New class of mixed sandwich cycloheptatrienylchromium complex: crystal structures of the redox pair $\left[\text{Cr}(\eta - C_6H_5Me)(\eta - C_7H_6C_6H_4Me-4) \right] \left[\text{PF}_6 \right]_n$ $(n = 1 \text{ or } 2)$ [†]

Roy L. Beddoes,^{*a*} Andrew Roberts,^{*a*} Mark W. Whiteley*,^{*a*} and Eric J. L. McInnes^{*b*}

^aDepartment oj Chemistry, University of Manchester, Manchester M13 9PL, UK Manchester MI3 9PL. UK EPSRC C W EPR Service Centre, Department of Chemistry, University of Manchester,

The mixed sandwich complex $[\text{Cr}(\eta - C_6H_5Me)(\eta - C_7H_6C_6H_4 Me-4$][PF₆] 1 underwent a reversible one-electron oxidation to the radical dication $[\text{Cr}(\text{n}-\text{C}_{6}\text{H}_{5}\text{Me})(\text{n}-\text{C}_{7}\text{H}_{6}\text{C}_{6}\text{H}_{4}-$ Me-4] $[PF_6]$, 2; X-ray crystallographic studies on the redox pair revealed that the principal structural alteration resulting from oxidation is a small increase in the metal-to-ring distances.

____~~~ ~ ~

The mixed sandwich complex $[Cr(n-C,H_2)(n-C_7H_7)]$ has long been the focus of a series of synthetic,' physical *2-5* and theoretical *6,7* investigations directed towards elucidation of the structure and bonding. However other cycloheptatrienylchromium sandwich systems^{8,9} have been neglected notwithstanding the development of an extensive reaction chemistry of molybdenum analogues such as the cycloheptadienyl^{10,11} and arene^{12,13} derivatives $[Mo(\eta-C_7H_9)(\eta-C_7H_7)]$ and $[Mo(\eta-C_6H_5Me)(\eta-C_7H_7)]$ C_7H_7]⁺. This communication presents our initial findings on the structure, bonding and reactivity of the cationic arene derivatives $[Cr(\eta - C_6H_5Me)(\eta - C_7H_6C_6H_4Me-4)][PF_6]_n$ (n = 1 or 2) and, in addition to providing a new impetus for physical and theoretical studies, this work has potential for applications in synthesis, *uia* arene displacement, or in non-linear optical materials ¹⁴ through the provision of a cationic cycloheptatrienylchromium centre which can support reversible redox activity.

Although the reaction of $[Cr(CO)₃(\eta-C₇H₇)][PF₆]$ with refluxing toluene undoubtedly yields $[Cr(\eta-C_6H_5Me)(\eta-C_7H_7)]$ - $[PF_6]$ in a synthesis directly analogous to that of the molybdenum derivative, the product was formed in low yield and purity. However, reflux of the ring-substituted derivative [Cr- $(CO)_{3}(\eta$ -C₇H₆C₆H₄Me-4)][PF₆]^{15,16} led to the isolation of $[Cr(\eta-C_6H_5Me)(\eta-C_7H_6C_6H_4Me-4)][PF_6]$ **1**, \ddagger as a green solid in good yield and purity. The sandwich arrangement of **1** was confirmed by an X-ray structural investigation § (Fig. 1) and important molecular parameters are summarised in Table **1.** A key structural feature of **1** is the close comparability of average metal-to-ring bond lengths for the six- and seven-membered rings. The slight elongation in metal-arene bond distances by comparison with metal-cycloheptatrienyl distances becomes

Investigations on the structure and bonding in $[Cr(\eta C_5H_5$ (η - C_7H_7)] have been facilitated by an extensive redox chemistry **3,5** and therefore the cyclic voltammetry of complex **1** was probed in MeCN. In contrast with the molybdenum analogues $[Mo(\eta-C_6H_5Me)(\eta-C_7H_6R)]^+$ (R = H, Me or C_6H_4F-4 , ¹⁶ which undergo irreversible oxidation processes, the chromium complex **1** exhibits a reversible one-electron oxidation $[E^{\circ}(\text{MeCN})$ 0.49 V *vs.* SCE] with the normal criteria for reversibility satisfied. Chemical oxidation of **1** with [Fe(q- (C_5H_5) , [PF₆] in CH_2Cl_2 resulted in the precipitation of a yellow-orange product which was identified as the radical

