we have not at this stage investigated modelling of the $P(OMe)_3$ derivatives.

Ground-state structures were minimized in energy using the

MM2 program (see Experimental section). For the PH₃ complexes, these reproduce very closely the observed structural parameters. The structure of $[Cr(CO)_5(PMe_3)]$ generated in this way agrees closely with previous modelling and X-ray studies.²⁴ The octahedral \longrightarrow trigonal prismatic energy

profiles shown in Fig. 4 were generated by driving of the dihedral angle between appropriate triangular faces. For example, productive $cis \longrightarrow trans$ isomerization in the $[Cr(CO)_4L_2]$ derivative can be accomplished either by rotation of (P_x, CO_a, CO_b) relative to (P_y, CO_c, CO_d) or (P_x, CO_b, CO_c) relative to (P_y, CO_a, CO_d) . Though these faces are rendered non-equivalent in the ground state due to the orientation of the PR₃ ligands, the rotational-energy profile is independent of the choice of face pairs. Similar comments apply to the $[Cr(CO)_3L_3]$ and $[Cr(CO)_5L]$ complexes.

The change in symmetry on rotation to the trigonal-prismatic structure may be noted, and is reflected in the differing degeneracies of CO and PR₃ ligands between ground and transition states. Important geometrical data for ground-state octahedral and transition-state trigonal-prismatic structures are given in Table 3. Parameters such as M–CO linearity, M–C and C–O bond lengths, H–P–H/C–P–C angles and {with the exception of the [Cr(CO)₃(PMe₃)₃] complex} M–P bond lengths change little on face rotation. Geometrical changes are primarily subsumed within compression of octahedral angles in the rotated faces and changes in the tilting of the PR₃ ligand as a whole, shown as M–P–Z in Table 3 where Z is the centroid of the face defined by the three non-metal phosphorus substituents. Several points of interest may be noted.

(a) All trigonal-prismatic structures are characterized by a compression of the average interligand angles within the eclipsed faces to 84–86° from average octahedral values of 90°. Similar differences are observed between the ground-state structures of $[ZrMe_6]^{2-}$ (trigonal prismatic)²⁵ and $[MnMe_6]^{2-}$ and $[ErMe_6]^{3-}$ (octahedral).²⁶ There is some indication in the rotational profiles of the monosubstituted complexes for a small energy minimum at the trigonal-prismatic configuration.

(b) Geometrical distortion and phosphine tilting in both the ground and transition states is generally more pronounced in the PMe₃ series, consistent with the sterically more demanding nature of the ligand. This is reflected also in the relative energies of the *cis/trans*-[Cr(CO)₄L₂] and *mer/fac*-[Cr(CO)₃L₃] isomer pairs. Whereas isomers of the PH₃ complexes differ insignificantly in energy, calculations on the PMe₃ complexes reproduce the observed *trans* > *cis* and *mer* > *fac* stability ordering observed for the P(OMe)₃ complexes. The relatively greater stability of *trans* over *cis* (13.8 kJ) as opposed to *mer* over *fac* (6.27 kJ) is also consistent with data on [Cr(CO)₄(PBu₃)₂] (K = [trans]/[cis] = 48.3 at 28 °C, $\Delta G = 9.61$ kJ mol⁻¹)^{4b} and [Cr(CO)₃(PBu₃)₃] (K = [mer]/[fac] = 12.4 at 60 °C, $\Delta G = 7.11$ kJ mol⁻¹).

(c) For the PMe₃ series, calculations reproduce the experimentally observed ordering of the barriers to trigonal twist of x = 2 < 1 < 3. The substantial increase for the x = 3 complex is consistent with the need to eclipse phosphine ligands in the trigonal-prismatic transition state. Of particular interest is the relatively small barrier for *cis* \longrightarrow *trans* isomerization which may be attributed to steric acceleration resulting from decreased steric interactions between phosphine ligands in *both* the trigonal-prismatic transition state and ground-state *trans* product structures. This is most evident in the M-P-Z tilt angle, which in contrast to the cases of the [Cr(CO)₅L] and [Cr(CO)₃L₃] molecules, decreases along the whole of the rotational profile.

