Aqueous vanadosilicates

Oliver W. Howarth * and Jeremy J. Hastings

Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK

Silicate anions were shown by ⁵¹V and ¹⁷O NMR spectroscopy to combine with aqueous $[HVO_4]^{2^-}$ in aqueous alkaline solution, forming the anions $[H_2VSiO_7]^{3^-}$, $[H_3VSiO_7]^{2^-}$ and various related monovanadooligosilicate species. Approximate equilibrium constants have been derived, and shown to depend only weakly upon ionic strength. The ion $[H_2VSiO_7]^{3^-}$ at higher concentrations also dimerises to give an anion with a SiOVOVOSi linkage, as shown by selective inversion-transfer subtraction spectra.

Although vanadium(v) is well known to combine with silicate, both in heteropolyanions with SiO_4 centres,¹ and in *e.g.* mesoporous silicas,² no reports have been published to date of simple aqueous vanadosilicates, resulting from the interaction of alkaline silicate with $[HVO_4]^{2-}$ or its oligomers. Such dissolved species might be expected to form mainly above pH 10.5, for SiO₂ precipitates below this value. One might expect them to be loosely analogous to the alkaline aluminosilicate species that initially form in sol-gel preparations,³ and indeed they may be important in developing a chemical understanding of such processes. Vanadates are particularly convenient for investigation, because ⁵¹V NMR is even more sensitive than ²⁷Al NMR spectroscopy, by virtue of the much lower quadrupole moment of ⁵¹V.⁴

Our attention was initially drawn to the possible existence of vanadosilicates by the occasional presence of minor peaks in the spectra of alkaline vanadate solutions, contained in glass for some time. These peaks could not be explained in terms of any possible isopolyvanadate anion.⁵ They could be greatly amplified by the addition of aqueous sodium silicate at the same pH. We have therefore attempted their analysis by solution-state ⁵¹V and ¹⁷O NMR spectroscopy, including the use of one-dimensional inversion-transfer methods.

Two other methods might in principle be considered for the same investigation. Silicon-29 NMR spectroscopy has certainly yielded rich results with silicate oligomers, despite its comparatively low sensitivity. However, the resonances of Si attached through O to V in small anions will almost certainly be seriously broadened by ⁵¹V-²⁹Si coupling, and will therefore be difficult to observe. Potentiometry is also possible,⁶ and indeed it has been applied to oligosilicates by Sjöberg and co-workers, using a somewhat simplified chemical scheme, to show that the main monosilicate species in the range pH 10-13 is [H₃SiO₄]⁻ However, it will not be sufficiently accurate here, because of the high concentrations required, and the likely complexity of the vanadosilicate chemistry. Instead, an attempt is made in the present study to extract approximate equilibrium constants for the most abundant vanadosilicate species using NMR data alone.

Experimental

Initial solution-state NMR spectra were obtained at $105.5(^{51}V)$ and $54.2(^{17}O)$ MHz on a Bruker ACP400 spectrometer and at 295 K in lightly deuteriated 0.60 and 3.00 mol dm⁻³ aqueous Na(Cl). Typical parameters for the ⁵¹V spectra were: spectral width 28 kHz, acquisition time 0.147 s, no relaxation delay, 8k data points in both domains, 2000 transients, 35° pulse angle. The corresponding values for the ¹⁷O spectrum were 83 kHz, 0.025 s, no relaxation delay, 4k points, 20 000 transients, no

isotopic enrichment, 35°. The ${}^{51}V$ chemical shifts were referenced to external capillary VOCl₃.

Further ⁵¹V NMR spectra were obtained at 157.6 MHz on a Varian VXR600S spectrometer, at 25 °C, particularly for kinetic studies using selective inversion. Inversion was achieved with the programmable pulse modulator unit on the Varian instrument. The delay between the midpoints of the soft inversion pulse and the hard observation pulse was set as low as possible, because the exchange processes were found to be very rapid. Its effective value was estimated to be *ca*. 1 ms. Thus it was only possible to obtain semiquantitative kinetic information by this means, even though the time allowed for exchange was appreciably shorter than the oxygen relaxation time. Subtraction spectra, which show only those resonances affected by the selective inversion, were obtained by subtracting the normal spectrum from the selectively inverted spectrum.

