New platinum(II) complexes of Ph₂PNHP(O)Ph₂ and [Ph₂PNP(O)Ph₂]⁻

Alexandra M. Z. Slawin, Martin B. Smith and J. Derek Woollins*

Department of Chemistry, Loughborough University, Loughborough LEI I 3TU, UK

Refluxing a suspension of cis- $[PCl_2(HL)_2] [HL = Ph_2PNHP(O)Ph_2-P]$ in methanol for *ca.* 11 h led to Ph₂P-N bond cleavage of one of the HL ligands and formation of cis-[PtCl₂(HL)(Ph₂POMe)] **1.** Prolonged refluxing of 1 in methanol (5 d) gave predominantly unchanged 1 in addition to some cis- $[PtCl₂(Ph₂POMe)₂]$ 2 and cis- $[PtCl(L)(Ph, POMe)]$ **3** $[L = Ph, PNP(O)Ph_2 - P, O]$. Reaction of **1** with KOBu¹ afforded solely 3 in good yield. Bridge cleavage of $[\{PtCl(\mu-Cl)(PMe_2Ph)\}_2]$ with 2 equivalents of HL gave trans-[PtCl,(HL)(PMe,Ph)] **4a** which is smoothly isomerised to cis-[PtCl,(HL)(PMe,Ph)] **4b** upon addition of trace amounts of HL. Complexes **4a** and **4b** reacted with KOBu' *(ca.* 1.4 equivalents) in methanol to yield trans- and cis -[PtCl(L)(PMe₂Ph)] **5a** and **5b** respectively. Chloride abstraction of either **4a** or **4b** with Ag[BF₄] in dichloromethane yielded the *P,* 0-chelate cationic complexes trans- **(6a)** or **cis-[PtCl(HL)(PMe,Ph)][BF,] 6b** respectively. Further reaction of 5b with KOBu^t in methanol gave the hydroxide-bridged platinum(II) dimer $[\{Pt(\mu-OH)L(PMe₂Ph)\}₂]$ 7 in which the P-donor atom in L is co-ordinated to the platinum(II) centre and the 0-donor atom is involved in an intramolecular hydrogen bond to the hydroxide ligand (X-ray evidence). All the compounds **1-7** have been characterised by a combination of 31P-{1H} and 195Pt-{1H} NMR, IR spectroscopy and microanalysis. Furthermore the solid-state structures of cis -[PtCl₂(HL)(PMe₂Ph)], the geometric isomers trans- and cis-[PtCl(L)(PMe₂Ph)] and $[\{Pt(\mu\text{-}OH)L(PMe_2Ph)\}_2]$ have been determined by single-crystal X-ray diffraction.

Previous work by ourselves $1-3$ and others⁴⁻⁶ has shown that a rich co-ordination chemistry exists for the versatile heterodifunctional compound $Ph_2PNHP(O)Ph_2$ (HL) closely related to the methylene-bridged monooxide $Ph_2PCH_2P(O)Ph_2$.⁷⁻¹⁸ Transition-metal complexes of HL and $[Ph_2PNP(O)Ph_2]^-$ (L) exhibit several different bonding modes (types I-V) in which one or both of the P,O donor atoms are used in complexation as identified by solution and solid-state studies. Furthermore we recently described the synthesis and characterisation of the unusual palladium(II) complex $\text{PdCl} \{Ph_2\text{PNP}(O)Ph_2\text{-}P, O\} \{Ph_2\text{-}P, O\}$ POMe)] **A** prepared from the reaction of the cyclometallated dimer $[\{Pd(\mu\text{-}Cl)(C_6H_4CH_2NMe_2\text{-}o\text{-}C,N)\}_2]$ and 4 equivalents of HL in MeOH at ambient temperature.' In contrast, when the reaction was carried out in the same solvent using **2** equivalents of HL, $[\{Pd(\mu\text{-Cl})(C_6H_4CH_2NMe_2\text{-}o\text{-}C,N)\}_2]$ and KOBu', we obtained $\left[\text{Pd}(C_6H_4CH_2NMe_2\text{-}o\text{-}C,N)\right]\left[\text{Ph}_2\text{PNP}(O)\text{Ph}_2\text{-}P, O\right]$ **B** in high yield.¹ The phosphinite ligand, Ph₂POMe, in compound **A** is presumably derived from methanolysis of a Ph₂P-N bond of an intermediate metal complex containing a HL ligand. Although we have not studied the mechanism of this reaction, a similar Ph_2P-N cleavage reaction has been observed ¹⁹ in the dication $[Pt(dppma)_2]^2$ ⁺ $[dppma =$ **bis(diphenylphosphino)methylamine,** Ph,PN(Me)PPh,] but surprisingly $[Pt(dppa)_2]^{2+}$ [dppa = bis(diphenylphosphino)amine, $Ph_2PN(H)PPh_2$] shows no reaction under comparable experimental conditions. Krishnamurthy and co-workers *2o* recently reported the facile Ph₂P-N bond cleavage in unsymmetrical diphosphazene complexes of palladium(n).

