New monocyclopentadienyl complexes of Group 4 and 5 metals with chelating nitrogen ligands. Crystal and molecular structures of  $[Zr(\eta^3-C_3H_5)(\eta^4-Ph_2N_2C_2Me_2-2,3)Cp'']$  and  $[TaCl_2\{\eta^4-C_6H_4(NSiMe_3-1,2)_2\}Cp'']$   $[Cp'' = C_5H_3(SiMe_3)_2-1,3]$ <sup>†</sup>

### Gerardo Jiménez Pindado, Mark Thornton-Pett and Manfred Bochmann\*

School of Chemistry, University of Leeds, Leeds, UK LS2 9JT

Reduction of  $[MCl_3Cp'']$   $[M = Zr \text{ or } Hf; Cp'' = C_5H_3(SiMe_3)_2-1,3]$  with magnesium in the presence of 1,4-diphenyl-2,3-dimethyl-1,4-diazabuta-1,3-diene (DAD) gave the diazadiene complexes [MCl(DAD)Cp''] in high yield. Alkylation with RMgCl affords the alkyls [MR(DAD)Cp'']  $(R = CH_3 \text{ or } CH_2Ph)$  and the more stable allyl complexes  $[M(\eta^3-C_3H_5)(DAD)Cp'']$  as yellow to light brown solids. The reaction of  $\text{Li}_2[C_6H_4(NSiMe_3)_2-1,2]$  with  $[MCl_4Cp'']$  leads to the bis(amido) complexes  $[MCl\{C_6H_4(NSiMe_3)_2-1,2\}Cp'']$ , while the analogous reaction with  $[MCl_4Cp'']$  (M = Nb or Ta) generates the red to red-brown niobium and tantalum half-sandwich compounds  $[MCl_2\{C_6H_4(NSiMe_3)_2-1,2\}Cp'']$ . The crystal structures of two representative examples,  $[Zr(\eta^3-C_3H_5)(DAD)Cp'']$  and  $[TaCl_2\{C_6H_4(NSiMe_3)_2-1,2\}Cp'']$ , are reported.

Mono- and bis-cyclopentadienyl complexes of early transition metals are now well established as important classes of olefin polymerisation catalysts.<sup>1</sup> However, although many systems are highly active and widely studied, the precise reasons why certain ligands and ligand combinations should be particularly appropriate for the design of effective catalysts remain obscure. Ligands incorporating nitrogen donors are attracting increasing interest in this context, such as the well known 'constrained geometry' complexes of the type {Me<sub>2</sub>Si(Cp)(NR)}MX<sub>2</sub>.<sup>2</sup> Mono- and poly-dentate amido complexes without Cp ligands have also been reported to lead to catalytically active species.<sup>3</sup> As part of our interest in structure-reactivity relationships in soluble polymerisation catalysts we have recently reported the synthesis of a series of butadiene complexes [M(allyl)(L)Cp] (L = 1,3-diene) which act as sources for catalytically active 14electron  $[M(allyl)_2Cp]^+$  cations.<sup>4</sup> We report here the synthesis of related complexes with L = dianionic nitrogen chelates and the extension of this chemistry to some Group 5 complexes.

# **Results and Discussion**

The treatment of  $[MCl_3Cp'']$  with 1,4-diphenyl-2,3-dimethyl-1,4-diazabuta-1,3-diene (DAD) in diethyl ether in the presence of magnesium turnings leads to the formation of the corresponding half-sandwich complexes [MCl(DAD)Cp''] **1a** (M = Zr) and **1b** (M = Hf), respectively, both of which are pale yellow solids in high yields (Scheme 1).<sup>5</sup> Throughout this study the C<sub>5</sub>H<sub>3</sub>(SiMe<sub>3</sub>)<sub>2</sub>-1,3 (Cp'') ligand was employed which is comparable in bulk and electronic characteristics to C<sub>5</sub>Me<sub>5</sub> (Cp\*) but more flexible in the rotational conformers it is able to adopt and often imparts subtly different reactivity patterns.<sup>4a,6</sup>

Alkylation of **1a** and **1b** with Grignard reagents affords the alkyl derivatives [MR(DAD)Cp"] (**2**, R = Me; **3**, R = CH<sub>2</sub>Ph; **a**, M = Zr; **b**, M = Hf) as pale yellow to light brown solids. These compounds are thermally significantly more stable than the related 14-electron 1,3-diene complexes [MR(diene)Cp"]<sup>4a,6</sup> and can be stored at room temperature without noticeable decomposition. The  $\eta^3$ -allyl complexes [M( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)(DAD)Cp"] **4a** (M = Zr) and **4b** (M = Hf) are similarly prepared using allyl-magnesium chloride. All these compounds are highly soluble in common hydrocarbon solvents.



. PAPEH

Scheme 1 (*i*) [MCl<sub>3</sub>Cp'']; (*ii*) 2 Mg, Et<sub>2</sub>O, -78 °C to room temperature; (*iii*) RMgCl, Et<sub>2</sub>O

Phenylenediamide complexes were obtained by the dropwise addition of  $\text{Li}_2[\text{C}_6\text{H}_4(\text{NSiMe}_3)_2-1,2]$  to solutions of  $[\text{MCl}_3\text{Cp''}]$ in diethyl ether (Scheme 2). The reaction proceeds through a very dark green intermediate to give finally orange solutions of the bis(amido) complexes  $[\text{MCl}_6\text{H}_4(\text{NSiMe}_3)_2\text{Cp''}]$  **5a** (M = Zr) and **5b** (M = Hf) which are isolated as a green solid and a dark orange oil, respectively. In a similar manner Group 5 compounds were prepared from  $\text{Li}_2[\text{C}_6\text{H}_4(\text{NSiMe}_3)_2-1,2]$  and  $[\text{MCl}_4\text{Cp''}]$  to give the complexes  $[\text{MCl}_2{\text{C}_6\text{H}_4(\text{NSiMe}_3)_2}\text{Cp''}]$ **6a** (M = Nb) and **6b** (M = Ta) as red to red-brown crystalline

<sup>†</sup> Dedicated to Professor Pascual Royo on the occasion of his 60th birthday.