The areas of the major peaks in the 51 V NMR spectra could typically be measured to within 10%. However, there was no reliable way of deconvoluting the multiple, overlapping, exchange-broadened monovanadosilicate resonances, and indeed the approximate determination of equilibrium constants was only possible because this cluster of resonances was dominated by the simplest species. Nevertheless, it proved possible to identify the main new species present, by the combination of their shifts, their dependence on pH and concentration and their exchange kinetics.

Solutions were prepared from sodium metavanadate $(NaVO_3)$ and hydrated sodium metasilicate $(Na_2SiO_3 \cdot 5H_2O, BDH)$ and sodium chloride AR (Fisons). A Radiometer PHM84 pH meter was used with a type B electrode, with which the sodium ion corrections were small.

Results and Discussion

Shifts

No resonances beyond those expected for isopolyvanadates were found above pH 13.5, but on progressive lowering of the pH value vanadosilicate resonances appeared in increasing proportion and complexity, down to pH 10, where precipitation occurred. Fig. 1 shows one of the richer, 157.6 MHz ⁵¹V NMR spectra, obtained at pH 11.1 with V, Si and Na(Cl) respectively 0.1, 0.04 and 0.6 mol dm⁻³. The three isopolyvanadates expected under these conditions are: $[HVO_4]^{2-}$ (V₁), $[V_2O_7]^{4-}$ (V₂) and $[V_3O_{10}]^{5-}$ (V₃, two resonances). A cluster of vanadosilicate resonances is apparent from δ – 564 to – 570, together with a broad but reproducible peak at δ –603.3 (see vertical expansion). The area of the main cluster is comparable with that of V₂. Similar spectra were seen with different concentrations of reagents, although the more minor peaks were not always present, or resolvable. Fig. 2 shows how the

Fig. 1 The 157 MHz 51 V NMR spectrum of a solution with 0.1, 0.04, 0.6 mol dm $^{-3}$ V, Si and NaCl respectively, pH 11.1, 295 K

Fig. 2 Vanadium shifts vs. pH for solution of 0.01, 0.04 and 0.6 mol dm^{-3} V, Si and NaCl respectively at 295 K. The $V_1 = [HVO_4]^{2-}$ and $V_2 = [V_2O_7]^{4-}$ shifts are temperature-invariant, whereas those for V_1Si_1 and V_1Si_n are fitted to Henderson-Hasselbalch equations, with $pK_a = 11.2$ and (averaged) 11.6 respectively

Fig. 3 Oxygen-17 NMR spectrum of a solution of 0.3, 0.6 and 0.6 mol dm^{-3} V, Si and Na respectively, pH 13.3, showing the 3:1 area ratio for the two types of O bound to V in V₁Si₁, and the fast exchange between the silicate oxygens

shifts of the resonances vary with pH, and also the actual pH values studied at this concentration. The V_1 and V_2 peaks are independent of pH in this range, but all the vanadosilicate peaks move somewhat to higher frequency with increasing acid. This increment is less than, and opposite in sign to those of V_1 and V_2 , at lower pH,⁵ perhaps indicating protonation at silicate rather than vanadate oxygen.

An integrated ¹⁷O NMR spectrum, Fig. 3, was obtained for a pH 13.3 solution of 0.3, 0.6 and 0.6 mol dm⁻³ V, Si and Na respectively. At this pH the only vanadosilicate resonance in the ⁵¹V NMR spectrum is the major one, at δ – 572. The ¹⁷O peaks are mostly broadened by ⁵¹V-¹⁷O couplings, and indeed these are sufficient to render invisible the bridging oxygen resonance in species V2. All the oxygens bound solely to Si are in sufficiently fast exchange to merge into the peak near δ 55. The other peaks are readily identified from previous data for V_1 (δ 570) and from their areas, relative to those of the corresponding $^{51}\dot{\rm V}$ NMR spectrum. The two resolved vanadosilicate oxygen resonances appear at δ 720 and 190, in area ratio 3:1. They thus prove the presence of an O₃VOSi unit. The actual anion is almost certainly [O₃VOSiO(OH)₂]³⁻ at this pH, given the equilibrium constants and the general trends in vanadate⁵ and silicate⁷ anionic charge. Its shifts are entirely consistent with this formulation. Those of the terminal oxygens are similar to those of V₂, and the bridging O is intermediate between the bridging O in V_2 (δ 440) and averaged O in silicates (δ 55). These shifts, and the 3:1 area ratio, rule out the possibility of V and Si linked by more than one O. Also, the ⁵¹V shifts rule out octahedrally co-ordinated V.