The modelling results thus provide a satisfactory rationale

3964 J. Chem. Soc., Dalton Trans., 1996, Pages 3959–3966

Table 3 Energies and geometries of octahedral and trigonal-prismatic $[Cr(CO)_{6-x}L_x]$ structures $(x = 1-3, L = PH_3 \text{ or } PMe_3)^*$

		L	
Complex		PH ₃	PMe ₃
[Cr(CO) ₅ L]	$\Delta E (OC \longrightarrow TPR)/kJ$	11.7	13.0
	M-P	2 29	2 25
	P-M-CO,	90	91
	P-M-CO _b	180	179
	CO _a -M-CO _a	90	90
	$CO_a - M - CO_b$	90	89
	M-P-Z	10	6
	TPR		
	M-P	2.29	2.24
	P-M-CO	86	87
	CO_M_CO	86	88
	$CO_{a} - M CO_{b}$	80	84
	$M_{-P}=7$	00 Q	80 48
	AF (sig trans)/Ir I	0.12	12.0
$[Cr(CO)_4L_2]$	$\Delta E \ (cis \longrightarrow trans)/kJ (cis \longrightarrow TPR)$	16.3	-13.8 3.76
	CIS	2 20	2.26
		2.30	2.20
	$\mathbf{P} = \mathbf{M} = \mathbf{U} \mathbf{U}_{a}$	90 Q1	91
	P-M-CO	90	89
	CO - M - CO	90	86
	$CO_{-}M-CO_{-}$	180	178
	M-P-Z	7	40
	TPR		
	M-P	2.30	2.26
	P-M-CO	86	87
	P-M-CO	81	82
	CO _a -M-ĈO _b	86	86
	M-P-Z	9	29
	trans		
	M-P	2.30	2.26
	P-M-P	179	178
	P-M-CO _a	90	90
	CO _a -M-CO _a	90	90
	M-P-Z	9	6
$[Cr(CO)_3L_3]$	$\Delta E (fac \longrightarrow mer)/kJ$	-0.08	-6.27
	$(fac \longrightarrow TPR)$	12.7	62.7
	fac		
	M-P	2.29	2.36
	P-M-P	90	98 96
	CU-M-CU	90 25	86
	WI-F-L	23	24
	TPR M. D(autor)	0.00	3 40
	M-r(average)	2.30	2.40
	$r_x - m - r_y$ P - M-CO	80 86	94 87
	$P = M = CO_c$	86	0/ 84
	P - M - CO	85	76
	$P_{-M}-CO_{-}$	86	83
	CO,-M-CO	86	88
	M–P _x –Z	12	22
	M-P _y -Z	69	48
	$M-P_z-Z$	30	53
	M_P(average)	2 20	2 40
	PM-P.	90	94
	P,-M-P.	180	178
	CO _a -M-CO _b	90	89
	M-P _x -Z	31	18
	M-P _y -Z	37	23
Bond lengths ir	hÅ, angles in °.		

for the observed kinetic and thermodynamic data and indicate the importance of steric effects in such phosphine complexes.

Experimental

The NMR and infrared spectra were recorded on JEOL FX-100 and Perkin-Elmer 257 spectrometers respectively; NMR chemical shifts in ppm are relative to SiMe₄ (¹H) or 85% H₃PO₄ (³¹P). The UV/VIS spectra were recorded on a Perkin-Elmer 402 spectrometer. The $[M(\pi-ligand)(CO)_3]$ complexes were prepared using literature methods from $[Cr(CO)_3(NH_3)_3]^{27}$ (styrene, 2,6-dimethylpyridine), [W-(CO)₃(MeCN)₃] (cycloheptatriene)²⁸ or $[M(CO)_6]$ (the rest).²⁹ Methyl isocyanide was prepared by a literature procedure.³⁰