We report here our studies on the methanolysis reaction of cis -[PtCl₂(HL)₂] which affords the mixed phosphorus-donor ligand platinum(II) complex cis- $[PtCl₂(HL)(Ph₂POMe)]$. Moreover the synthesis and characterisation of both isomers of $[PtCl₂(HL)(PMe₂Ph)]$ are described, the *trans* isomer being readily accessible from the facile bridge-cleavage reaction of $[\{PtCl(\mu-Cl)(PMe_2Ph)\}_2]$ with HL. Both geometric isomers of the platinacycles $[PtCl(L)(PMe₂Ph)]$ and $[PtCl(HL)(P Me₂Ph$] [BF₄] have been synthesized using similar procedures to those detailed previously for $[M{Ph_2PNP(O)Ph_2-P,O}_2]$ and $[M\{Ph_2PNHP(O)Ph_2-P,O\}_2][BF_4]_2^{\text{T}}$ $(M = Pt \text{ or } Pd)^3$

The formation of a novel platinum(n) dimer $\frac{P(t(\mu-OH))L(P-t(\mu+OH))}{P(t(\mu+OH))L(P-t(\mu+OH))}$ Me_2Ph },] containing an unusual intramolecular hydrogen bond between the 'free' P=O group and the bridging hydroxide ligand (Type VI) is also described.

Experimental

General

All reactions were carried out in air using distilled solvents. The compound $Ph_2PNHP(O)Ph_2$ (HL) and the platinum(n) complexes cis- $[PtCl_2{Ph_2}PNHP(O)Ph_2-P_2]$ and $[{PtCl}(\mu Cl(PMe₂Ph)₂$] were prepared according to previous published The reagents $Ag[BF_4]$, $KOBu^t$ (95% purity), NEt₃ and $HBF₄·OEt₂$ (85% in diethyl ether) were obtained from the Aldrich Chemical Company and used without further purification.

Infrared spectra were recorded as KBr pellets in the range 4000-220 cm-' on a Perkin-Elmer System 2000 Fouriertransform spectrometer, $^{31}P-\{^{1}H\}$ NMR spectra (36.2 MHz) on a JEOL FX90Q spectrometer with chemical shifts *(6)* in ppm (± 0.1) to high frequency of 85% H₃PO₄ and coupling constants (J) in Hz (\pm 3) and ¹⁹⁵Pt-{¹H} NMR spectra (53.7) MHz) on a Bruker AC250 FT spectrometer with **6** referenced to external H_2PtCl_6 (in D₂O–HCl). All NMR spectra were measured in CDC1,. Elemental analyses (Perkin-Elmer 2400 CHN Elemental Analyzer) were performed by the Loughborough University Analytical Service within the Department of Chemistry.

Platinum salts were provided on loan by Johnson Matthey plc.

Preparation of the complexes

cis-[PtCl,{Ph,PNHP(O)Ph,-P)(Ph,POMe)] 1. A suspension of cis- $[PtCl_2\{Ph_2PMHP(O)Ph_2-P\}_2]$ (0.207 g, 0.194 mmol) in MeOH (15 cm3, HPLC grade) was refluxed for ca. 11 h. The solution was filtered to remove a small amount of solid material and the filtrate reduced to dryness in vacuo. Extraction with CH_2Cl_2 (3 x 1 cm³) followed by filtration and addition of diethyl ether (15 cm³) afforded a white solid. Yield 0.120 g, 70% [Found (Calc. for $C_{37}H_{34}Cl_2NO_2P_3Pt$): C, 49.95 (50.3); H, 3.75 (3.9); N, 1.5 (1.6)%]. Selected IR data (KBr): 3112 $[v(N-H)]$, 1223 $[v(P=O)]$ and 312, 283 cm⁻¹ $[v(Pt-C)]$.

The filtrate was left to stand for ca. 1 d and the solution decanted from a small amount of solid that deposited. Evaporation of the solvent to dryness in vacuo and examination of the residue by $31P-\{1H\}$ NMR spectroscopy showed the presence of two phosphorus-containing species identified as $Ph_2P(O)NH_2$ and $Ph_2P(O)OMe$ (ca. 5:1 ratio respectively, based on integration).