 Table 1
 Spectroscopic data for diazadiene and di(amide) complexes\*

| $ \begin{split} \hline \mathbf{s} & \mathbf{Assignment} & \mathbf{\delta} & \mathbf{Assignment} \\ \mathbf{s} & \mathbf{t} $ |                                            | <sup>1</sup> H NMR                          |                                                   | <sup>13</sup> C NMR                                                                |                                                   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|--|--|
| ia [ZzCI[DAD]C[P]       0.00 (s, 18 H)       SiMe <sub>2</sub> -0.22 (a, J=112.3)       SiMe <sub>2</sub> is [ZzCI[DAD]C[P]       0.00 (s, 11, J = 7.3) <i>p</i> PhN       110.25 (m)       -CMe         is [ZzCI[DAD]C[P]       0.63 (c, 11, J = 7.3) <i>p</i> PhN       112.02 (J = 16.0)       C <sup>4</sup> of C <sub>4</sub> H <sub>1</sub> is [LifCl(DAD]C[P]       0.66 (s, 18 H)       SiMe <sub>2</sub> C <sup>4</sup> of C <sub>4</sub> H <sub>1</sub> 123.01 (d, J = 160)       C <sup>4</sup> of C <sub>4</sub> H <sub>1</sub> is [LifCl(DAD]C[P]       0.06 (s, 18 H)       SiMe <sub>1</sub> -0.24 (d, J = 193)       O <sup>4</sup> of C <sub>4</sub> H <sub>1</sub> is [LifCl(DAD]C[P]       0.06 (s, 18 H)       SiMe <sub>1</sub> -0.24 (d, J = 194)       SiMe <sub>5</sub> is [LifCl(DAD]C[P]       0.06 (s, 18 H)       SiMe <sub>1</sub> -0.24 (d, J = 194)       SiMe <sub>5</sub> is [LifCl(DAD]C[P]       0.06 (s, 18 H)       SiMe <sub>1</sub> -0.24 (d, J = 194)       SiMe <sub>5</sub> is [LifCl(DAD]C[P]       0.06 (s, 18 H)       SiMe <sub>1</sub> -11.04 (m)       mo <sup>2</sup> HN         is [LifCl(DAD]C[P]       -0.56 (s, 3 H)       C <sup>4</sup> of C <sub>4</sub> H <sub>1</sub> 12.11 (d, J = 10, m)       C <sup>4</sup> of C <sub>4</sub> H <sub>1</sub> is [LifCl(DAD]C[P]       -0.56 (s, 3 H)       C <sup>4</sup> of C <sub>4</sub> H <sub>1</sub> 12.11 (d, J = 10, m)       C <sup>4</sup> of C <sub>4</sub> H <sub>1</sub> is [LifCl(DAD]C[P]       -0.56 (s, 3 H)       SiMe <sub>1</sub> 10.10 (d, J = 167.3)       C <sup>4</sup> of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | δ                                           | Assignment                                        | δ                                                                                  | Assignment                                        |  |  |
| $ \left[ HCt(DAD)Cp^{-1} \\ 187 (s, 611) \\ 6.96 (t, 11, J - 7.3) \\ 7.05 (t, 211, J - 7.3) \\ 7.05 (t,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1a [ZrCl(DAD)Cp"]                          | 0.06 (s, 18 H)                              | SiMe <sub>3</sub>                                 | -0.22 (q, $J = 119.3$ )                                                            | SiMe <sub>3</sub>                                 |  |  |
| $ \begin{array}{c} 6.96 (i, 11, J-7, 3) \\ 7.06 (i, 2, H, J-7, 3) \\ 7.09 (i, 2, H, J-7, 3) \\ 7.09 (i, 2, H, J-7, 3) \\ 7.09 (i, 2, H, J-7, 3) \\ 7.3 (i, 111, J-1, 9) \\ 7.3 (i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | 1.87 (s, 6 H)                               | =CMe                                              | 15.92 (q, J = 128.0)                                                               | =CMe                                              |  |  |
| $ 2a [ZfMc(DAD)Cp^{*}] = 0.45 (a, 2H, J=7.3) C^{*} G^{*} G^{*} G^{*} H_{1} = 12.0 (a, J=169.3) C^{*} G^{*} G^{*} H_{1} = 7.2 (c, 2H, J=7.3) C^{*} G^{*} G^{*} H_{1} = 12.3 (a, J=165.5) m PhN = 7.5 (c, H_{1} = 7.5 (c, H_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            | 6.96 (t, 1 H, J = 7.3)                      | <i>p</i> -PhN                                     | 116.25 (m)                                                                         | =CMe                                              |  |  |
| $ \begin{array}{c} 1,09 (a, 2, H, j = 13) \\ 7,25 (1, 2, H, j = 1, 3) \\ 7,35 (1, 1H, J = 1, 9) \\ 7,25 (1, 2H, j = 1, 3) \\ 7,35 (1, 1H, J = 1, 9) \\ 7,35 (1, 2H, J = 1, 9) \\ 7,3 (1, 2H, J = 1, 9) \\ 7,3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 7.05 (d, 2 H, J = 7.3)                      | <i>m</i> -PhN                                     | 121.92 (d, J = 169.3)                                                              | $C^2$ of $C_5H_3$                                 |  |  |