(a) Kinetics

(i) Substitution reactions. Substrate samples of analytical purity were used in the kinetic work. Decalin was purified by stirring over concentrated H_2SO_4 for 4 h, followed by washing with water, aqueous Na_2CO_3 and again with water. After drying over CaSO₄, the solvent was passed down an alumina column, distilled under vacuum (15 mmHg) from sodium, and stored under argon. Tributylphosphine was refluxed over CaH₂ and distilled, P(OMe)₃ was refluxed and distilled from sodium; PrCN was heated with concentrated HCl, dried over K₂CO₃ and distilled.

An appropriate amount of substrate (sufficient to give a 2×10^{-3} mol dm⁻³ solution) was dissolved in a decalin-proligand mixture of the required composition and transferred under nitrogen (commercial grade, oxygen free) in the absence of light to a sealed 1 cm glass cell of minimum dead volume equipped with a Teflon stopcock. After degassing for 15 min, the cell was sealed under a positive pressure of nitrogen (5 psi) and placed in the constant-temperature jacket (±0.2 °C) of the spectrometer.

All studies were carried out under pseudo-first-order conditions ([L] $\ge 2 \times 10^{-2}$ mol dm⁻³) and monitored by the disappearance of the substrate over not less than three halflives. A monitoring wavelength of 510 nm was used for all the Cr(CO)₃ complexes except that of (pyrene) (560 nm). Values of k_{obs} were obtained from linear plots of $\ln(A_t - A_{\infty})$ against time, using a minimum of ten absorbance/time pairs. All plots gave correlation coefficients greater than 0.9995. Duplicate runs generally showed a reproducibility of better than $\pm 5\%$. A full table of rate data is contained in SUP 57164.

(ii) Isomerization reactions. Solutions of fac- $[M(CO)_3{P(OMe)_3}_3]$ (5 × 10⁻⁴ mol dm⁻³ in decalin) were placed in the 1 cm cell described above, degassed with argon (oxygen free) and sealed under a positive pressure of argon (5 psi). The chromium complex was monitored in situ in the constant-temperature jacket of the spectrometer $(\pm 0.2 \text{ °C})$, while the less labile molybdenum and tungsten complexes were immersed in a constant-temperature oil-bath $(\pm 0.2 \text{ °C})$ and removed periodically for monitoring. Rate constants $(k_1 +$ k_{-1}) were obtained from plots of $\ln(A_t - A_{\infty})$ against time using the change in absorbance at 310 mm (Mo and W) and 320 nm (Cr). All plots had correlation coefficients of greater than 0.998.

The ³¹P NMR monitoring of fac/mer isomerization was conducted *in situ* using 0.1 mol dm⁻³ solutions of fac-[M(CO)₃{P(OMe)₃}₃] in [²H₈]toluene degassed with nitrogen. Values of $k_1 + k_{-1}$ were obtained from plots of ln [$(P_{\infty} - P_i)/(P_i + 1)$] against time where P is the integrated *mer/fac* ratio. The isomerizations of [Cr(CO)₃(CNR)₃] (R = Me or Bu¹) were studied similarly by ¹H NMR spectroscopy. The substitution reactions in [²H₈]toluene were conducted using 0.2 mol cm⁻³ solutions of [Cr(C₇H₈)(CO)₃] containing a 10fold excess of P(OMe)₃. The rate of substitution was monitored from the relative integral of free phosphite to that of the (*mer* + *fac*) product.

