Preparation of heterometallic single cubes $[W_3MS_4(H_2O)_{12}]^{n+}$ **(M = In, Ge** or Sn) and the first corner-shared double cubes $[W_6$ SnS₈ $(H_2O)_{18}]^{8+}$ and $[W_3Mo_3SnS_8(H_2O)_{18}]^{8+}$ as derivatives of $[W_3S_4(H_2O)_9]^{4+}$

Vladimir P. Fedin, Maxim N. Sokolov and A. Geoffrey Sykes *

Department of Chemistry, The University of Newcastle, Newcastle upon Tyne NEl 7RU, UK

Conversion of the purple trinuclear W^V ₃ incomplete cuboidal cluster $[W_3S_4(H_2O)_9]^{4+}$ into heterometallic single cubes of the kind $[W_3MS_4(H_2O)_{12}]^{n+}$ has been achieved with M = In, Ge or Sn. The indigo blue $[W_3InS_4(H_2O)_{12}]^{5+}$ product was obtained by reaction of $[W_3S_4(H_2O)_9]^{4+}$ with aquaindium(I), or indium metal, or In^{III} in the presence of BH₄⁻. Red-brown $[W_3GeS_4(H_2O)_{12}]^{6+}$ was obtained by reaction with GeO, which can also be regarded as addition of Ge". An alternative route is provided by the reaction with GeO, and a reducing agent (here H₃PO₂). Although a crystal structure of $[W_3(SnCl_3)S_4(NCS)_9]^{6}$ has been reported previously, isolation of the yellow-brown aqua ion $[W_3SnS_4(H_2O)_{12}]^{6+}$ as the chloro product $[W_3(SnCl_3)S_4(H_2O)_9]^{3+}$ by addition of Sn^H to $[W_3S_4(H_2O)_9]^{4+}$ in 2 M HCl is described for the first time. The same product was obtained by treating $[W_3S_4(H_2O)_9]^{4+}$ with tin metal. Charges applying to the core of the cube were determined from the stoichiometry of its reaction with $[Fe(H₂O)₆]$ ³⁺. In the case of $[Mo₃S₄(H₂O)₉]⁴⁺$, reaction with tin metal gave the corner-shared double cube $[Mo₆SnS₈(H₂O)₁₈]⁸⁺$. The W₆ analogue was only obtained by the reaction of $[W_3S_4(H_2O)_9]^{4+}$ with $[W_3SnS_4(H_2O)_{12}]^{6+}$ in the presence of a reducing agent (BH₄⁻). The corresponding reaction of $[MoSnS₄(H₂O)₁₂]^{6+}$ gave the mixed corner-shared double cube $[W_3Mo_3SnS_8(H_2O)_{18}]^{8+}$. Near-quantitative transfer of the heterometal atom was observed on treating $[W_3InS_4(H_2O)_{12}]^{5+}$ or $[W_3SnS_4(H_2O)_{12}]^{6+}$ with $[M_0S_4(H_2O)_9]^{4+}$, indicating a much stronger affinity of the heterometal atom for $[Mo_3S_4(H_2O)_9]^{4+}$.