| $ \begin{bmatrix} 1/2 (1; 1; 1, j = 1.3) \\ 7.5 (1; 11; j = 1.3) \\ 7.5 (1; 21; j = 1.3) \\ 7.5 (1; 41; j =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            | 7.09 (d, 2 H, J = 1.9)                      | $C^{4,3}$ of $C_5H_3$                             | 122.01 (d, J = 169)                                                                | C <sup>4.3</sup> of C <sub>5</sub> H <sub>3</sub> |  |  |
| $2a [ZrMs(DAD)Cp^{-1}] = 0.65 (s, 18 H) = C = 0. C + H, = 1.59 + S (s, 17 + 10.53) = 0.75 H, = 1.50 + H, = 1.50 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            | 7.22 (t, 2 H, $J = 7.3$ )                   | O-PhN                                             | 123.83 (d, J = 156.5)<br>124.45 (d. J. 158.2)                                      | p-PhN $m$ PhN                                     |  |  |
| $\begin{split} b \left[ HfCl(DAD)Cp^{-1} \\ b \left[ HfCl(DAD)Cp^{-1} \\ b \left[ 36 \left( \varsigma, H \right) + G \left( F, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | 7.55(1, 1 H, J = 1.9)                       | $C$ of $C_5 \Pi_3$                                | 124.43 (d, J = 158.3)<br>129 25 (d, $J = 159$ )                                    | n-PillN<br>o-PhN                                  |  |  |
| $ \begin{split} \text{IB} [\text{HCI}(\text{DAD}(\mathbb{C}p^{-}] & 0.6 \text{ (s, 18 H)} & \text{SiNk}, \\ 1.36 (s, 64 H) & -C.Me & 15.66 (a, 1=12.7) & -C.Me & -C.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                             |                                                   | 129.25 (d, $9 = 139$ )<br>130.84 (m)                                               | $C^{1,3}$ of C.H.                                 |  |  |
| Ib [HICl(DAD)Cp <sup>-1</sup> 0.06 (s. 18 H)         SiMe <sub>2</sub> -0.24 (s. j1.19.7.)         SiMe <sub>3</sub> 1.86 (s. 61)         -CMe         15.6 (d. j1.27.7.)         -CMe         -CMe           0.96 (c. 11 H, J - 7.2.)         -PhN         115.6 (d. j1.27.7.)         -CMe           7.01 (d. 21 H, J - 7.2.)         m-PhN         121.1 (d. J - 168.9.)         C <sup>-1</sup> of C <sub>4</sub> H <sub>1</sub> 7.25 (c. 21 H, J - 7.2.)         m-PhN         121.34 (d. J - 157.9.)         m-PhN           7.25 (c. 11 H, J - 7.2.)         m-PhN         124.34 (d. J - 157.9.)         m-PhN           122.91 (m)         C <sup>-1</sup> of C <sub>4</sub> H <sub>1</sub> 123.93 (d. J - 158.1.)         m-PhN           129.51 (m)         C <sup>-1</sup> of C <sub>4</sub> H <sub>1</sub> 123.93 (d. J - 158.1.)         m <sup>-PhN</sup> 129.51 (m)         -0.46 (s. 31 H)         SiMe <sub>5</sub> -0.25 (s. 7.2.)         m <sup>PhN</sup> 129.51 (m)         -0.56 (s. 31 H)         -CMe         2.2.1 (d. J - 16.3.)         C <sup>-1</sup> of C <sub>4</sub> H <sub>1</sub> 0.96 (s. 31 H)         -CMe         2.2.1 (d. J - 16.3.)         m <sup>PhN</sup> 129.04 (d. J - 157.3.)         C <sup>-1</sup> of C <sub>4</sub> H <sub>1</sub> 0.7.80 (d. 11 H, J - 1.9)         C <sup>-1</sup> of C <sub>4</sub> H <sub>1</sub> 123.10 (d. J - 163.9.)         m <sup>PhN</sup> 129.49 (m)         m <sup>PhN</sup> 129.49 (m)         2.2.6 (J - 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                             |                                                   | 150.84 (m)                                                                         | ipso-PhN                                          |  |  |
| $ \begin{array}{cccc} 1.86 (c, 6H) & -CMe & 15.66 (m) & -CMe &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1b [HfCl(DAD)Cp"]                          | 0.06 (s, 18 H)                              | SiMe <sub>3</sub>                                 | -0.24 (q, $J = 119.4$ )                                                            | SiMe <sub>3</sub>                                 |  |  |
| $ \left[ \mu (Me(DAD)Cp^{-1}) = 0.61 (e, 1 H, J = 7.2)  7.0 (d, 2 H, J = 7.2)  7.3 (c, 1 H, J = 7.2)  7.5 (c, 3 H)  7.6 (d, 2 H, J = 7.2)  7.0 (d, 2 H, J = 7.3)  7.0 (d, 2 H, J = 7.3)  7.0 (d, 2 H, J = 7.3)  7.0 (d, 4 H, J = 7.3)  7.0 (d, 4 H, J = 7.3)  7.0 (d, 4 H, J = 7.3)  7.2 (c, 4 H, J = 7.5)  7.2 (c, 4 H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | 1.86 (s, 6 H)                               | =CMe                                              | 15.66 (q, J = 127.7)                                                               | =CMe                                              |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 6.96 (t, 1 H, J = 7.2)                      | <i>p</i> -PhN                                     | 115.63 (m)                                                                         | =CMe                                              |  |  |