(b) Preparations

The complex [Cr(C₇H₈(CO)₃] (0.3 g, 1.3 mmol) was added to a mixture of P(OMe)₃ (2.0 g, 6 mmol) in hexane (10 cm³). After degassing with nitrogen the red solution was left to stand overnight. After removal of solvent under vacuum, the residue was recrystallized from hexane to give fac-[Cr(CO)3- ${P(OMe)_3}_3$ (0.4 g, 65%) [Found (Calc.): C, 28.4 (28.4); H, 5.35 (5.30)%]. Infrared (decalin): 1962, 1888 and 1874 cm⁻¹. ³¹P NMR (toluene): δ 184.6. Other fac-[M(CO)₃L₃] complexes were prepared in the same way: $fac-[Mo(CO)_3{P(OMe)_3}_3]$ [Found (Calc.): C, 26.4 (26.1); H, 5.15 (4.90)%]; infrared (decalin) 1974, 1898 and 1884 cm⁻¹; ³¹P NMR (toluene) δ 168.7; $fac-[W(CO)_3{P(OMe)_3}_3]$ [Found (Calc.): C, 22.4 (22.5); H, 4.25 (4.20)%]; infrared (decalin) 1970, 1893 and 1878 cm⁻¹; ³¹P NMR (toluene) δ 151.5 ($J_{W-P} = 381$ Hz); fac-[Cr(CO)₃(CNMe)₃] [Found (Calc.): C, 41.9 (41.7); H, 3.20 (3.45); N, 16.3 (16.2)%]; infrared (CH₂Cl₂) 2175, 2131, 1941 and 1859 cm⁻¹; ¹H NMR (CDCl₃), δ 3.28 (s); fac-[Cr(CO)₃(PBu₃)₃] only in situ; infrared (decalin) 1930 and 1842 cm⁻¹; ³¹P NMR (toluene) δ 21.4.

Samples of mer isomers were obtained by heating the fac isomers [light petroleum (b.p. 60-80 °C) for phosphite complexes and toluene for isocyanide complexes] at 75-85 °C for several hours under nitrogen. Solvent evaporation and subsequent separation by Chromatotron {ethyl acetate-light petroleum (b.p. 40-60 °C) (1:4) for phosphite complexes and diethyl ether for [Cr(CO)₃(CNMe)₃]} gave the mer- and fac- $[Cr(CO)_{3}L_{3}]$ complexes in order of elution, except for $[W(CO)_3 \{P(OMe)_3\}_3]$ where the order of elution was reversed. The complexes mer/fac-[Cr(CO)₃(CNBu¹)₃] could not be separated by chromatography. Recrystallization from light petroleum (b.p. 40-60 °C) gave the pure mer isomers, except for mer-[Mo(CO)₃{P(OMe)₃}] which proved difficult to crystallize: mer-[Cr(CO)₃{P(OMe)₃}₃] [Found (Calc.): C, 27.7 (28.4); H, 5.55 (5.30)%]; infrared (decalin) 1975w, 1890w and 1875s cm⁻¹; ³¹P NMR (toluene) δ 187.2 (m, P_{trans}) and 195.4 (m, $2P_{cis}$ ($J_{P-P} = 63$ Hz); mer-[Mo(CO)₃{P(OMe)₃}], infrared (decalin) 2000w, 1987w and 1885s cm⁻¹; ³¹P NMR (toluene) δ 170.6 (m, P_{trans}) and 177.7 (m, 2P_{cis}) (J_{P-P} = 45 Hz); mer-[W(CO)₃{P(OMe)₃}₃] [Found (Calc.): C, 22.4 (22.5); H, 4.25 (4.20)%]; infrared (decalin) 1970w, 1893w and 1878s cm⁻¹; ³¹P NMR (toluene) δ 151.8 (m, P_{trans}) and 156.0 (m, 2P_{cis}) $(J_{P-P} = 32, J_{W-Pcis} = 371, J_{W-Ptrans} = 427$ Hz); mer-[Cr-(CO)₃(MeNC)₃] [Found (Calc.): C, 42.0 (41.5); H, 3.40 (3.45); N, 16.4 (16.2)%]; infrared (CH₂Cl₂) 2171w, 2099s, 1963w and 1879s; ¹H NMR ([²H₈]toluene) δ 2.07 (Me_{trans}, s) and 2.17 (2Me_{cis}, s); mer-[Cr(CO)₃(PBu₃)₃] only in situ; ³¹P NMR (toluene) δ 29.5 (P_{trans}, t) and 42.0 (2P_{cis}, d) (J_{P-P} = 21.9 Hz).