Methanolysis of complex 1. A MeOH (5 cm³) solution of **cis-[PtCl,{Ph,PNHP(O)Ph,-P}(Ph,POMe)]** (0.020 g, 0.023 mmol) was refluxed for 5 d and the colourless solution evaporated to dryness under reduced pressure. Examination of the residue by $31P - {1H}$ NMR spectroscopy showed that only small amounts $(<10\%)$ of cis-[PtCl₂(Ph₂POMe)₂] 2 were present in addition to several other species.

 cis - $[PtC$ $\{Ph, PNP(O)Ph, -P, O\}$ $(Ph, POMe)]$ **3.** To a suspension of **cis-[PtCl,{Ph,PNHP(O)Ph,-P}(Ph,POMe)]** (0.101 g, 0.114 mmol) in MeOH (1 cm³) was added solid $KOBu^t$ (0.015 g, 0.134 mmol). The mixture was stirred for 5 min, filtered and the white solid 3 washed with MeOH (2×0.5 cm³). Yield 0.078 g, 81% [Found (Calc. for $C_{37}H_{33}CINO_{2}P_{3}Pt$): C, 51.7 (52.45); H, 4.25 (3.95); N, 1.5 (1.65)%]. Selected IR data (KBr): 297 cm-' $[v(Pt-C])].$

trans- [PtCl₂{Ph₂PNHP(O)Ph₂-P}(PMe₂Ph)] 4a. To a solution of $[\{PtCl(\mu\text{-}Cl)(PMe_{2}Ph)\}_{2}]$ (0.100 g, 0.124 mmol) in dichloromethane (40 **an3)** was added dropwise over *ca.* 10 min a solution of $Ph_2PNHP(O)Ph_2$ (0.100 g, 0.249 mmol) in dichloromethane (20 **an3).** After stirring for 5 min the solution was concentrated under reduced pressure to *ca.* 2 **an3** and addition of diethyl ether (50 cm3) afforded the product **4a** as a pale yellow solid. Yield 0.177 g, 89% [Found (Calc. for $C_{32}H_{32}Cl_2NOP_3Pt$): C, 47.75 (47.7); H, 3.6 (4.0); N, 1.55 (1.75)%]. Selected IR data (KBr): 3173 [v(N-H)], 1218 [ν (P=O)] and 320 cm⁻¹ [ν (Pt-Cl)].

cis- **[PtCl,(Ph,PNHP(O)Ph,-P)(PMe,Ph)] 4b.** To a dichloromethane solution (2 cm³) of trans- $[PtCl₂{Ph₂}PMHP(O)Ph₂ P$ }(PMe₂Ph)] (0.165 g, 0.205 mmol) was added solid Ph₂PNHP(O)Ph₂ (<0.005 g). After stirring for ca. 5 min, diethyl ether (15 cm^3) was added and the solid filtered off, washed with diethyl ether (5 cm^3) and dried in vacuo. Crude yield 0.157 g, 95% [Found (Calc. for $C_{32}H_{32}Cl_2NOP_3Pt$): C, 47.05 (47.7); H, 3.5 (4.0); N, 1.65 (1.75)%]. Selected IR data (KBr): 3119 [v(N-H)], 1221 [v(P=O)], 310 and 287 *cm'* [v(Pt-Cl)]. The product was frequently contaminated with cis- $[PtCl₂(PMe₂Ph)₂]$ (ca. 5%) which was readily identified by comparison of the $31P$ NMR spectral parameters with those of an authentic sample. Crystals of **4b** suitable for X-ray crystallography were grown over ca. 1 d by slow diffusion of diethyl ether into a CDC1, solution.

trans-[**PtCl{Ph,PNP(O)Ph,-P,O}(PMe,Ph)] 5a.** A suspension of trans-[PtCl₂{Ph₂PNHP(O)Ph₂-P}(PMe₂Ph)] (0.101 g, 0.125 mmol) in MeOH (1 cm^3) was treated with KOBu^t (0.020) **g,** 0.178 mmol). The suspension dissolved rapidly and the resultant yellow solution was stirred for ca. 5 min whereupon the solid product deposited. The solid was collected by suction filtration, washed with MeOH (2×0.5 cm³ portions) and dried in vacuo. Yield 0.060 g. An additional crop of **5a** was collected from the filtrate. Yield 0.026 g, overall yield 89% [Found (Calc. for $C_{32}H_{31}CINOP_3Pt$): C, 49.35 (49.95); H, 3.3 (4.05); N, 1.9 $(1.8)\%$]. Selected IR data (KBr): 316 cm⁻¹ [v(Pt-Cl)]. Crystals of **5a** suitable for X-ray crystallography were grown over ca. 5 d by slow diffusion of diethyl ether into a CDCl₃ solution.

cis-[PtCl{Ph,PNP(O)Ph,-P,O}(PMe,Ph)] 5b. To a suspension of cis - $[PtCl_2{Ph_2}PNHP(O)Ph_2-P{(PMe_2}Ph)]$ (0.100 g, 0.124 mmol) in MeOH (2 cm^3) was added KOBu^t (0.020 g, 0.178 mmol) and the white mixture stirred for 5 min. The product was filtered off by suction filtration and dried in vacuo. Yield 0.084 g, 88% [Found (Calc. for $C_{32}H_{31}CINOP_3Pt$): C, 49.4 (49.95); H, 3.65 (4.05); N, 1.8 (1.8)%]. Selected IR data (KBr): 292 cm⁻¹ [v(Pt-Cl)]. Slow diffusion of MeOH into a CDCl, solution of **5b** over the course of ca. 7 d gave crystals suitable for X-ray crystallography.