| $ \begin{array}{c} 7.05 (4, 2 \text{ H}, J=7.2) & m-PhN & 121.16 (d, J=16.9) & C^{+} of C_{4} \text{H}, \\ 7.25 (t, 2 \text{ H}, J=7.2) & C^{+} \text{PhN} & 123.43 (d, J=157.9) & m-PhN \\ 7.25 (t, 2 \text{ H}, J=7.2) & C^{+} of C_{4} \text{H}, \\ 128.98 (d, J=158.1) & C^{+} \text{O} \text{PhN} \\ 129.51 (m) & C^{+} \text{O} \text{O} \text{C} \text{H}, \\ 129.51 (m) & C^{+} \text{O} \text{O} \text{C} \text{H}, \\ 129.51 (m) & C^{+} \text{O} \text{O} \text{C} \text{H}, \\ 129.51 (m) & C^{+} \text{O} \text{O} \text{C} \text{H}, \\ 129.51 (m) & C^{+} \text{O} \text{O} \text{C} \text{H}, \\ 150.74 (m) & 0.04 (s, 18 \text{ H}) & SiMe_1 & 0.012 (s, J=112.7) & -CMe \\ 0.04 (s, 18 \text{ H}) & SiMe_1 & 0.012 (s, J=113.9) & C^{-} \text{O} \text{O} \text{C} \text{C} \text{H}, \\ 13.7 (s, 6 \text{ H}) & -CMe & 22.71 (s, J=163.9) & C^{+} \text{O} \text{C} \text{C} \text{H}, \\ 7.06 (t, 2 \text{ H}, J=7.3) & C^{+} \text{O} \text{C} \text{C} \text{H}, \\ 120.50 (t, 2 \text{ H}, J=7.3) & C^{+} \text{O} \text{C} \text{C} \text{H}, \\ 120.50 (t, 2 \text{ H}, J=7.3) & C^{+} \text{O} \text{C} \text{C} \text{H}, \\ 120.90 (t, 2 \text{ H}, J=7.3) & PhN \\ 120.20 (t, 0, J=158.9) & m-PhN \\ 122.90 (t, 0, J=158.9) & m-PhN \\ 129.49 (m) & C^{+} \text{O} \text{C} \text{C} \text{H}, \\ 150.83 (m) & ipo-PhN \\ 129.49 (m) & C^{+} \text{O} \text{C} \text{C} \text{H}, \\ 150.83 (m) & ipo-PhN \\ 129.49 (m) & C^{+} \text{O} \text{C} \text{C} \text{H}, \\ 150.83 (m) & ipo-PhN \\ 129.49 (m) & C^{+} \text{O} \text{C} \text{C} \text{H}, \\ 150.83 (m) & ipo-PhN \\ 129.49 (m) & C^{+} \text{O} \text{C} \text{C} \text{H}, \\ 150.83 (m) & ipo-PhN \\ 129.49 (m) & C^{+} \text{O} \text{C} \text{H}, \\ 6.95 (t, 2 \text{ H}, J=7.3) & n-PhN \\ 120.40 (t, J=157.7) & m-PhN \\ 120.41 (t, 4 \text{ H}, J=7.5) & n-PhN \\ 122.65 (t, J=112.7) & \text{H}^{+} \text{M}e \\ 6.95 (t, 2 \text{ H}, J=7.3) & n-PhN \\ 122.65 (t, J=157.7) & m-PhN \\ 128.83 (m) & C^{+} \text{O} \text{C} \text{C} \text{H}, \\ 153.98 (m) & C^{+} \text{O} \text{C} \text{C}, \text{H}, \\ 128.98 (t, J=160.9) & C^{+} \text{O} \text{C}, \text{H}, \\ 128.98 (t, J=157.7) & m-PhN \\ 122.58 (t, J=157.7) & m-PhN \\ 122.58 (t, J=150.7) & m-PhN \\ 123.6 (t, J=157.7) & m-PhN \\ 123.83 (t, J=150.83 (m) & m-PhN \\ 123.83 ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | 7.0 (d, 2 H, $J = 1.9$ )                    | C <sup>4,5</sup> of C <sub>5</sub> H <sub>3</sub> | 121.1 (d, <i>J</i> = 170)                                                          | $C^{4,5}$ of $C_5H_3$                             |  |  |
| $ 2a [ZrMe(DAD)Cp^{-1} \\ 7.32 (t, 1 H, J = 1.3) \\ 7.32 (t, 2 H, J = 1.3) \\ 7.32 (t, 4 H, J = 1.3) \\ 7.3 (t, 6 H) \\ 7.3 (t, 6 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            | 7.05 (d, 2 H, J = 7.2)                      | <i>m</i> -PhN                                     | 121.16 (d, J = 168.9)                                                              | $C^2$ of $C_5H_3$                                 |  |  |
| $ 2a [ZrMe(DAD)Cp^{T}] = -0.56 (s, 3 H) C^{-0.7} C_{H}, 123.83 (a, J = 15.1) P^{-0.7} N C^{-0.7} C_{H}, 123.83 (a, J = 15.1) C^{-0.7} N C_{H}, 123.51 (m) C^{-0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            | 7.25 (t, 2 H, J = 7.2)                      | o-PhN<br>$C^2$ of C II                            | 123.43 (d, J = 157.9)                                                              | p-PhN                                             |  |  |
| $ 2a [ZrMc(DAD)Cp^{T}] = -0.56 (s, 3 H) Zr-Mc = 102.01 (u, J = 103.01) C^{11} dr C_{2}H, gov PhN = 103.01 (u, J = 103.01) C^{11} dr C_{2}H, gov PhN = 103.01 (u, J = 113.01) C^{11} dr C_{2}H, gov PhN = 0.01 (u, J = 113.01) Zr-Mc = 0.01 (u, J = 113.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            | 7.32 (l, 1 H, $J = 1.9$ )                   | $C$ of $C_5H_3$                                   | 124.55 (d, J = 158.2)                                                              | <i>m</i> -Pfin                                    |  |  |