(c) Computations

Molecular mechanics calculations were performed using a modified version 31 of the MM2 program 32 which allowed inclusion of atoms having a co-ordination number up to six. Parameters involving chromium were taken from ref. 23 and the remainder from the program itself. In order to calculate the rotational profiles, the angle-bending force constants involving chromium were set to an artificially high value of 9.999 mdyn Å rad⁻², and ideal angles were calculated for each step of 10° in the rotation of the triangular faces.

References

- 1 L. S. Hegedus, Transition Metals in the Synthesis of Complex Organic Molecules, University Science Books, Mill Valley, CA, 1994, pp. 307-333.
- M. Struharik and S. Toma, J. Organomet. Chem., 1994, 464, 59;
 M. Uemura, M. Ryuta, K. Nakayama, M. Shiro and Y. Hayashi,
 J. Org. Chem., 1993, 58, 1238; M. Nambu, D. L. Mohler,
 K. Hardcastle, K. K. Baldridge and J. S. Siegel, J. Am. Chem. Soc.,
 1993, 115, 6138; E. P. Kundig and J. Leresche, Tetrahedron, 1993,

49, 5559; E. P. Kundig, A. Ripa, R. Liu, D. Amurrio and G. Bernardinelli, *Organometallics*, 1993, 12, 3724; H. G. Schmalz, B. Millies, J. W. Bats and G. Durner, *Angew. Chem., Int. Ed. Engl.*, 1992, 31, 630; P. C. Nirchio and D. J. Wink, *Organometallics*, 1991, 10, 336; R. H. Mitchell, P. Zhou, S. Venugopalan and T. W. Dingle, *J. Am. Chem. Soc.*, 1990, 112, 7812.