Whereas some 15 heterometallic cube derivatives of $[Mo_3S_4(H_2O)_9]^{4+}$ are now known,^{1,2} the only derivatives of $[W_3S_4(H_2O)_9]^{4+}$ so far reported are $[W_3CuS_4(H_2O)_{10}]^{5+}$,³ $[W_3NiS_4(H_2O)_{10}]^{4+4}$ and the anionic complex [NMe H_2]₆[W₃(SnCl₃)S₄(NCS)₉]-0.5H₂O.⁵ From this it might appear that reaction routes available in the case of $[Mo_3S_4(H_2O)_9]^{4+}$ are not as readily accessed with $[W_3S_4(H_2O)_9]^{4+}$. We set out further to explore heterometallic incorporation into $\left[\text{W}_3\text{S}_4(\text{H}_2\text{O})_9\right]^{4+}$ with emphasis on Main Group metals, a number of which have been incorporated in recent studies with $[Mo_3S_4(H_2O)_9]^{4+.6-8}$ Some differences are already apparent, notably in the reaction of Cu with $[W_3S_4(H_2O)_9]^{4+}$ which gives the heterometallic product $[W_3CuS_4(H_2O)_{10}]^{5+}$,³ whereas $[M_0S_4(H_2O)_9]^{4+}$ gives the 4+ product $[M_0CuS_4(H_2O)_{10}]^{4+0.9,10}$ Although not the most common preparative route, addition reactions of Cu', In' and common preparative route, addition reactions of Cu¹, In¹ and
Sn¹¹ to $[Mo₃S₄(H₂O)₉]⁴⁺$ giving $[Mo₃CuS₄(H₂O)₁₀]⁵⁺,⁶$ and $[Mo₃SnS₄(H₂O)₁₂]⁶⁺$ tively have been observed.8 Addition appears to be an effective route in the present studies with $[W_3S_4(H_2O)_9]^{4+}$ (M = In¹, Ge^{II} or Sn^{II}). We also report the preparation of the first cornershared double cubes $\text{[W}_6\text{SnS}_8(\text{H}_2\text{O})_{18}\text{]}^{8+}$ and $\text{[W}_3\text{Mo}_3\text{SnS}_8$ $(H_2O)_{18}]^{8+}$ using the recently identified ^{6.8} redox-induced combination of single cubes in this case $[W_3SnS_4(H_2O)_{12}]^{6+}$ and $[Mo_3SnS_4(H_2O)_{12}]^{6+}$ with $[W_3S_4(H_2O)_9]^{4+}$.

Experimental

Preparation of $[W_3S_4(H, O)_9]^{4+}$

Two procedures were used to prepare the purple trinuclear W^{IV} ₃ cluster $[W_3S_4(H_2O)_9]^{4+}$. The first involved reduction of ammonium tetrasulfidotungstate(vI), [NH₄]₂[WS₄], with sodium tetrahydroborate, Na[BH₄] (Aldrich), in 0.5 M HCl as previously described.¹¹⁻¹³ The product was purified by Dowex

50W-X2 cation-exchange chromatography. Elution was with different 2.0 M acids as required, generally in the present studies with 2.0 M HCl. The product has UV/VIS peaks at λ /nm $(\epsilon/M^{-1} \text{ cm}^{-1} \text{ per W}_3)$ 317 (6100) and 570 (480) in HCl, and 315 (8650) and 560 (546) in Hpts (toluene-p-sulfonic acid). The second procedure involved boiling $[NH_4]_2[W_3S_4(S_4)_3$ - $(NH_3)_3\}$ \cdot H₂O (1 g) in concentrated HCl (10 cm³) for 20 min.¹⁴ The resulting $[W_3S_4(H_2O)_9]^{4+}$ solution was filtered and rotaevaporated to dryness (reduced pressure). The solid was taken up in 2.0 M HCl, diluted to 0.30 M HCl, and purified by Dowex 50W-X2 chromatography as above.

ALTOI

Preparation of $[W_3InS_4(H_2O)_{12}]^{5+}$

Three methods were used.

Method A. A solution of 0.1 mM In' in 0.02 M perchloric acid was prepared by anodic oxidation of an indium-wire electrode (1.6 mm diameter; Specpure, Johnson Matthey Ltd.) as previously described.¹⁵ On addition to $[W_3S_4(H_2O)_9]^{4+}$ the formation of a strong indigo blue colour was observed. Since In¹ reacts with H^{+15} it is important to keep the H^+ of stock solutions of In¹ as low as possible.

Method B. To a solution of $[W_3S_4(H_2O)_9]^{4+}$ in 2.0 M Hpts (50 cm³, 1.78 mM), three pieces of indium wire (each \approx 1 cm long) were added. The reaction under air-free conditions gives the same blue solution in **3** d. Alternatively it is possible to accelerate the reaction by heating at 60 "C, when the reaction is complete in ≈ 30 min (yield $\approx 95\%$).