trans- **[PtCl{Ph,PNHP(O)Ph,-P, O}(PMe,Ph)]** [**BF,] 6a.** To a solution of *trans*- $[PtCl₂{Ph₂PNHP(O)Ph₂-P}(PMe₂Ph)]$ (0.080 g, 0.099 mmol) in $CH₂Cl₂$ (20 cm³) was added solid Ag[$BF₄$] (0.019 g, 0.098 mmol, ca. 1 equivalent). After stirring for 3 h the AgCl was filtered off through a small Celite plug, the solution concentrated by evaporation under reduced pressure to $ca. 1-2$ cm³ and diethyl ether (50 cm³) added. The yellow product was collected by suction filtration, washed with diethyl ether (10 cm³) and dried in vacuo. Yield 0.065 g, $76\frac{\cancel{6}}{6}$ [Found (Calc. for $C_{32}H_{32}BCIF_4NOP_3Pt$): C, 44.7 (44.85); H, 3.15 (3.75); N, 1.3 (1.65)%]. Selected IR data (KBr): 3145 [v(N-H)] and 321 cm^{-1} [v(Pt-Cl)].

cis-[PtCl{Ph,PNHP(O)Ph,-P,O}(PMe,Ph)] [**BF,] 6b.** A solution of cis -[PtCl₂{Ph₂PNHP(O)Ph₂-P}(PMe₂Ph)] (0.079 g, 0.098 mmol) in CH_2Cl_2 (20 cm³) was treated with solid $Ag[BF₄]$ (0.019 g, 0.098 mmol, 1 equivalent). After stirring for 2 h the AgCl was removed by filtration through a small Celite pad, the solution concentrated by evaporation under reduced pressure to ca. $1-2$ cm³ and diethyl ether (30 cm³) added. The white product was collected by suction filtration and dried in vacuo. Yield 0.055 g, 65% [Found (Calc. for $C_{32}H_{32}BCIF_{4}$ -NOP₃Pt): C, 44.65 (44.85); H, 3.15 (3.75); N, 1.5 (1.65)%].

Selected IR data (KBr): 3129 [v(N-H)] and 316 cm⁻¹ $[v(Pt-CI)].$

Alternatively, compound **6a** was obtained (31P NMR evidence) by addition of $HBF₄·OEt₂$ (two drops) to a CDCl₃ (0.5 cm^3) solution of *trans*-[PtCl{Ph₂PNP(O)Ph₂-P,O}(P-Me2Ph)] (0.020 g, 0.026 mmol). Compound **6b** was likewise prepared.

 $[$ {Pt(μ -OH){Ph₂PNP(O)Ph₂-P}(PMe₂Ph)}₂] 7. A suspension of **cis-[PtCl(Ph,PNP(O)Ph,-P,O)(PMe,Ph)]** (0.054 g, 0.0702 mmol) in wet MeOH (1 cm³) was treated with solid KOBu^t (0.01 2 g, 0.107 mmol). After stirring for *ca.* 16 h the product was filtered off, washed with MeOH and dried *in uacuo.* Yield **0.039 H,** 4.05 (4.3); N, 1.7 (1.85)%]. Slow diffusion of diethyl ether into **a** CDCl, solution of **7** over *ca.* 2 d gave crystals suitable for X-ray crystallography. **g,** 74% [Found (CalC. for C64H6,N2O4P6Pt2): c, 49.55 (51.2);

The NMR spectroscopic data for all the new complexes are compiled in Table 1.

X-Ray crystallography

The crystal structures of complexes **4b, 5a, 5b** and **7** were determined using a Rigaku AFC7S diffractometer with graphite-monochromated (Cu-K_{α}) radiation ($\lambda = 1.541$ 78 Å) and *o* scans. Details of the data collections and refinements are given in Table 2. Empirical absorption corrections (DIFABS) **22** were applied. The structures were solved by the heavy-atom method²³ and all of the non-hydrogen atoms refined anisotropically. The H on O(1) in compound **7** was Iocated from a ΔF map and allowed to refine isotropically with no distance restraint. All other H atoms were idealised and fixed (C, N-H 0.95 A). No additional constraints or restraints were applied. Refinement was by full-matrix least-squares methods. Calculations were performed using TEXSAN. **²⁴**

Atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc.,* Dalton *Trans.,* 1996, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/25 1.