| $ 2a [ZrMe(DAD)Cp^{-1}] -0.56 (s, 3 H) Zr-Me -0.12 (q, J = 119, 2) SiMe_{1} -0.25 (s, 3 H) Zr-Me -0.12 (q, J = 112, 2) SiMe_{1} -0.25 (s, 3 H) Zr-Me -0.12 (q, J = 112, 2) SiMe_{1} -0.25 (s, 3 H) Zr-Me -0.12 (q, J = 113, 9) Zr-Me -0.25 (s, 3 H) Zr-Me -0.12 (q, J = 113, 9) Zr-Me -0.25 (s, 3 H) Zr-Me -0.12 (q, J = 113, 9) Zr-Me -0.25 (s, 3 H) Zr-Me -0.25 (s, 4 H, J = 7, 3) PrIN -0.25 (s, 4 H, J = 7, 3) PrIN -0.25 (s, 4 H, J = 7, 3) PrIN -0.25 (s, 4 H, J = 7, 3) PrIN -0.25 (s, 4 H, J = 7, 3) PrIN -0.25 (s, 4 H, J = 7, 3) PrIN -0.25 (s, 4 H, J = 7, 3) PrIN -0.25 (s, 4 H, J = 7, 3) PrIN -0.25 (s, 4 H, J = 7, 3) PrIN -0.25 (s, 4 H, J = 7, 3) PrIN -0.25 (s, 4 H, J = 7, 3) PrIN -0.25 (s, 4 H, J = 13, 7) PrIN -0.26 (s, 3 H) PrIN -0.26 (s, 2 H, J = 115, 9) PrIN -0.26 (s, 2 H, J = 115, 9) PrIN -0.26 (s, 2 H, J = 115, 9) PrIN -0.26 (s, 2 H, J = 115, 9) PrIN -0.26 (s, 2 H, J = 115, 9) PrIN -0.26 (s, 2 H, J = 115, 9) PrIN -0.26 (s, 2 H, J = 115, 9) PrIN -0.26 (s, 2 H, J = 115, 9) PrIN -0.26 (s, 2 H, J = 115, 9) PrIN -0.26 (s, 2 H, J = 115, 9) PrIN -0.26 (s, 2 H, J = 12, 7) PrIN -0.26 (s, 2 H, J = 12, 7) PrIN -0.26 (s, 2 H, J = 12, 7) PrIN -0.26 (s, 2 H, J = 12, 7) PrIN -0.26 (s, 2 H, J = 12, 7) PrIN -0.26 (s, 2 H, J = 13, 7) PrIN -0.26 (s, 2 H, J = 15, 7) PrIN -0.26 (s, 2 H, J = 15, 7) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.27 (s, 2 H, J = 15, 9) PrIN -0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                             |                                                   | 128.96 (d, J = 138.1)<br>129.51 (m)                                                | $C^{1,3}$ of C H                                  |  |  |
| $ 2a [ZrMc(DAD)Cp^{-1} -0.56 (s, 3 H) Zr-Mc -0.12 (q, J = 119.2) Sink for the second state of the second $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                             |                                                   | 129.51 (m)<br>150.74 (m)                                                           | inso-PhN                                          |  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2a [ZrMe(DAD)Cp"]                          | -0.56 (s. 3 H)                              | Zr-Me                                             | -0.12 (g. $J = 119.2$ )                                                            | SiMe,                                             |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 0.04 (s, 18 H)                              | SiMe <sub>3</sub>                                 | 16.30 (q, J = 127.7)                                                               | =CMe                                              |  |  |
| $ \begin{array}{cccc} 6.95(i,2H,J-1,2) & p-PhN & 116.02(m) & -CMe \\ 7.00(i,2H,J-1,3) & e-PhN & 120,23(i,J-167,3) & C^4 of C,H_1 \\ 7.05(i,4H,J-1,3) & e-PhN & 120,23(i,J-168,9) & C^4 of C,H_1 \\ 7.05(i,4H,J-1,3) & e-PhN & 120,23(i,J-168,9) & e-PhN \\ 7.25(i,4H,J-1,3) & m-PhN & 123,30(i,J-188,9) & m-PhN \\ 129,04(i,J-157,6) & e-PhN \\ 129,04(i,J-157,6) & e-PhN \\ 129,04(i,J-157,6) & e-PhN \\ 129,04(i,J-110,4) & SiMe_1 \\ 0.04(s,18H) & SiMe_1 & 1593(q,J-127,2) & -CMe \\ 0.05(i,2H,J-1,3) & p-PhN & 120,14(d,J-166,0) & C^4of C,H_1 \\ 7.04(i,4H,J-1,3) & p-PhN & 120,14(d,J-166,0) & C^4of C,H_1 \\ 7.04(i,4H,J-1,3) & p-PhN & 120,44(d,J-157,0) & m-PhN \\ 128,83(m) & C^{13}of C,H_1 & -CMe \\ 0.03(s,18H) & 1509(m) & 128,83(d,J-160,0) & C^{13}of C,H_1 \\ 1.60(s,2H) & -CMe & 51.07(i,J-120,0) & C^{13}of C,H_1 \\ 1.73(s,6H) & -CMe & 51.07(i,J-120,0) & C^{14}of C,H_1 \\ 1.73(s,6H) & -CMe & 51.07(i,J-120,0) & C^{14}of C,H_1 \\ 1.73(s,6H) & -CMe & 51.07(i,J-120,0) & C^{14}of C,H_1 \\ 1.73(s,6H) & -CMe & 51.07(i,J-120,0) & C^{14}of C,H_1 \\ 1220,(224(d,J-150,3) & C^{14}of C,H_1 \\ 130,1(m) & -CMe & 51.07(i,J-163,3) & C^{14}of C,H_1 \\ 148,02(m) & igae-PhN \\ 130,1(m) & -CMe & 51.07(i,J-163,3) & C^{14}of C,H_1 \\ 148,02(m) & igae-PhN \\ 130,1(m) & -CMe & -CMe & -CMe & -CMe \\ 1230,7(24(d,J-150,3) & C^{14}of C,H_1 \\ 148,02(m) & igae-PhN \\ 130,1(m) & -CMe & -CMe$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 1.87 (s, 6 H)                               | =CMe                                              | 22.71 (q, J = 113.9)                                                               | Zr-Me                                             |  |  |