Method C. A mixture of $[W_3S_4(H_2O)_9]^{4+}$ (5 cm³, 10 mM) in 0.50 M HCl and an In solution (1 cm^3) obtained by dissolving In metal (0.5 g) in 4 M HCl (10 cm^3) was syphoned onto $Na[BH₄]$ (0.4 g) in a round-bottomed flask under rigorous airfree conditions. A change from purple to blue was observed. After standing for 12 h the solution was diluted and loaded onto

 \dagger *Non-SI unit employed:* $M = \text{mol dm}^{-3}$.

a Dowex 50W-X2 cation-exchange column, and washed with 0.50 M HCl. With 1.0 M HCl the $\text{[W}_3\text{InS}_4\text{(H}_2\text{O})_{12}$]⁵⁺ product was eluted as a single band $(\approx 91\%$ yield) then $[W_3S_4(H_2O)_9]^{4+}$ ($\approx 4\%$). From the elution behaviour some chloride complexing at the In is apparent. Elution with 2.0 M Hpts was also carried out.

Stock solutions were stored under N_2 at 4 °C. Under these conditions 10% oxidation to $[W_3S_4(H_2O)_9]^{4+}$ was observed in 10 d. With slow bubbling of air through solutions there is 50% decay in 10 min.

Preparation of GeO

A slightly modified version of a literature procedure was used.¹⁶ Germanium powder (Aldrich; 100 mesh, 99.99%) was first washed in 4.0 M HC1-water, and then dissolved in a solution of KOH (1 g) in water (20 cm³) with 20% H₂O₂ (2 cm³) added. Hydrochloric acid $(200 \text{ cm}^3, 11.3 \text{ M})$ and 50% hypophosphorous acid H_3PO_2 (Aldrich; 15 cm³) were added. The solution was refluxed at 100° C for 6 h under N₂. After cooling an excess of NH, was added to precipitate GeO. The yellow precipitate was filtered off under N_2 , washed and dried. Yield 1.75 g.

Preparation of $[W_3GeS_4(H_2O)_{12}]^6$ **⁺**

Two methods were used.

Method A. A sample of GeO was first prepared by the above procedure. A solution of $[W_3S_4(H_2O)_9]^{4+}$ (5 cm³, 18.7 mM) in 2.0 M HCl was added to GeO (0.20 g) under air-free conditions. An immediate change to red-brown $[W_3GeS_4(H_2O)_{12}]^{6+}$ was observed. The product was diluted to 0.50 M HC1, loaded onto a Dowex 50W-X2 cation-exchange column, washed with 0.50 and 1.0 M HCl, and eluted with 2.0 M HCl (or acid as required). No remaining $[W_3S_4(H_2O)_9]^{4+}$ was observed.

Method B. A mixture of $[W_3S_4(H_2O)_9]^{4+}$ (2 cm³, 21 mM) in 1.0 **M** HCl, a *5%* solution of GeO, (Avocado UK Chemicals Ltd., 99.98%) in 11.3 **M** HCl (1 cm3), and a 45% solution of H_3PO_2 (0.4 cm³) was heated for 10 min at ≈ 60 °C. The redbrown product was purified by column chromatography as above.

Solutions could be stored for 2–3 weeks under N_2 at 4 °C. After 12 h in air the UV/VIS spectrum gave only peaks of $[W_3S_4(H_2O)_9]^{4+}$, which could be separated (92% yield) by Dowex chromatography.

Preparation of $[W_3SnS_4(H_2O)_{12}]^{6+}$

Two methods were used.

Method A. A solution of $\left[W_3S_4(H_2O)_9\right]^4$ ⁺ (5 cm³, 20 mM) in 2.0 M HCl was added to $SnCl₂·2H₂O$ (0.2 g) under air-free conditions. The yellow-brown solution was diluted to 0.50 M HC1 and loaded onto a Dowex 50W-X2 cation-exchange column. The column was washed with 0.50 and 1.0 M HC1, and $[W_3SnS_4(H_2O)_{12}]^{6+}$ eluted with 2.0 M HCl as the chloro complex $[W_3(SnCl_3)S_4(H_2O)_9]^{3+}$. No remaining $[W_3S_4-(H_2O)_9]^{4+}$ was detected. Attempts to elute $[W_3SnS_4-(H_2O)_9]^{4+}$ was detected. Attempts to elute $[W_3SnS_4 (H_2O)_{12}$ ⁶⁺ in 2-3 M Hpts at 0 °C gave $[W_3S_4(H_2O)_9]^{4+}$ as the only product.