This identification as V_1Si_1 is supported below by equilibrium calculations. If it is accepted, then the more minor peaks with similar shift can only be reasonably assigned to V_1Si_n oligomers. Thus silicate esterification of vanadate decreases the ⁵¹V shift by about 35 ppm. The other, much weaker vanadosilicate resonance, at $\delta - 603$, is about 33 ppm to low frequency of V_2 . It would therefore seem on shift grounds to be a V_2Si_n species, with a VOV bond. The symmetrical V_2Si_2 anion is the most probable, because it has only one ⁵¹V resonance. The evidence below implies that it forms from two V_1Si_1 units, rather than from *e.g.* direct esterification of V_2 .

Exchange

The monovanadosilicate peaks broaden and merge if the temperature is raised, even though exchange between V_1 and V_2 remains negligible. Thus SiOSi bonds are more labile than VOV bonds, or indeed VOSi bonds, as adjudged from the ¹⁷O NMR data. The exchange of vanadate units was investigated by selective inversion of vanadate resonances. Even though short selective pulses were necessary to cope with rapid exchange, nevertheless a shift selectivity of *ca.* 3 ppm was achievable. Figs. 4 and 5 show two examples of subtraction spectra (*b*), obtained by subtracting the unperturbed spectrum (*a*) from the spectrum taken immediately following selective inversion of the chosen ⁵¹V resonance. Any transfer of inversion indicates exchange not much slower than $1/T_1$, which is typically 400 s⁻¹ here.

The overall kinetic pathways thus revealed are illustrated in Scheme 1. No exchange was detected between V_2 and the species identified above as V_2Si_2 , indicating that the latter forms instead from two V_1Si_1 units. There was no clear evidence for the presence of any V_2Si_1 .

Equilibria

Since it was not possible to separate the integral for the V_1Si_1 peak from those for V_1Si_n , it was necessary to make the approximation that the total integral was dominated by V_1Si_1 . This overestimates the true V_1Si_1 concentration by 10-20% in the calculations described below, judged by crude attempts at deconvolution. Equilibrium constants were then calculated for $`V_1Si_1'$ as follows. The concentrations of V_1 and of $`V_1Si_1'$ in each of 18 solutions were calculated directly from the total vanadium concentration and the relevant integrals. The concentration of Si_1 , as both $[H_3SiO_4]^-$ and $[H_2SiO_4]^{2-}$, was calculated from the total [Si] and the data in ref. 7 where the relevant equilibrium constants are presented as functions of

Fig. 4 The 157 MHz ⁵¹V NMR subtraction spectrum of a solution with 0.1, 0.04, 0.6 mol dm⁻³ V, Si and NaCl respectively, pH 11.94, 295 K. The V₁ peak was selectively inverted *ca.* 1 ms before data capture, and the normal spectrum was subsequently subtracted

Fig. 5 As in Fig. 4, but with pH 11.1 and inversion at the V_1Si_1 peak. Intensity transfer to V_2Si_2 occurs in this case, but not when the V_2 peak from the same sample is inverted

Scheme 1 The $V_1S_1 \longleftrightarrow V_1Si_n$ interconversion was deduced from temperature dependence

 $[Na^+]$. A small allowance was necessary for the presence at high pH of deprotonated V_1 , *i.e.* $[VO_4]^{3^-}$, using [NaCl]-dependent p K_a values extrapolated from Pettersson's data.⁸

Separate equilibrium constants, $[`V_1Si_1']/[V_1][Si_1][H^+]_m$, were then calculated for both the diprotonated anion $[H_2VSiO_7]^{3-}$ and the triprotonated anion $[H_3VSiO_7]^{2-}$, at each of the ionic strengths used. Thus the reaction (1) gives expression (2). A least-squares fit (Microsoft Solver) was used to minimise the difference between the observed and calculated concentrations. The results are shown in Fig. 6 as plots of observed vs. calculated concentrations for total 'V_1Si_1', and the log constants are given in Table 1. The calculated concentrations are indicated by the segmented lines. The fits of the points by these are far better than could be obtained with any other formulations for the vanadosilicate anions.