Results and Discussion

Methanolysis of *cis-* [**PtCl,{Ph,PNHP(O)Ph,-P},]**

When a suspension of cis- $[PtCl_2{Ph_2}PNHP(O)Ph_2-P_2]$ is refluxed in methanol for ca. 11 h the white solid slowly dissolves affording a colourless solution from which the platinum (n) complex cis -[PtCl₂{Ph₂PNHP(O)Ph₂-P}(Ph₂POMe)] 1 was isolated in 70% yield. Mixed-ligand phosphine complexes of $platinum(n)$ and $palladium(n)$ have previously been documented.²⁵⁻²⁷ The ³¹P- ${^{1}H}$ NMR spectrum of 1 is particularly informative and shows a high-frequency resonance at $\delta(P)$ 80.4 [¹J(PtP) 4333 Hz], assigned to the co-ordinated Ph₂POMe, which is similar to $\delta(P)$ 85.6 [¹J(PtP) 4175 Hz] recorded for cis- $[PtCl_2(Ph_2POMe)_2]$ **2.**³ Likewise $\delta(P)$ 36.4 for the co-ordinated Ph,PNHP(O)Ph, in **1** is comparable to that observed for cis - $[Pic C_2{Ph_2}PNHP(O)Ph_2-P_2]$ (δ 35.7).³ In addition the 31P NMR spectrum of **1** is in good agreement with a mutual *cis* configuration of ligands, especially diagnostic **is** the small J(PP) value of 13.2 Hz, and is further supported by the IR spectrum (KBr) which clearly shows two v(Pt-Cl) stretches at 312 and 283 cm⁻¹. Upon work-up of the filtrate we have isolated two phosphorus(v)-containing compounds which have been identified as $Ph_2P(O)NH_2 I [\delta(P) 22.3]$ and $Ph_2P(O)OMe$ **II** $[\delta(P) 33.2]$. Compound **II** was independently synthesized by **H202** oxidation of Ph,POMe. The amine product **I** is as anticipated from methanolysis of the metal-co-ordinated Ph,P-N bond whereas **I1 is** presumably derived from cleavage

of the $Ph_2P(O)$ -N bond. We have not been able to identify any other platinum(π) species such as those containing a Ph₂PNH₂ ligand but related complexes $[Pt{Ph_2PN(Me)PPh_2}(Ph_2 \text{PNHMe}(\text{Ph}_2\text{POMe})^2$ ⁺ and $\text{[PdCl}_2\{\text{PhP}(\text{NHPr}^1)(\text{OC}_6\text{H}_3-\text{CO}_6\text{O})\}$ $Me₂-3.5$ }(Ph₂POMe)] are known.^{19,20} We have shown that 11 is not derived from dissociation of Ph,POMe in **¹** followed by oxidation. Under identical experimental conditions using **2** instead we were unable to detect any **I1** (31P NMR evidence).

In contrast when an oxygen-free methanol solution of free HL was refluxed for 10 h, then evaporated to dryness in *uacuo,* the $31P-\{1H\}$ NMR spectrum of the residue showed only trace amounts of **I** and **II** in addition to unreacted HL.

Further refluxing (5 **d)** a methanol solution of complex **1** affords insignificant amounts of 2 ($\lt 10\frac{9}{2}$), as a consequence of Ph,P-N bond cleavage of the second HL ligand, in addition to another platinum(n) species identified as cis -[PtCl{Ph₂- $PNP(O)Ph_2-P, O\{(Ph_2POMe)\}$ 3. Surprisingly the cleavage of this second Ph,P-N bond to give **2** is remarkably slow. More conveniently, **3** can be prepared in good yield (81%) by deprotonation of the amine proton in **1** with KOBu' (spectroscopic data in Table 1 and Experimental section).

Preliminary studies have shown that the corresponding palladium(II) compound $[PdCl_2{Ph_2PNHP(O)Ph_2-P}_{2}]$ undergoes similar chemistry in refluxing methanol although reduced reflux times *(ca.* 6 h) are required. Moreover we also observe the formation of palladium metal in addition to *cis-* $[PadCl₂(Ph₂POMe)₂]$, $Ph₂P(O)NH₂$, $Ph₂P(O)OMe$ and other uncharacterised products.