Method B. A solution of $[W_3S_4(H_2O)_9]^{4+}$ (2 cm³, 20 mM) in 2.0 M HCl was added to tin shot (activated by washing with 2.0 M HCl and water) under air-free conditions. Colour changes to a yellow-brown solution were complete in ≈ 6 h. Chromatographic purification was as above. No violet $[W_3S_4(H_2O)_9]^{4+}$ band was observed.

With slow bubbling of air through solutions of the product in 2.0 M HC1 there is 20% decay in 10 min.

Preparation of $[W_6$ **SnS₈** $(H_2O)_{18}]^{8+}$

A mixture of $[W_3SnS_4(H_2O)_{12}]^{6+}$ (10 cm³, 2.0 mM) and $[W_3S_4(H_2O)_9]^{4+}$ (11.1 cm³, 1.8 mM), both in 1 M HCl, was syphoned onto $Na[BH_4]$ (0.4 g) under rigorous air-free conditions. A change to purple-red occurred. After standing for **30** min the solution was diluted to 0.50 M HCl and loaded onto a Dowex 50W-X2 cation-exchange column at 0° C, and washed with 0.50 and then 1.0 M HCl. Elution of yellowbrown $[W_3SnS_4(H_2O)_{12}]^{6+}$ ($\approx 2\%$) and then purple $[W_3S_4 (H_2O)_9$]⁴⁺ (\approx 1%) took place with 2.0 M HCl. Purple-red $\left[\text{W}_6\text{SnS}_8(\text{H}_2\text{O})_{18}\right]^{8+}$ was eluted in 3.0 M HCl.

Stock solutions were stored by a procedure involving placing a container within a container both under N_2 at 4 °C. Under these conditions 10% decay was observed in 2 d. With slow bubbling of air through solutions 100% decay was observed in 2 min. The products of decomposition are $\left[W_3SnS_4(H_2O)_{12}\right]^{6+}$ and $[W_3S_4(H_2O)_9]^{4+}$ in a 1:1 ratio.

Preparation of $[W_3Mo_3SnS_8(H, O)_{18}]^{8+}$

A yellow-green solution of $[Mo_3SnS_4(H_2O)_{12}]^{6+}$ was first prepared as described.⁹ A mixture of $[Mo₃SnS₄(H₂O)₁₂]^{6+}$ $(10 \text{ cm}^3, 1.33 \text{ mM})$ and $\text{[W}_{3}S_{4}(\text{H}_{2}\text{O})_{9}\text{]}^{4+}$ $(9.43 \text{ cm}^3, 1.41 \text{ mM})$ both in 2.0 M HCl was syphoned onto $Na[BH₄]$ (0.4 g) under air-free conditions. The colour changed to red-purple, and the product was separated by cation-exchange chromatography as in the previous section. Elution of the red-purple product was carried out with 2.0 M HCl or 4.0 M Hpts. The final product was more red in appearance than $[W_6SnS_8(H_2O)_{18}]^{8+}$

Stock solutions were stored under N_2 at 4 °C. Under these conditions 10% oxidation was observed in 2 d. With slow bubbling of air through solutions there is 25% decay in *5* min.

Heteroatom transfer reactions

On mixing $[Mo_3S_4(H_2O)_9]^{4+}$ (2.8 cm³, 3.75 mM) and $[W_3SnS_4(H_2O)_{12}]^{6+}$ (5.0 cm³, 2.10 mM) in 2.0 M HCl the colour began to change almost immediately. Column separation of the products gave only $[Mo_3SnS_4(H_2O)_{12}]^{6+}$ and $[W_3S_4(H_2O)_9]^{4+}$ as products. Similarly on mixing $[M_0S_4 (H_2O)_{9}$]⁴⁺ (2.4 cm³, 1.7 mM) with ${W_3InS_4(H_2O)}_{12}$]⁵⁺ (1.0) cm3, 4.1 mM) the UV/VIS spectrum obtained corresponded to a mixture of $[M_0, InS_4(H_2O)_{12}]^{5+}$ and $[W_3S_4(H_2O)_9]^{4+}$. Yields $95 \pm 5\%$.