- 3 (a) T. Chandiran and S. Vancheesan, J. Mol. Catal., 1992, 71, 291;
 (b) J. H. Rigby, K. M. Short, H. S. Ateeq and J. A. Henshilwood, J. Org. Chem., 1992, 57, 5290; (c) Y. Yamada, M. Sodeoka and M. Shibasaki, J. Org. Chem., 1991, 56, 4569; (d) M. Sodeoka, H. Yamada and M. Shibasaki, J. Am. Chem. Soc., 1990, 112, 4906; (e)
 M. Sodeoka, Y. Ogawa, Y. Kirio and M. Shibasaki, Chem. Pharm. Bull., 1991, 39, 309; (f) M. Sodeoka, T. Inori and M. Shibasaki, Chem. Pharm. Bull., 1991, 39, 323; (g) W. J. Bland, R. Davies and J. L. A. Durrant, J. Organomet. Chem., 1985, 280, 95; (h) Y. Eden, D. Fraenkel, M. Cais and E. A. Halevi, Isr. J. Chem., 1976, 15, 223.
- 4 (a) A. Tekkaya, C. Kayram, S. Ozkar and C. G. Kreiter, Inorg. Chem., 1994, 33, 2439; (b) D. T. Dixon, J. C. Kola and J. A. S. Howell, J. Chem. Soc., Dalton Trans., 1984, 1307; (c) D. T. Dixon, J. A. S. Howell and P. M. Burkinshaw, J. Chem. Soc., Dalton Trans., 1980, 2237; (d) F. Zingales, M. Graziani and U. Belluco, J. Am. Chem. Soc., 1967, 89, 256; (e) F. Zingales, F. Canziani and F. Basolo, J. Organomet. Chem., 1967, 7, 461.
- 5 (a) J. A. S. Howell, N. F. Ashford, D. T. Dixon, J. C. Kola, T. A. Albright and S. K. Kang, Organometallics, 1991, 10, 1852; (b) T. G. Traylor, M. J. Goldberg, A. R. Miksztal and C. E. Strouse, Organometallics, 1989, 8, 1101; (c) T. G. Traylor and K. J. Stewart, J. Am. Chem. Soc., 1986, 108, 6977; (d) T. G. Traylor and M. Goldberg, Organometallics, 1987, 6, 2531; (e) T. G. Traylor and M. Goldberg, J. Am. Chem. Soc., 1987, 109, 3968; (f) T. G. Traylor and M. Goldberg, J. Am. Chem. Soc., 1987, 109, 3968; (f) T. G. Traylor, K. J. Stewart and M. Goldberg, Organometallics, 1987, 5, 2062; (g) T. G. Traylor, K. J. Stewart and M. Goldberg, J. Am. Chem. Soc., 1984, 105, 4445; (h) T. G. Traylor and K. Stewart, Organometallics, 1984, 3, 325; (i) W. Strohmeier and R. Muller, Z. Phys. Chem. (Munich), 1964, 40, 85; (j) W. Strohmeier and E. H. Staricco, Z. Phys. Chem. (Munich), 1963, 38, 315; (k) W. Strohmeier and H. Mittnacht, Z. Phys. Chem. (Munich), 1961, 29, 339.
- 6 (a) I. S. Butler and A. A. Ismail, *Inorg. Chem.*, 1986, 25, 3910;
 (b) A. M. McNair and K. R. Mann, *Inorg. Chem.*, 1986, 25, 2519;
 (c) M. Gower and L. A. P. Kane-Maguire, *Inorg. Chim. Acta*, 1979, 37, 79; (d) K. M. Al-Kathumi and L. A. P. Kane-Maguire, *J. Chem. Soc.*, *Dalton Trans.*, 1974, 428; (e) A. Pidcock, J. D. Smith and B. W. Taylor, *J. Chem. Soc. A*, 1969, 1604; (f) A. Pidcock and B. W. Taylor, *J. Chem. Soc. A*, 1967, 877; (g) A. Pidcock, J. D. Smith and B. W. Taylor, *J. Chem. Soc. A*, 1967, 877; (g) A. Pidcock, J. D. Smith and B. W. Taylor, *J. Chem. Soc. A*, 1966, 87, 2707; (i) G. Yagupsky and M. Cais, *Inorg. Chim. Acta*, 1975, 12, L27; (j) Z. Zhang, J. K. Shen, F. Basolo, D. J. Ju, R. F. Lang, G. Kiss and C. D. Hoff, *Organometallics*, 1994, 13, 3692.
- 7 C. D. Hoff, Prog. Inorg. Chem., 1992, 40, 503.
- 8 (a) A. S. Zyubin, D. Musaev and O. P. Charkin, Russ. J. Inorg. Chem., 1992, 37, 1214; (b) L. M. Hansen and D. S. Marynick, Inorg. Chem., 1990, 29, 2482; (c) B. F. G. Johnson and A. Rodger, Inorg. Chem., 1988, 27, 3062; (d) C. Daniel and A. Veillard, Inorg. Chem., 1989, 28, 1170; (e) D. S. Marynick, S. Askari and D. F. Nickerson,

Inorg. Chem., 1985, 24, 868; (f) R. Hoffman, J. M. Howell and A. R. Rossi, J. Am. Chem. Soc., 1976, 98, 2454; (g) D. M. P. Mingos, J. Organomet. Chem., 1979, 179, C29.