$Preparation of [PtCl₂{Ph₂PNHP(O)Ph₂-P}(PMe₂Ph)]$ **complexes**

Whilst the synthesis of the mixed-ligand complex **1** discussed above represents a rather unusual reaction we sought a more general route to complexes of the type $[PtCl₂(HL)(PR₃)]$. We found that bridge cleavage of the platinum dimer $[\text{PtCl}(\mu Cl(PMe₂Ph)₂$] with HL in dichloromethane affords the yellow unsymmetrical complex *trans*-[PtCl₂(HL)(PMe₂Ph)] **4a.** Isomerisation upon addition of a small amount of HL to a CH_2Cl_2 solution of **4a** gives cis- $[PtCl_2(HL)(PMe_2Ph)]$ **4b** (Scheme l), whereas in the absence of added HL no isomerisation was observed even after allowing a $CDCl₃$ solution to stand for over 1 month at ambient temperature. The 31P-('H) NMR spectrum of **4a** is particularly informative and reveals a large phosphorus-phosphorus coupling constant indicative of a structure with a mutual *trans* arrangement of monodentate phosphine ligands. Furthermore the chemical shifts of the pendant P=O groups in $4a [\delta(P) 21.6]$ and $4b [\delta(P)$ 22.2] are similar to those observed in free HL $\left[\delta(P) \right]$ 21.4]³ indicating no interaction of the phosphoryl moiety with the platinum centre. This is also reflected from both ambient (298 K) and low-temperature (213 K) ³¹P NMR spectra (CD₂Cl₂) of **4a** and **4b** which showed sharp resonances with no significant change in line shape. Suitable crystals of complex **4b** were grown by slow diffusion of diethyl ether into a CDCl, solution and the molecular structure is shown in Fig. 1 (Table **3).** The crystal structure reveals square-planar co-ordination of the platinum [maximum deviation from the Pt-Cl(1)-Cl(2)- $P(2)$ - $P(3)$ mean plane 0.10 Å for Cl(1)] with the P-N-P backbone of Ph₂PNHP(O)Ph₂ being inclined by 28° to the coordination plane. The P-N-P angle in the ligand is $134.2(3)^\circ$ and the P(1)-N and P(2)-N distances are 1.661(4) and 1.684(5) Å respectively. There is an intramolecular hydrogen bond between Cl(2) and H(1) (Cl \cdots H 2.14 Å). This type of hydrogen bond was also observed in the rhodium(1) complex [RhCl- $(cod){Ph₂PNHP(O)Ph₂-P}$] (cod = cycloocta-1,5-diene) and the platinum(II) complex *cis*-[PtBr₂{Ph₂PNHP(O)Ph₂-P}₂].^{1,3} In common with previous structures the NH proton is *anti* with

Table 2 Details of the X-ray data collections and refinements for compounds **4b, 5a, 5b** and **7**

respect to the P=O oxygen atom in the co-ordination complex. **¹⁷³³⁴**

Preparation of [**PtCl{Ph,PNP(O)Ph,-P,O}(PMe,Ph)] and** [**PtCI{Ph,PNHP(O)Ph,-P, O}(PMe,Ph)]** [**RF,,] complexes**

Since the amine proton in complex **4a** or **4b** is acidic, treatment with KOBu' in methanol affords the five-membered chelate complexes $[PtCl{Ph_2PNP(O)Ph_2-P, O}(PMe_2Ph)]$ 5a (P *trans* to P) and **5b** (P *cis* to P) respectively (Scheme 1). Alternatively dechlorination of **4a** or **4b** with Ag[BF₄] (1 equivalent) in CH_2Cl_2 gave the cationic complexes $[PtCl\{Ph_2PMHP(O)Ph_2-H_1HPO\}$ P, O }(PMe₂Ph)][BF₄] **6a** *(trans)* and **6b** *(cis)* (Scheme 1). Deprotonation of the amine proton in either **6a** or *6b* with NEt,

Table 4 Selected bond lengths (A) and angles (") for complexes **5a** and **5b**

(in CDCl,) gave exclusively **5a** or **5b** respectively, whilst in separate experiments protonation of 5a or 5b with HBF₄.OEt₂ afforded **6a** or **6b**. In the complexes 5a-6b retention of configuration was retained as indicated by **31P-(1H)** NMR spectroscopy (Table 1). The high-frequency shift of the P=O

Scheme 1 *(i)* HL, CH₂Cl₂; *(ii)* **KOBu', MeOH**; *(iii)* **Ag[BF₄]**, CH₂Cl₂

Fig. 1 Crystal structure of cis- $[PtCl_2{Ph_2PMHP(O)Ph_2-P}(PMe_2Ph)]$ **4b**

group upon chelation is probably due to the chelate-ring effect. The crystal structures of **5a** and 5b allow the stereochemistry to be determined unequivocally. Thus **5a** contains *trans* P atoms (Fig. 2 and Table 4) whilst **5c** is *cis* (Fig. **3** and Table 4). Both **5a** and 5b are square planar at platinum [maximum deviations from Pt-Cl-P(2)-O-P(3) mean plane 0.12 (O) and 0.06 Å (Cl) for **5a** and 5b respectively]. The five-membered rings in both structures are slightly puckered with 0 lying 0.23 **8,** below the Pt-P(2)-N-P(1)-O mean plane in 5a and N lying 0.28 Å

Fig. **2** Crystal structure of **trans-[PtCl(Ph,PNP(O)Ph,-P,O}(P-**Me,Ph)] **5a**