| $ \begin{array}{cccc} 7.00 \ (d, 2 H, J = 1.9) & C^{4'} \ of C_{H} & 120.16 \ (d, J = 167.3) & C^{4} \ of C_{H} & 7.05 \ (d, 4 H, J = 7.3) & \rho + PhN & 123.20 \ (d, J = 168.9) & \rho + PhN & 123.27 \ (d, J = 161.2) & \rho + PhN & 123.00 \ (d, J = 157.6) & \rho + PhN & 129.04 \ (d, J = 157.6) & \rho + PhN & 129.49 \ (m) & C^{13} \ of C_{H} & 129.49 \ (m) & C^{13} \ of C_{H} & 129.49 \ (m) & C^{13} \ of C_{H} & 129.49 \ (m) & C^{13} \ of C_{H} & 129.49 \ (m) & C^{13} \ of C_{H} & 157.6) & \rho + PhN & 129.49 \ (m) & C^{13} \ of C_{H} & 157.6) & \rho + PhN & 129.49 \ (m) & C^{13} \ of C_{H} & 157.6) & \rho + PhN & 129.49 \ (m) & C^{13} \ of C_{H} & 157.6) & \rho + PhN & 129.49 \ (m) & C^{13} \ of C_{H} & 157.6) & \rho + PhN & 129.49 \ (m) & C^{13} \ of C_{H} & 157.6) & \rho + PhN & 129.49 \ (m) & C^{13} \ of C_{H} & 159.9 \ (m) & -CMe & 28.48 \ (q, J = 112.7) & H^{-1}Me & 6.90 \ (c, 2 H, J = 1.5) & \rho + PhN & 119.94 \ (d, J = 167.6) & C^{4'} \ of C_{H} & 159.9 \ (m) & -CMe & C^{4'} \ of C_{H} & 115.99 \ (m) & -CMe & C^{4'} \ of C_{H} & 115.99 \ (m) & -CMe & C^{4'} \ of C_{H} & 122.65 \ (d, J = 157.7) & \rho + PhN & 122.65 \ (d, J = 157.7) & \rho + PhN & 123.67 \ (d, J = 157.7) & \rho + PhN & 123.67 \ (d, J = 157.7) & \rho + PhN & 123.67 \ (d, J = 157.7) & \rho + PhN & 123.67 \ (d, J = 157.7) & \rho + PhN & 123.67 \ (d, J = 157.7) & \rho + PhN & 123.67 \ (d, J = 157.7) & \rho - PhN & 123.67 \ (d, J = 157.7) & \rho - PhN & 123.67 \ (d, J = 157.7) & -CMe & C^{4'} \ of C_{H} & 125.98 \ (d, J = 157.6) & -C^{4'} \ of C_{H} & 125.98 \ (d, J = 157.6) & -C^{4'} \ of C_{H} & 125.98 \ (d, J = 157.6) & -C^{4'} \ of C_{H} & 123.72 \ (d, J = 157.7) & -CMe & 123.72 \ (d, J = 157.7) & -PhN & 123.72 \ (d, J = 157.7) & -CMe & 150.91 \ (d, J = 157.7) & -CMe & 123.72 \ (d, J = 157.7) & -CMe & 123.72 \ (d, J = 159.2, 152.4) & -C^{4'} \ of C_{H} & 122.02 \ (d, J = 158.9, 158.7) & -CMe \ (d, J = 158.9, 158.7) & -CMe \ (d, J = 159.9, 157.7) & 125.71 \ (d, J = 127.7) & -CMe \ (d, J = 159.7) \ (d, J = 159.7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | 6.95 (t, 2 H, J = 7.2)                      | <i>p</i> -PhN                                     | 116.02 (m)                                                                         | =CMe                                              |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 7.00 (d, 2 H, J = 1.9)                      | C <sup>4,5</sup> of C <sub>5</sub> H <sub>3</sub> | 120.16 (d, <i>J</i> = 167.3)                                                       | $C^2$ of $C_5H_3$                                 |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 7.05 (d, 4 H, J = 7.3)                      | o-PhN                                             | 120.23 (d, J = 168.9)                                                              | $C^{4,5}$ of $C_5H_3$                             |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 7.08 (t, 1 H, J = 1.9)                      | $C^2$ of $C_5H_3$                                 | 122.72 (d, J = 161.2)                                                              | <i>p</i> -PhN                                     |  |  |
| $ \begin{array}{c} 129.04 (n) & C^{12} of C_{1}H_{1}\\ 129.49 (m) & C^{12} of C_{1}H_{1}\\ 129.49 (m) & Igrosphn\\ 150.83 (m) & Igrosphn\\ 150.93 (n, J=127.2) & -CMe\\ 18.78 (s, 6 H) & -CMe & 28.48 (n, J=127.7) & HF-Me\\ 6.90 (t, 2 H, J=7.3) & p-PhN & 119.94 (t, J=166.0) & C^{43} of C_{1}H_{1}\\ 7.26 (t, 4 H, J=7.5) & o-PhN & 112.01 (t, J=167.6) & C^{2} of C_{1}H_{1}\\ 7.26 (t, 4 H, J=7.5) & o-PhN & 122.05 (t, (J=157.7) & p-PhN\\ 128.88 (m) & C^{13} of C_{2}H_{2}\\ 7.26 (t, 4 H, J=7.5) & m-PhN & 122.65 (t, J=157.7) & m-PhN\\ 128.88 (m) & C^{13} of C_{3}H_{3}\\ 151.09 (m) & Igrosph\\ 150 (m) & Igrosph\\ 142 (s, 2 H) & CH_{2}Ph\\ 150 (s, 2 H) & CH_{2}Ph\\ 120 (s, 12 + 19.2) & C^{43} of C_{4}H_{3}\\ 121 (10 (t, J=168.3) & C^{43} of C_{4}H_{3}\\ 122 (t, J=168.3) & C^{43} of C_{4}H_{3}\\ 122 (t, J=168.3) & C^{43} of C_{4}H_{3}\\ 122 (t, J=168.3) & IgrosphN\\ 123 (t, I=152, 152.4) & m-PhCH_{2}, m-PhN\\ 123 (t, I=152, 152.4) & m-PhCH_{2}, m-PhN\\ 123 (t, I=162, 122.5) (t, J=152, 152.4) & m-PhCH_{2}, m-PhN\\ 123 (t, I=162, 122.5) (t, J=158, 0, 158.2) & C^{43} of C_{4}H_{3}\\ 142 (s, 2 H) & CH_{2}Ph\\ 112 (t, I=168.3) & C^{43} of C_{4}H_{3}\\ 142 (s, 2 H) & CH_{2}Ph\\ 124 (t, I=285, 0, (t, J=156, 0, 157.7) & CMe\\ 122 (t, I=160, 0) & C_{13} of C_{4}H_{3}\\ 123 (t, I=160, 0) & C_{13} of C_{4}H_{3}\\ 124 (t, I=160, 0) & C_{13} of C_{4}H_{3}\\ 125 (t, I=160, 0) & C_{13} of C_{4}H_{3}\\ 125 (t, I=160, 0) & C_{13} of C_{4}H_{3}\\ 125 (t, I=160, 0) & C_{13} of C_{4}H_{4}\\ 125 (t, I=160, 0) & C_{13} of C_{4}H_{4}\\ 125 (t, I=160, 0) & C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | 7.25 (t, 4 H, J = 8.0)                      | <i>m</i> -PhN                                     | 123.30 (d, J = 158.9)                                                              | m-PhN                                             |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                             |                                                   | 129.04 (d, J = 157.0)<br>120.40 (m)                                                | $O-P\Pi N$<br>$C^{1,3}$ of C H                    |  |  |