Fig. 1 Molecular structure of complex **1;** hydrogen atoms and **PF,** counter anion omitted

§ Crystal data. Complex 1: $C_{21}H_{21}CrF_6P$, $M = 470.36$, orthorhombic, space group *Pbca* (no. 61), crystal dimensions $0.13 \times 0.27 \times 0.45$ mm, $\dot{T} = 295 \text{ K}, a = 13.019(3), b = 27.297(8), c = 11.095(5) \text{ Å}, U = 3943(1)$ \mathring{A}^3 , $Z = 8$, $D_c = 1.584$ g cm⁻³, $F(000) = 1920$, $\mu(\text{Mo-K }\alpha)$ 7.21 cm⁻¹, 2173 reflections with $I > 3.00\sigma(I)$ used in refinement. Solution by Fourier techniques, non-hydrogen atoms refined anisotropically, hydrogen atoms included but not refined; $R = 0.062$, $R' = 0.045$. Complex 2: $C_{21}H_{21}CrF_{12}P_2$, $M = 615.32$, monoclinic, space group $P2_1/n$ (no. 14), crystal dimensions $0.15 \times 0.25 \times 0.40$ mm, $T = 296$ K, $a = 12.747(5)$, $b = 12.697(4), c = 14.317(5)$ Å, $\beta = 93.22(3)$ °, $U = 2313(1)$ Å³, $Z = 4$, $D_c = 1.766$ g cm⁻³, $F(000) = 1236$, μ (Mo-K α) 7.39 cm⁻¹, 3115 reflections with $I > 3.00\sigma(I)$ used in refinement. Solution by direct methods, nonhydrogen atoms refined anisotropically, hydrogen atoms included but not refined; $R = 0.045$, $R' = 0.043$. Data in common: Rigaku AFC5R diffractometer, Mo-K_x radiation $(\lambda = 0.71069 \text{ Å})$; calculations performed using the TEXSAN package.¹⁷ Empirical absorption correction based on azimuthal scans (transmission factors: 0.85-1 .O for **1,** 0.90–1.0 for **2**), data also corrected for Lorentz-polarisation effects. Refinement based on *F*; $w = [\sigma_e^2(F_o) + (p^2/4)F_o^2]^{-1}$ where $\sigma_e(F_o)$ = esd based on counting statistics and $p = 0.0000$ for **1** and 0.0050 for **2**. Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc., Dalton Trans.,* 1996, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/263.

 \dagger *Non-SI unit employed:* $G = 10^{-4}$ **T**.

 $\frac{1}{4}$ Complex 1 was prepared in 53% yield from $[Cr(CO)₃(\eta C_7H_6C_6H_4Me-4$][PF₆] (0.81 g) refluxed in toluene for 2 h (Found: C, 54.0; H, 4.3. Calc.: C, 53.6; H, 4.5%). Cyclic voltammetry at a carbon working electrode. 0.2 mol dm³ [NBuⁿ₄][BF₄] supporting electrolyte in MeCN. $E^{\circ} = 0.49$ V *vs.* saturated calomel electrode, SCE (for ferrocene-ferrocenium couple, $E^{\circ} = 0.43$ V under identical conditions). ¹H NMR (CD₂Cl₂, -80 °C): δ 7.34 (d, 2 H, C₆H₄Me-4); 6.90 (d, 2 H, C_6H_4 Me-4): 6.18 (d, 2 H), 5.94 (br, 2 H), 5.78 (br, 2 H) ($C_7H_6C_6H_4$ -Me-4); 5.17 (br, 5 H, C₆H₅Me); 1.93 (s, 3 H, C₆H₄CH₃); and 1.71 (s, 3 H. $C_6H_5CH_3$). Complex 2, prepared in 26% yield from 1 (0.05 g) and $[Fe(\eta-C_5H_5)_2][PF_6]$ (0.04 g) in CH₂Cl₂ (Found: C, 41.3; H, 3.5. Calc.: C, 41.0; H, 3.4%), is totally insoluble in CH₂Cl₂ so driving the reaction *to* completion despite unfavourable redox potentials; cyclic voltammetry, E° (MeCN) 0.49 V *vs.* SCE; FAB mass spectrum, *m*/*z* 325 (M^+) .