Other attempted preparations

Whereas a solution of $[Mo_3S_4(H_2O)_9]^{4+}$ and Ga^{III} in 1.0 M HCl gives with Na^{[BH₄] the single cube $[M_0GaS_4-(H_2O)_{12}]^{5+}$,⁷ no similar reaction was observed with $[W_3S_4]$} $(H_2O)_9]$ ⁴⁺.

Oxidant

A 0.5 M solution of iron(m) chloride hexahydrate (BDH, Analar) in 2.0 M HCl was used in redox/stoichiometry experiments.

Metal analyses

A Unicam 701 inductively coupled plasma atomic emission spectrometer was used. Solutions in 1-2 M HC1 give better results than those in Hpts, which can give erroneous results.

Fig. 1 The UV/VIS spectra of single-cube derivatives of $[W_3S_4(H_2O)_9]^{4+}$, $[W_3InS_4(H_2O)_{12}]^{5+}$ (...) in 1 M HCl, $[W_3-$ GeS₄(H₂O)₁₂]⁶⁺ (-----)in 2.0 M HCl

Fig. 2 The UV/VIS spectra of comer-shared double-cube clusters 2.0 M HCI $\overline{[W_6SnS_8(H_2O)_{18}]^{8+}}$ (- - -) and $\overline{[W_3Mo_3SnS_8(H_2O)_{18}]^{8+}}$ (- - -) in

Fig. 3 Comparison of UV/VIS spectra of $[W_3InS_4(H_2O)_{12}]^{5+}$ in 2.0 M Hpts (----) and 2.0 M HCI (- - -)

Results and Discussion

Preparative procedures for three heterometallic ($M = In, Ge$ or Sn) single-cube derivatives of $\lceil W_3S_4(H_2O)_9\rceil^{4+}$, characterised as $[W_3InS_4(H_2O)_{12}]^{5+}$, $[W_3GeS_4(H_2O)_{12}]^{6+}$ and $[W_3SnS_4 (H_2O)_{12}$ ⁶⁺ or related in 2 M HCl, are described for the first time. The first corner-shared double-cube derivative of

Table 1 Results of metal analyses by ICP-AES, and stoichiometry determination with aquairon(II1) as oxidant

^a The crystal structure of $[NMe₂H₂]_{6}[W₃(SnCl₃)S₄(NCS)₉] \cdot 0.5H₂O$ is consistent with a 6+ charge, ref. 5. ^b The crystal structure of $[MMe₂H₂](Mo₃(SnCl₃)S₄(NCS)₉]·5H₂O$ has been reported, ref. 8.

Table 2 Peak positions in UV/VIS spectra of heterometallic single and corner-shared double cube derivatives of ${[W_3S_4(H_2O)_9]}^{4+}$ in 2 M HCl except as stated

Cluster	λ /nm (ϵ/M^{-1} cm ⁻¹)
$[W_3InS_4(H_2O)_{12}]^{5+a}$	304 (13 600), 379 (10 500), 590 (1500)
$[W_3InS_4(H, O)_{12}]^{5+b}$	298 (13 000), 362 (6010), 591 (900)
$[W_3GeS_4(H_2O)_1]^{\frac{6}{4}+a}$	303 (16 300), 386 (12 600)
$\left[\text{W}_3\text{SnS}_4(\text{H}_2\text{O})_{12}\right]^{6+a}$	303 (12 800), 396 (21 200)
$[W_6$ SnS ₈ $(H_2O)_{18}$ ^{8+c}	311 (16 600), 393 (9800), 548 (13 500)
$[W_3Mo_3SnS_8(H, O)_{18}]^{8+d}$	355 (10 400), 389 (10 600), 548 (7400)
^a ϵ per W ₃ . ^b Acid 2.0 M Hpts. ^c ϵ per W ₆ . ^d ϵ per W ₃ Mo ₃ .	

 $[W_3S_4(H_2O)_9]^{4+}$ assigned as $[W_6SnS_8(H_2O)_{18}]^{8+}$ has also been isolated. Different cube structure types have been established previously in the corresponding $[Mo₃S₄$ - $(H_2O)_{19}$ ⁴⁺ chemistry. Structures relevant to the present studies are as illustrated.