Fig. 3 Crystal structure of *cis*-[PtCl{Ph₂PNP(O)Ph₂-P,O}(PMe₂Ph)] **5b** (solvent molecule omitted for clarity)

above the mean plane in **5b.** The P-N bond lengths are significantly different, P(1)-N [1.599(5) and 1.591(6) **8,** for **5a** and $5b$] being shorter than P(2)-N [1.637(5) and 1.620(6) Å for **5a** and 5b) in both structures though both bonds are shorter than in free HL [1.651(3) and 1.707(3) Å respectively] and in 4b [1.661(4) and 1.684(5) A respectively]. **As** would be expected the differences in *trans* ligand affect all of the metal donor-atom bond lengths. In **5a** both Pt-P bonds are significantly longer than those in **5b** since the P atoms are *trans* to each other in **5a.** Furthermore the Pt-C1 and Pt-O bonds in **5b** are longer than in **5a** $[Pt-Cl 2.289(2)$ and $2.361(2)$ and $Pt-O 2.038(4)$ and $2.098(5)$ A respectively].

Reaction of *cis-[* **PtCI{Ph,PNP(O)Ph,-P,O}(PMe,Ph)] with KOBu'**

When a suspension of complex 5b in wet *(ie.* undried) methanol was treated with **KOBu'** *(ca.* 1.5 equivalents) and stirred for 16 h at ambient temperature a new white solid **7** was isolated. In the

Fig. 4 The ³¹P- 1H NMR spectrum (36.2 MHz) of $[{Pt}(\mu-$ **OH){Ph,PNP(O)Ph,-P}(PMe,Ph))** *2]* 7

Fig. 5 Crystal structure of $[\{Pt(\mu\text{-}OH)\{Ph_2\text{-}PNP(O)Ph_2\text{-}P\}(P-\text{-}OH)$ $Me₂Ph$ $\$ ₂]7

analogous reaction using **5a** only unchanged starting material was recovered even after stirring for 62 h. The $^{31}P\text{-} {^{1}H}$ NMR spectrum of **7** (Fig. **4)** revealed a single species in which there are clearly three phosphorus environments. The phosphoryl group at $\delta(P)$ 21.0 suggests that the $\lceil Ph, PNP(O)Ph, \rceil$ ligand is bound exclusively through the P donor atom. Although the exact structure could not be ascertained from the NMR spectrum alone the crystal structure of 7 reveals a binuclear compound with hydroxide bridges (Fig. 5 and Table *5).* Complex 7 represents a rare example of a crystallographically characterised hydroxoplatinum dimer containing phosphine ligands.²⁸⁻³² The Pt(1)-O(1) bond length is 2.096($\overline{7}$) Å and the Pt(1)-O(1)-Pt(1*) angle is 99.8(3)°, whilst the Pt(1) \cdots Pt(1*)

Fig. 6 Core geometry in $[\{Pt(\mu\text{-}OH)\{Ph_2PNP(O)Ph_2\text{-}P\}(PMe_2Ph)\}_2]$ 7

and $O(1) \cdots O(1^*)$ distances are 3.21 and 2.70 Å respectively. Interestingly the $Ph_2PNP(O)Ph_2$ ligand adopts a significantly different conformation in 7 with the $P(1)-N(1)-P(2)-O(2)$ atoms forming a planar fragment which is hydrogen bonded 170°, Fig. 6] to form a pseudo-seven-membered ring contained in a bispirocyclic system. Ellermann and co-workers' found that the cobalt(I)-co-ordinated $[Ph_2PNP(O)Ph_2]$ ⁻ anion is stabilised by the formation of an intermolecular hydrogen bond to a methanol solvate molecule. The P-N bond lengths show a similar alternation to those in **5a** and **5b** and are appropriate for a monodeprotonated ligand. $[H(1) \cdots O(2) 1.76, O(1) \cdots O(2) 2.73 \text{ Å}, O(1) - H(1) \cdots O(2)$

We have shown that refluxing a methanol solution of *cis-* $[PtCl₂(HL)₂]$ results in Ph₂P-N bond cleavage of one coordinated HL ligand to give *cis*-[PtCl₂(HL)(Ph₂POMe)]. Furthermore a well established procedure has been used here to prepare trans- $[PtCl₂(HL)(PMe₂Ph)]$ suggesting that other trans- $[PLC1₂(HL)(PR₃)]$ complexes should be attainable by this route. New examples of five-membered Pt-P-N-P-O platinacycles incorporating neutral or anionic *P,O* chelating ligands have also been synthesized. The $[Ph_2PNP(O)Ph_2-P]$ ⁻ anion can be stabilised on a platinum(n) centre by intramolecular hydrogen bonding.

Acknowledgements

We are grateful to the EPSRC for support and to Johnson Matthey plc for loans of precious metals.