Table 1 Metal-to-ring distances in mixed sandwich cycloheptatrienyl complexes $[M(\eta-C_nH_{n-1}R')(\eta-C_7H_6R)]^2$ (n = 5 or 6)

	Complex			
			$[Cr(\eta - C_5H_5)(\eta - C_7H_7)]^a$	$[Mo(n-C6H5BPh3)(n-C7H7)]b$
$M-C(average) (CnHn-1 R')$	2.182(3)	2.206(2)	2.18	2.34
$M-C(average) (C7H6R)$	2.145(3)	2.166(2)	2.16	2.275(5)
$M-C_n(M)$ to ring plane)	1.688	l.709		1.887
$M-C7$ (M to ring plane)	1.429	l.446		1.596
ata from ref. 7. ^b Data from ref. 18.				

^a Data from ref. 7. ^b Data from ref. 18.

Fig. 2 Molecular structure of complex 2; hydrogen atoms and PF, counter anions omitted

Fig. 3 Room temperature X-band solution ESR spectrum of complex **2**

dication $\left[\text{Cr}(\eta - C_6H_5\text{Me}) (\eta - C_7H_6C_6H_4\text{Me-4}) \right] \left[\text{PF}_6 \right]_{2}$ 2, \ddagger by microanalytical, spectroscopic and complementary cyclic voltammetric data. Further to confirm the identity of **2** and to elucidate the structural effects of one-electron oxidation, the crystal structure of **25** (Fig. 2) was determined; no corresponding investigation has been undertaken for [Cr(q- C_5H_5)(η -C₇H₇)]^z ($z = 0$ or +1). The principal structural modification associated with the one-electron oxidation of **1** to **2** is a small but consistent increase in all chromium-to-ring bond lengths (Table 1) with no clear distinction between the behaviour of metal-arene and -cycloheptatrienyl distances. Other changes include a small decrease in the dihedral angle between best ring planes $[\{C(1)-C(6)\} - \{C(8)-C(14)\}; \mathbf{1}, 1.9; \mathbf{2}, \mathbf{3}\]$ 1.5°]. The limited change in metal-ring distances associated with one-electron oxidation of **1** suggests that, consistent with simple molecular orbital schemes for mixed sandwich complexes of this type,¹⁹ the highest occupied molecular orbital (HOMO) is of a_1 symmetry and is essentially non-bonding with respect to the chromium-ring interaction.

A further probe of electronic structure is provided by the X-band, acetone solution ESR spectrum of complex **2** (Fig. *3);* ESR investigations have been applied with some success to $[Cr(\eta-C_5H_5)(\eta-C_7H_7)]^2$ ($z = +1^3$ or -1^4) and the results stand comparison with those for 2. The isotropic $\lt g$ > value for 2 (1.984) compares closely with that of $[Cr(\eta-C_5H_5)(\eta-C_7H_7)]^+$ $(1.988)^3$ and is compatible with a singly occupied HOMO of mainly $3d_{z}$ ² character.⁴ Yet more informative are the hyperfine coupling constants, determined for **2** with the aid of spectral simulation [a(⁵³Cr) 23.2, a(C₆H₅Me) 3.0, a(C₇H₆R) 2.8 G]. Comparison with corresponding data for $[Cr(\eta-C_5H_5) (n-C_7H_7)$ ⁺ $[a(^{53}Cr)$ 19.0, $a(C_5H_5)$ 2.16, $a(C_7H_7)$ 3.62 G_J³ suggests a reduced anisotropy in spin-density distribution in **2,** consistent with the effect of an increase in ring size from cyclopentadienyl to arene.²