The same procedures have been applied to characterise the heterometallic derivatives of $[W_3S_4(H_2O)_9]^{4+}$ as used for $[Mo_3S_4(H_2O)_9]^{4+.1.8}$ Dowex cation-exchange chromatography differentiates between the lower-charged single cubes and higher-charged double cubes. The differences in charge are greater using HCl for elution, since C1 complexes to the heterometal of the single cubes. Complexing of Cl⁻ to W (and Mo) is much weaker.^{13,17} Thus with [Cl⁻] ≈ 0.1 M it has been established that $[Mo_3SnS_4(H_2O)_{12}]^{6+}$ is present as $[Mo_3(SnCl_3)S_4(H_2O)_9]^{3+}$, and it is clear that $[W_3(SnCl_3)S_4(H_2O)_9]^{3+}$ also readily forms.⁵ It is moreover a stabilising influence, since $[W_3SnS_4(H_2O)_{12}]^{6+}$ cannot be eluted from Dowex cation-exchange columns with 2.0 M Hpts when $[W_3S_4(H_2O)_9]^{4+}$ reforms.

Metal analyses by inductively coupled plasma atomic emission spectroscopy (ICP-AES) for the heterometallic derivatives of $[W_3S_4(H_2O)_9]^{4+}$ are listed in Table 1. The 3:1 W to heterometal ratios indicate single cubes, and *6* : 1 ratios (or **3** : 3 : 1 in the case of the W/Mo product) corner-shared double cubes. Solutions of the heterometallic products undergo air oxidation, with $[W_3S_4(H_2O)_9]^{4+}$ a product in all cases. With aquairon(III) as oxidant the single cubes give $2:1$ stoichiometries, enabling the charge on the heterometallic cube to be designated as in equations (1) - (3) . Similarly for the cornershared double cube a 4 : 1 stoichiometry is observed, equation **(4),** and in the case of the W_3Mo_3 double cube reaction (5) holds.

$$
W_3InS_4^{\ 5+} + 2Fe^{III} \longrightarrow W_3S_4^{\ 4+} + In^{III} + 2Fe^{II} \quad (1)
$$

$$
W_3GeS_4^{6+} + 2Fe^{III} \longrightarrow W_3S_4^{4+} + Ge^{IV} + 2Fe^{II} \quad (2)
$$

$$
W_3 SnS_4^{\,6+} + 2Fe^{III} \longrightarrow W_3S_4^{\,4+} + Sn^{IV} + 2Fe^{II} \quad (3)
$$

$$
W_6 SnS_8^{8+} + 4Fe^{III} \longrightarrow 2W_3S_4^{4+} + Sn^{IV} + 4Fe^{II} \quad (4)
$$

$$
W_3Mo_3SnS_8^{8+} + 4Fe^{III} \longrightarrow
$$

$$
W_3S_4^{4+} + Mo_3S_4^{4+} + Sn^{IV} + 4Fe^{III}
$$
 (5)

The UV/VIS spectra of the single cubes $[W_3InS_4(H_2O)_{12}]^{5+}$, **EXECUTE:** IT IS NOTE THE U.V / VIS SPECTED OF THE U.V \sqrt{MS} SnS₄(H₂O)₁₂]⁶⁺, and the double illustrated in Figs. 1 and 2, with details as listed in Table 2. The $[W_3InS_4(H_2O)_{12}]^{5+}$ spectrum has an additional peak at 590 nm not shown in Fig. 1 which is responsible for the blue colour. The effect of Cl⁻ complexing to the heterometal atom is illustrated for $[W_3InS_4(H_2O)_{12}]^{5+}$ in Fig. 3, with shifts similar to those illustrated in earlier work for $[Mo_3SnS_4(H_2O)_{12}]^{6+}$ in 2.0 M HCl and 2.0 M Hpts as well as 2.0 M HClO₄.⁸ cubes $[\text{W}_6 \text{SnS}_8(\text{H}_2 \text{O})_{18}]^{8+}$ and $[\text{W}_3 \text{Mo}_3 \text{SnS}_8(\text{H}_2 \text{O})_{18}]^{8+}$, are