- 9 J. M. Jenkins, J. R. Moss and B. L. Shaw, J. Chem. Soc. A, 1969, 2796.
- 10 A. Holladay, M. R. Churchill, A. Wong and J. D. Attwood, *Inorg. Chem.*, 1980, 19, 2195.
- 11 G. Huttner and S. Schelle, J. Organomet. Chem., 1973, 47, 383.
- 12 A. A. Gonzalez, S. C. Mukerjee, K. Zhang and C. D. Hoff, J. Am. Chem. Soc., 1988, 110, 4419; K. Zhang, A. A. Gonzalez, S. L. Mukerjee, S. Chou, C. D. Hoff, K. A. Kubat-Martin, D. Barnhart and G. J. Kubas, J. Am. Chem. Soc., 1991, 113, 9170; A. A. Gonzalez, K. Zhang and C. D. Hoff, Inorg. Chem., 1989, 28, 4285.
- 13 G. J. Kubas and L. S. van der Sluys, Inorg. Synth., 1990, 28, 29.
- 14 S. L. Mukerjee, R. F. Lang, T. Ju, G. Kiss and C. D. Hoff, *Inorg. Chem.*, 1992, 31, 4885.
- 15 C. D. Hoff, J. Organomet. Chem., 1985, 282, 201.
- 16 (a) A. A. Ismail, F. Sauriol and I. S. Butler, *Inorg. Chem.*, 1989, 28, 1007; (b) A. M. Bond, S. W. Carr and R. Colton, *Inorg. Chem.*, 1984, 23, 2343; (c) A. M. Bond, R. Colton and J. E. Kevekordes, *Inorg. Chem.*, 1986, 25, 749.
- 17 C. A. Tolman, Chem. Rev., 1977, 77, 313.
- 18 J. Emsley, The Elements, Oxford University Press, 1989.
- (a) D. J. Darensbourg and A. H. Graves, *Inorg. Chem.*, 1979, 18, 14;
 (b) F. A. Cotton, D. J. Darensbourg, S. Klein and B. W. S. Kolthammer, *Inorg. Chem.*, 1982, 21, 294.
- 20 D. J. Darensbourg and R. L. Gray, Inorg. Chem., 1984, 23, 2993.
- 21 G. Huttner and S. Schelle, J. Organomet. Chem., 1973, 47, 383.
- 22 L. J. Guggenberger, U. Klabunde and R. A. Schunn, *Inorg. Chem.*, 1973, 12, 1143.
- 23 M. L. Caffery and T. L. Brown, Inorg. Chem., 1991, 30, 3907.
- 24 K. J. Lee and T. L. Brown, *Inorg. Chem.*, 1992, **31**, 289; M. S. Davies, M. J. Aroney, I. E. Buys, T. W. Hambley and J. L. Calvert, *Inorg. Chem.*, 1995, **34**, 330; F. A. Cotton, D. J. Darensbourg and B. W. S. Kolthammer, *Inorg. Chem.*, 1981, **20**, 4440.
- 25 R. J. Morris and G. S. Girolami, J. Am. Chem. Soc., 1988, 110, 6244; H. Schumann, J. Pickardt and N. Bruncks, Angew. Chem., Int. Ed. Engl., 1981, 20, 120.
- 26 P. M. Morse and G. S. Girolami, J. Am. Chem. Soc., 1989, 111, 4114.
- 27 T. J. McNeese, M. B. Cohen and B. M. Foxman, Organometallics, 1984, 3, 552; M. D. Rausch, G. A. Moser, E. J. Zaiko and A. L. Lipman, J. Organomet. Chem., 1970, 23, 185.
- 28 R. B. King and A. Fronzaglia, Chem. Commun., 1965, 547.
- 29 V. Desobry and E. P. Kundig, *Helv. Chim. Acta*, 1981, **64**, 1280; P. L. Pauson and C. A. L. Mahaffy, *Inorg. Synth.*, 1979, **19**, 154; F. A. Cotton, J. A. McCleverty and J. E. White, *Inorg. Synth.*, 1990, **28**, 45.
- 30 R. E. Schuster, J. E. Scott and J. Casanova, Org. Synth., 1973, Coll. Vol. V, 772.
- 31 P. C. Yates and A. K. Marsden, Comput. Chem., 1994, 18, 89.
- 32 N. L. Allinger, J. Am. Chem. Soc., 1977, 99, 8127.

Received 26th April 1996; Paper 6/02947G