Fig. 6 Observed (points) and calculated (line segment joins) concentrations in mol dm⁻³ of V₁Si₁ and V₁Si_n combined vs. pH. Conditions: 3 mol dm⁻³ NaCl, 0.05 mol dm⁻³ V (\blacksquare , ---); 0.6 mol dm⁻³, NaCl, 0.1 mol dm⁻³ V (\blacktriangle , ----); 0.6 mol dm⁻³ NaCl, 0.01 mol dm⁻³ V (\bigcirc , -··)

Table 1 Logarithmic equilibrium constants

	Medium	
	0.60 mol dm ⁻³ NaCl	3.00 mol dm ⁻³ NaCl
Approximate log β for $[H_2VSiO_7]^{3-*}$ Approximate log β for $[H_3VSiO_7]^{2-*}$ pK_a for $[H_3VSiO_7]^{2-*}$ Estimated pK_a for $[HVO_4]^{2-}$	1.12 12.66 11.54 13.0	1.20 12.83 11.63 12.6

* Notional formula; integral data include all V_1Si_1 and V_1Si_n peaks.

$$H^+ + [H_3SiO_4]^- + [HVO_4]^{2-} \implies [H_3VSiO_7]^{2-} + H_2O$$

(here $m = 1$) (1)

$$\beta(H_{3}V_{1}Si_{1}) = \log[H_{3}VSiO_{7}^{2^{-}}] - \log[H_{3}SiO_{4}^{-}] - \log[HVO_{4}^{2^{-}}] + pH \quad (2)$$

Although the constants in Table 1 are unavoidably approximate, they clearly show that neither the pK_a values nor the formation constants for the monovanadosilicates depend strongly upon ionic strength. This is consistent with reaction (1), where the product has the same anionic charge as V_1 , and also consistent in general with the prevalence of rather low anionic charges.

Although the calculations could not include V_1Si_n species, it was qualitatively apparent that the proportion and complexity of these relative to V_1Si_1 rose slowly with decreasing pH. Their rise fits well with the corresponding rises in the various $[Si_n]/[Si_1]$, deduced as above.⁷ It therefore appears that V_1 is not very selective in its combination with oligosilicates, in this pH region. This must be in part because most of the Si_n anions have the same charge here, and offer few steric constraints. The corresponding conclusion does not hold for aluminosilicates, where the aluminate units are frequently bound through several oxygens.⁹

Conclusion

It is perhaps not surprising that the main anions to form are $[H_2VSiO_7]^{3-}$ and $[H_3VSiO_7]^{2-}$, with single VOSi bridges, for these are closely analogous to the main V_2 and Si_2 anions also present, namely $[V_2O_7]^{4-}$ and $[Si_2O_2(OH)_5]^{-}$. The equilibrium constants also indicate a similar strength for the VO and SiO bonds. More surprising is the SiOVOVOSi linkage in V_2Si_2 , for this is counter to Löwenstein's rule for zeolites.¹⁰ Indeed, Catlow *et al.*¹¹ have recently argued on theoretical grounds that Löwenstein's rule also holds for aluminosilicate

oligomers. However, V is known to prefer to be *cis* to another V, in a variety of mixed-metal vanadates,⁴ and this tendency may override Löwenstein's constraint.

Acknowledgements

We thank Drs. J. Parkinson and I. Sadler, and the EPSRC, for making possible the inversion-transfer experiments at Edinburgh.

References

- 1 M. T. Pope, *Heteropoly and Isopoly Oxometalates*, Springer, New York, 1983.
- 2 S. Gontier and A. Tuel, Microporous Mater., 1995, 5, 161.
- 3 S. D. Kinrade and T. W. Swaddle, Inorg. Chem., 1989, 28, 1952.

- 4 O. W. Howarth, Prog. Nucl. Magn. Reson. Spectrosc., 1990, 22, 453.
- 5 E. Heath and O. W. Howarth, J. Chem. Soc., Dalton Trans., 1981, 1105.
- 6 L. Pettersson, in *Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity*, eds. M. T. Pope and A. Müller, Kluwer, Dordrecht, 1993.
- 7 I. L. Svensson, S. Sjöberg and L.-O. Öhman, J. Chem. Soc., Faraday Trans. 1, 1986, 3635.
- 8 L. Pettersson, personal communication.
- 9 R. K. Harris, J. Parkinson, A. Samadi-Maybodi and W. Smith, Chem. Commun., 1996, 593.
- 10 W. Löwenstein, Am. Mineral., 1954, 92, 39.
- 11 C. R. A. Catlow, A. R. George and C. M. Freeman, Chem. Commun., 1996, 1311.

Received 9th July 1996; Paper 6/04829C