Addition reactions of $In¹$, Ge^{II} (as GeO), and Sn^{II} to $\text{[W}_{3}S_{4}(\text{H}_{2}\text{O})_{9}$ ⁴⁺ constitute a preparative route, equations (6)-**(8),** to be considered alongside the earlier example of copper(1)

$$
W_3S_4^{4+} + In^1 \longrightarrow W_3InS_4^{5+} \tag{6}
$$

$$
W_3S_4^{4+} + Ge^{II} \longrightarrow W_3GeS_4^{6+} \tag{7}
$$

$$
W_3S_4^{4+} + Sn^{II} \longrightarrow W_3SnS_4^{6+} \tag{8}
$$

addition, equation (9).¹⁰ The reactions of $[W_3S_4(H_2O)_9]^{4+}$

$$
W_3S_4^{4+} + Cu^I \longrightarrow W_3CuS_4^{5+} \tag{9}
$$

with the metals In and Sn (and also with $Cu³$) give the same single-cube products as in equations (6), **(8)** and (9). The reactions are however difficult to express as single stoichiometric equations and further mechanistic information is required. One possibility is that unstable 4 + adducts of $[W_3S_4(H_2O)_9]^{4+}$ are first formed, $W_3MS_4^{4+}$, which react further with the H⁺ present. Thus it has recently been shown that $Mo₆TIS₈⁸⁺$ as well as In-containing single and double cubes react with H⁺ liberating H_2 ^{1,6,18} In contrast to the reaction of Sn with $[W_3S_4(H_2O)_9]^{4+}$, that with $[M_3S_4(H_2O)_9]^{4+}$ gives the corner-shared double cube, equation (10).¹⁹ The \widetilde{W}_6 SnS₈⁸⁺

$$
2Mo_3S_4^{4+} + Sn \longrightarrow Mo_6SnS_8^{8+} \tag{10}
$$

double cube has been prepared by an alternative route, see equation (12) below. The reaction of $[Mo_3S_4(H_2O)_9]^{4+}$ with copper metal gives the $4+$ single cube,¹⁰ which has been isolated as an edge-linked double cube, equation (11) .⁹ The only

$$
2Mo3S44+ + 2Cu \longrightarrow 2Mo3CuS44+ \longrightarrow \{Mo3CuS4\}28+ (11)
$$

other heterometallic derivative of $[W_3S_4(H_2O)_9]^{4+}$ is obtained by reaction with nickel metal. The $4+$ product $[W_3NiS_4 (H₂O)₁₀$ ⁴⁺ differs from $[Mo₃NiS₄(H₂O)₁₀$ ⁴⁺ in forming an edge-linked double cube $\left[\frac{\{W_3NiS_4(H_2O)_9\}_2\right]^{8+.4}$ The greater difficulty in reducing the W^{IV}_3 trinuclear unit as compared to Mo^{IV} ₃ explains some of these differences.

Alternative procedures used to obtain the single-cube derivatives of $\left[\mathbf{\hat{W}}_3\mathbf{S}_4(\mathbf{H}_2\mathbf{O})_9\right]^{\mathrm{4+}}$ involve the addition of In^{III} + BH_4^- and $GeO_2 + H_3PO_2$. These can be explained by *in situ* generation of In^T and Ge^H respectively, which react as in (6) and (7). The use of H_3PO_2 instead of BH_4^- as a reducing agent in this chemistry has a number of advantages and is being further explored.

The two corner-shared double cubes $[W_6SnS_8(H_2O)_{18}]^{8+}$ and $[W_3Mo_3SnS_8(H_2O)_{18}]^{8+}$ were both prepared by redoxinduced addition of $[W_3S_4(H_2O)_9]^{4+}$ to the single cubes as in equations (12) and (13). In these reactions reduction of the single cube most likely initiates reaction.^{1,8}

$$
W_3 SnS_4^{6+} + W_3 S_4^{4+} + 2e^- \longrightarrow W_6 SnS_8^{8+} \quad (12)
$$

$$
W_3 SnS_4^{6+} + W_3 S_4^{4+} + 2e^- \longrightarrow W_6 SnS_8^{8+}
$$
 (12)

$$
Mo_3 SnS_4^{6+} + W_3 S_4^{4+} + 2e^- \longrightarrow W_3 Mo_3 SnS_8^{8+}
$$
 (13)