References

- ¹**A.** M. Z. Slawin, M. B. Smith and **J.** D. Woollins, J. *Chem.* **SOC.,** *Dalton Trans.,* 1996, 1283.
- 2 **A.** M. Z. Slawin, M. B. Smith and J. D. Woollins, *Polyhedron,* 1996, 15, 1579.
- 3 P. Bhattacharyya, **A.** M. Z. Slawin, M. B. Smith and J. D. Woollins, *Znorg. Chem.,* 1996,35,3765.
- **4** M. Paul and H. Schmidbaur, *Chem. Ber.,* 1996,129,77.
- *⁵*D. Pohl, J. Ellermann, F. **A.** Knoch and M. Moll, J. *Organomet. Chem.,* 1995,495, C6.
- 6 *R.* Rossi, L. Marvelli, **A.** Marchi, L. Magon, V. Bertolasi and V. Ferretti, J. *Chem.* **SOC.,** *Dalton Trans.,* 1994, 339.
- 7 T. C. Blagborough, R. Davis and P. Ivison, J. *Organomet. Chem.,* 1994,467, 85.
- 8 R. Rossi, **A.** Marchi, L. Marvelli, L. Magon, M. Peruzzini, U. Casellato and R. Graziani, *Inorg. Chim. Acta*, 1993, 204, 63.
- 9 K. V. Katti and C. L. Barnes, *Znorg. Chem.,* 1992,31,4231.
- 10 **X.** L. R. Fontaine, E. H. Fowles, T. P. Layzell, B. L. Shaw and M. Thornton-Pett, *J. Chem.* **SOC.,** *Dalton Trans.,* 1991, 1519.
- 11 N. **A.** Bondarenko, M. V. Rudomino and E. N. Tsevkov, *Synthesis,* 1991,125.
- 12 G. **A.** Carriedo, M. L. Rodriguez, S. Garcia-Granda and A. Aguirre, *Znorg. Chim. Acta,* **1990,178, 101.**
- **13** D. J. Darensbourg, D. J. Zalewski, C. Plepys and C. Campana, *Znorg. Chem.,* **1987,26,3727.**
- **14** R. W. Wegman, A. G. Abatjoglou and A. M. Harrison, *J. Chem. Soc., Chem. Commun.,* **1987, 1891.**
- **¹⁵***S.* J. Higgins, R. Taylor and B. L. Shaw, J. *Organomet. Chem.,* **1987, 325, 285.**
- **¹⁶**D. E. Berry, J. Browning, K. R. Dixon and R. W. Hilts, *Can.* J. *Chem.,* **1988,66, 1272.**
- **17** Q.-B. Bao, **S.** J. Landon, A. L. Rheingold, T. M. Haller and T. B. Brill, *Znorg. Chem.,* **1985,24,900.**
- **18 A.** A. Frew, R. H. Hill, L. Manojlovic-Muir and R. J. Puddephatt, *J. Chem. Soc., Chem. Commun.,* **1982,198.**
- **¹⁹**C. S. BrowningandD. H. Farrar, J. *Chem. Soc., Dalton Trans.,* **1995, 2005** and refs. therein.
- **20** R. P. Kamalesh Babu, S. S. Krishnamurthy and M. Nethaji, *Polyhedron,* **1996,15,2689.**
- 21 W. Baratta and P. S. Pregosin, *Inorg. Chim. Acta*, 1993, 209, 85.
- **22** DIFABS, N. G. Walker and D. Stuart, *Acta Crystallogr., Sect. A,* **1983,39, 158.**
- **23** DIRDIF **92-PATTY, P.** T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, S. Garcia-Granda, R. 0. Gould, J. M. M. Smits and C. Smykalla, The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, **1992.**
- **24** TEXSAN, Crystal Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, **1985** and **1992.**
- **25** J. A. Rahn, M. S. Holt and J. H. Nelson, *Polyhedron,* **1989,8, 897.**
- 26 A. W. Verstuyft, D. A. Redfield, L. W. Cary and J. H. Nelson, *Inorg. Chem.,* **1976,15, 1128.**
- **27** A. W. Verstuyft and J. H. Nelson, *Synth. React. Inorg. Metal-Org. Chem.,* **1975,5,69.**
- 28 B. Longato, G. Pilloni, G. Valle and B. Corain, *Inorg. Chem.*, 1988, **27, 956.**
- 29 J. J. Li and P. R. Sharp, *Inorg. Chem.*, 1994, 33, 183.
- **30** G. Trovo, G. Bandoli, U. Casellato, B. Corain, M. Nicolini and B. Longato, *Znorg. Chem.,* **1990,29,4616.**
- **31** T. Yoshida, **S.** Tanaka, T. Adachi, T. Yoshida, K. Onitsuka and K. Sonogashira, *Angew. Chem., Znt. Ed. Engl.,* **1995,34,319.**
- **³²**G. W. Bushnell, *Can.* J. *Chem.,* **1978,56,1773.**

Received 2nd July **1996;** *Paper* **6/04630D**