The successful syntheses of complexes **1** and **2** prompted investigations on the arene substitution chemistry of these complexes in an attempt to develop a route to half-sandwich cycloheptatrienylchromium chemistry analogous to that established for $[Mo(\eta-C_6H_5Me)(\eta-C_7H_7)]^+$. However, so far, attempts to displace the arene ring from either **1** or **2** have been unsuccessful and we suggest that the difference in metal-arene bond lengths noted for 1 and $[Mo(\eta-C_6H_5BPh_3)(\eta-C_7H_7)]$ is also reflected in bond strengths and consequent reactivity. Further studies on complexes **1,2** and related derivatives are in progress.

Acknowledgements

We thank the EPSRC for a Research Studentship (to **A.** R.).

References

- ¹E. 0. Fischer and **S.** Breitschaft, *Chem. Ber.,* 1966,99,2905.
- 2 **S.** Evans, **J.** C. Green, **S.** E. JacksonandB. Higginson, *J. Chem. Soc., Dalton Trans.,* 1974, 304.
- **3** Ch. Elschenbroich and F. Gerson, *J. Organomet. Chem.,* 1973, 49, 445.
- 4 Ch. Elschenbroich, **F.** Gerson and F. Stohler, *J. Am. Chem. Soc.,* 1973,95,6956.
- 5 Ch. Elschenbroich, E. Bilger and B. Metz, *Organometallics,* 1991, **10,** 2823.
- 6 D. W. Clack and K. D. Warren, *Theor. Chim. Acta,* 1977,46,313.
- *7* J. D. Zeinstra and W. C. Nieuwpoort, *Znorg. Chim. Acta,* 1978, **30,** 103.
- 8 **J.** Miiller and W. Holzinger, *2. Naturforsch., Teil B,* 1978,33, 1309. 9 M. Green, H. P. Kirsch, F. G. A. Stone and A. J. Welch, *J. Chem. Soc., Dalton Trans.,* 1977, 1755.
- *10* M. L. H. Green, P. A. Newman and J. **A.** Bandy, *J. Chem. Soc., Dalton Trans.,* 1989, 331.
- 11 M. L. H. Green, D. K. P. Ng, R. C. Tovey and A. N. Chernega, *J. Chem. Soc., Dalton Trans.,* 1993, 3203.
- 12 **E. F.** Ashworth, **J.** C. Green, M. L. H. Green, J. Knight, R. B. **A.** Pardy and N. J. Wainwright, *J. Chem.* Soc., *Dalton Trans.,* 1977, 1693.
- 13 R. L. Beddoes, C. Bitcon, R. W. Grime, A. Ricalton and M. W. Whiteley, *J. Chem. Soc., Dalton Trans.,* 1995, 2873.
- 14 U. Behrens, H. Brussaard, **U.** Hagenau, **J.** Heck, **E.** Hendrickx, **J.** Kornich, J. G. M. van der Linden, A. Persoons, A. L. Spek, N. Veldman, B. Voss and H. Wong, *Chem. Eur. J.,* 1996,2,98.
- 15 M. **1.** Foreman, G. R. Knox, P. L. Pauson, K. H. Todd and W. E. Watts, *J. Chem. Soc., Perkin Trans. 2,* 1972, 1141.
- 16 A. Robertsand M. W. Whiteley, *J. Organomet. Chem.,* 1993,458,13 1. 17 TEXSAN-TEXRAY, Structure analysis package, Molecular
- Structure Corporation, The Woodlands, **TX,** 1985 and 1992.
- 18 M. B. Hossain and D. van der Helm, *Znorg. Chem.,* 1978,17,2893.
- 19 J. C. Green, R, A. Grieves and J. Mason, *J. Chem. Soc., Dalton Trans.,* 1986, 1313.

Received *2nd* August 1996; Communication 6/05407B