Finally the occurrence of tin transfer in reaction (14), with no corresponding UV/VIS changes for $[Mo_3SnS_4(H_2O)_{12}]^6$ ⁺ with $[W_3S_4(H_2O)_9]^{4+}$, suggests a greater affinity of $[M\sigma_1S_4(H_2O)_q]^{4+}$ for Sn^{II} . A possible mechanism involves

dissociation via equation (15) and subsequent reaction of
\n
$$
W_3 SnS_4^{6+} + Mo_3S_4^{4+} \longrightarrow W_3S_4^{4+} + Mo_3SnS_4^{6+}
$$
\n
$$
(14)
$$
\n
$$
W_3 SnS_4^{6+} \longrightarrow W_3S_4^{4+} + Sn^{11}
$$
\n
$$
(15)
$$

$$
W_3 SnS_4^6{}^+ \rightleftharpoons W_3 S_4^4{}^+ + Sn^{II} \tag{15}
$$

 $\left[Mo_{3}S_{4}(H_{2}O)_{9}\right]^{4+}$ with Sn^{II}. The reaction of $\left[W_{3}S_{4}(H_{2}O)_{9}\right]^{4+}$ (0.10 mM) with Sn^{II} (1.0 mM) in 2.0 M HCl or 2.0 M Hpts was too fast to monitor by the stopped-flow method at 25° C.

Acknowledgements

We are grateful to the EPSERC for a research grant (M. N. **S.)** and the Institute of Inorganic Chemistry Novosibirsk for leave (to V. P. F.).

References

- 1 D. M. Saysell, M. N. Sokolov and A. G. Sykes, *ACS Symp. Ser.,* in the press.
- 2 T. Shibahara, *Adv. Inorg. Chem.,* 1991,37, 143.
- 3 M. Nasreldin, C. A. Routledge and **A.** G. Sykes, J. *Chem. Soc., Dalton Trans.,* 1994,2809.
- 4 T. Shibahara, *Y.* Yamamoto and G. Sakane, *Chem. Lett.,* 1994, 1231.
- 5 A. Müller, V. P. Fedin, E. Diemann, H. Bögge, E. Krickemeyer, D. Sölter, A. M. Guiliani, R. Barbieri and P. Adler, *Inorg. Chem.*, 1994,33,2243.
- 6 M. N. Sokolov and A. G. Sykes, unpublished work.
- 7 V. P. Fedin and **A.** G. Sykes, unpublished work.
- 8 J. E. Varey, G. J. Lamprecht, V. P. Fedin, **A.** Holder, W. Clegg, M. R. J. Elsegood and A. G. Sykes, *Inorg. Chem.,* 1996,35.
- 9 T. Shibahara, H. Akashi and H. Kuroya, J. *Am. Chem. SOC.,* 1988, 110,3314.
- 10 M. Nasreldin, J.-Y. Li, F. E. Mabbs and A. G. Sykes, *Inorg. Chem.,* 1994,33,4283.
- 11 T. Shibahara, H. Kohda, A. Ohtsuji, K. Yasuda and H. Kuroya, J. *Am. Chem. Soc.,* 1986,108,2757.
- 12 M. Nasreldin, A. Olatunji, P. W. Dimmock and A. G. Sykes, J. *Chem. Soc., Dalton Trans.,* 1990, 1765.
- 13 C. A. Routledge and **A.** G. Sykes, J. *Chem. SOC., Dalton Trans.,* 1992, 325.
- 14 V. P. Fedin, M. N. Sokolov, 0. A. Gerasko, B. A. Kolesov, V. E. Fedorov, A. V. Mironov, D. S. Yufit, Yu. L. Slovohotov and Y. T. Struchkov, *Inorg. Chim. Acta,* 1990, 175,217.
- 15 R. S. Taylor and A. G. Sykes, J. *Chem. Soc. A,* 1969,2419.
- 16 G. Brauer, *Handbook* of *Preparative Inorganic Chemistry,* 2nd edn., 1963, vol. 1.
- 17 Y.-J. Li, M. Nasreldin and **A.** G. Sykes, *Inorg. Chem.,* 1992,31,3011.
- 18 J. E. Varey and A. G. Sykes, *Polyhedron,* 1996,15, 1887.
- 19 T. Shibahara and H. Akashi, *Inorg. Chem.,* 1989,28,2906.

Received 22nd Muy 1996; *Paper* 6/03577I