| $ 2b [HMe(DAD)Cp'] -0.61 (s, 3 H) Hf-Me -0.12 (q, J = 119.4) SiMe_1 -0.12 (q, J = 119.4) SiMe_2 -0.12 (q, J = 119$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                             |                                                   | 129.49 (III)<br>150.83 (m)                                                         | inso-PhN                                          |  |  |
| $ \begin{array}{c} 0.04 (s, 18 \ H) & \text{SiMe}_3 & 15.93 (q, J = 127.2) & CMe \\ 1.87 (s, 6 \ H) & -CMe & 28.48 (q, J = 112.7) & \text{H}^-\text{I}-Me \\ 6.90 (t, 2 \ H, J = 1.8) & \text{C}^{45} \text{ of } \mathbf{C}_{\mathrm{c}}\mathbf{H}_1 & 15.09 \ \text{(m}) & -CMe \\ 6.95 (d, 2 \ H, J = 7.3) & p-PhN & 119.94 (d, J = 169.0) & \text{C}^{45} \text{ of } \mathbf{C}_{\mathrm{c}}\mathbf{H}_1 \\ 7.26 (t, 4 \ H, J = 7.5) & o-PhN & 120.11 (d, J = 167.6) & \text{C}^{5} \text{ of } \mathbf{C}_{\mathrm{c}}\mathbf{H}_1 \\ 7.26 (t, 4 \ H, J = 7.5) & o-PhN & 120.11 (d, J = 157.7) & p-PhN \\ (C^2 \ of \ C_{\mathrm{c}}\mathbf{H}_3 \text{ overlaps} \\ \text{with } o-Ph & 122.65 (d, J = 157.7) & p-PhN \\ 128.83 \ (m) & \text{C}^{15} \ of \ \mathbf{C}_{\mathrm{c}}\mathbf{H}_1 \\ 1.73 (s, 6 \ H) & -CMe & 51.00 \ m \\ 1.60 (s, 2 \ H) & -CMe & 51.00 \ m \\ 1.50 \ (s, 2 \ H) & -CMe & 51.07 \ (t, J = 10.0) & -CMe \\ 6.84 - 7.27 \ (m, 16 \ H) & -C^{45} \ of \ \mathbf{C}_{\mathrm{c}}\mathbf{H}_1 \\ 1.73 (s, 6 \ H) & -C^{45} \ of \ \mathbf{C}_{\mathrm{c}}\mathbf{H}_1 \\ 128.08 \ (m) & -2D(0) & -CMe \\ 121.10 \ (d, J = 158.0, 156.9) & p-PhCH_3, p-PhN \\ 122.02, 122.89 \ (d, J = 156.0, 156.9) & p-PhCH_3, p-PhN \\ 123.01 \ (m) & 128.63, 128.91 \ (d, J = 158.0, 158.9) & -PhCH_3, p-PhN \\ 123.01 \ (m) & 128.63, 128.91 \ (d, J = 158.0, 158.9) & -PhCH_3, p-PhN \\ 123.01 \ (m) & 128.63, 128.91 \ (d, J = 158.0, 158.9) & -PhCH_3, p-PhN \\ 123.01 \ (m) & 128.63, 128.91 \ (d, J = 158.0, 158.9) & -PhCH_3, p-PhN \\ 123.01 \ (m) & 128.63, 128.91 \ (d, J = 158.0, 158.2) & -PhCH_3, p-PhN \\ 6.84 - 7.30 \ (m, 16 \ H) & -CMe & 55.97 \ (t, J = 116.9) & -CMe \\ C^{45} \ of \ \mathbf{C}_{\mathrm{H}_3} \ (t, J = 168.8) & -C^{45} \ of \ \mathbf{C}_{\mathrm{H}_3} \ (t, J = 168.8) & -C^{45} \ of \ \mathbf{C}_{\mathrm{H}_3} \ (t, J = 168.8) & -C^{45} \ of \ \mathbf{C}_{\mathrm{H}_3} \ (t, J = 168.9) & -C^{45} \ of \ \mathbf{C}_{\mathrm{H}_3} \ (t, J = 168.8) & -C^{45} \ of \ \mathbf{C}_{\mathrm{H}_3} \ (t, J = 168.8) & -C^{45} \ of \ \mathbf{C}_{\mathrm{H}_3} \ (t, J = 168.8) & -C^{45} \ of \ \mathbf{C}_{\mathrm{H}_3} \ (t, J = 168.8) & -C^{45} \ of \ \mathbf{C}_{\mathrm{H}_3} \ (t, J = 168.8) & -C^{45} \ of \ \mathbf{C}_{\mathrm{H}_3} \ (t, J = 168.8) & -C^{45} \ of \ \mathbf{C}_{\mathrm{H}_3} \ (t, J = 168.8) & -C^{45} \ of \ \mathbf{C}_{\mathrm{H}_3} \ (t, J = 168.8) & -C^{45} \ of \ \mathbf{C}_{\mathrm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>2b</b> [HfMe(DAD)Cp"]                   | -0.61 (s. 3 H)                              | Hf–Me                                             | -0.12 (g. $J = 119.4$ )                                                            | SiMe,                                             |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [)-F ]                                     | 0.04 (s, 18 H)                              | SiMe <sub>3</sub>                                 | 15.93 (q, J = 127.2)                                                               | =CMe                                              |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 1.87 (s, 6 H)                               | =CMe                                              | 28.48 (q, J = 112.7)                                                               | Hf–Me                                             |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 6.90 (t, 2 H, J = 1.8)                      | C <sup>4,5</sup> of C <sub>5</sub> H <sub>3</sub> | 115.09 (m)                                                                         | =CMe                                              |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 6.95 (d, 2 H, J = 7.3)                      | <i>p</i> -PhN                                     | 119.94 (d, <i>J</i> = 169.0)                                                       | $C^{4,5}$ of $C_5H_3$                             |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            | 7.04 (d, 4 H, J = 7.5)                      | o-PhN                                             | 120.11 (d, $J = 167.6$ )                                                           | $C^2$ of $C_5H_3$                                 |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 7.26 (t, 4 H, $J = 7.5$ )                   | <i>m</i> -PhN                                     | 122.65 (d, J = 157.7)                                                              | <i>p</i> -PhN                                     |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | $(C^2 \text{ of } C_5H_3 \text{ overlaps})$ |                                                   | 123.67 (d, J = 157.0)                                                              | m-PhN<br>$C^{1,3}$ - f C U                        |  |  |
| $3a [Zr(CH_2Ph)(DAD)Cp''] = 0.03 (s, 18 H) \\ 1.60 (s, 2 H) \\ 1.73 (s, 6 H) \\ 6.80 (d, 2 H, J = 1.9) \\ 6.84 - 7.27 (m, 16 H) \\ 3b [Hf(CH_2Ph)(DAD)Cp''] = 0.04 (s, 18 H) \\ 1.42 (s, 2 H) \\ 6.84 - 7.27 (m, 16 H) \\ 3b [Hf(CH_2Ph)(DAD)Cp''] = 0.04 (s, 18 H) \\ 1.42 (s, 2 H) \\ 1.44 (12 H, 14 H) \\ 1.41 (s, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            | with o-Ph)                                  |                                                   | 128.83 (m)<br>128.98 (d. $I = 160.0$ )                                             | $C^{\mu}$ of $C_5 \Pi_3$                          |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                             |                                                   | 128.98 (u, J = 100.0)<br>151 09 (m)                                                | inso-Ph                                           |  |  |
| $ \mathbf{3b} \left[ \text{Hf}(\text{CH}_2\text{Ph})(\text{DAD})\text{Cp}'' \right] \\ \begin{array}{c} 1.60 (\text{s}, 2 \text{H}) \\ 1.73 (\text{s}, 6 \text{H}) \\ 6.80 (\text{d}, 2 \text{H}, J = 1.9) \\ 6.84 - 7.27 (\text{m}, 16 \text{H}) \\ 1.73 (\text{s}, 6 \text{H}) \\ 6.84 - 7.27 (\text{m}, 16 \text{H}) \\ 6.84 - 7.27 (\text{m}, 16 \text{H}) \\ 6.84 - 7.27 (\text{m}, 16 \text{H}) \\ 1.21 + 10 (\text{d}, J = 170.5) \\ C^{4.5} \text{ of } \text{C}_{\text{s}}\text{H}_{3} \\ C^{2} \text{ of } \text{C}_{\text{s}}\text{H}_{3} \\ 1.22 \cdot 02, 122 \cdot 89 (\text{d}, J = 156.0, 156.9) \\ 1.23 \cdot 7, 126 \cdot 32 (\text{d}, J = 159.2, 152.4) \\ 1.22 \cdot 02, 122 \cdot 89 (\text{d}, J = 158.0, 158.2) \\ 1.28 \cdot 63, 128 \cdot 91 (\text{d}, J = 158.0, 158.2) \\ 1.30 \cdot 1 (\text{m}) \\ 148 \cdot 02 (\text{m}) \\ 130 \cdot 1 (\text{m}) \\ 148 \cdot 02 (\text{m}) \\ 130 \cdot 1 (\text{m}) \\ 148 \cdot 02 (\text{m}) \\ 188 \cdot 02 (\text{m}) \\ 188 \cdot 02 (\text{m}) \\ 1.30 \cdot 1 (\text{m}) \\ 148 \cdot 02 (\text{m}) \\ 188 \cdot 02 (\text{m}) \\ 1.22 \cdot (5 \text{ c} \text{H}_{3} \\ 1.42 (\text{s}, 2 \text{ H}) \\ 1.22 \cdot 02 + 123 \cdot 0 \\ 1.42 (\text{s}, 2 \text{ H}) \\ 1.22 \cdot 12 (\text{d}, J = 168.8) \\ 0.4 (\text{d}, J = 168.8) \\ 0.4 (\text{d}, J = 168.9) \\ 0.4 (\text{d}, J = 169.0) \\ 0.4 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3a [Zr(CH <sub>2</sub> Ph)(DAD)Cp"]        | 0.03 (s. 18 H)                              | SiMe,                                             | 0.01 (a. $J = 119.4$ )                                                             | SiMe,                                             |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 1.60 (s, 2 H)                               | CH,Ph                                             | 16.42 (q, J = 127.7)                                                               | =CMe                                              |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 1.73 (s, 6 H)                               | =CMe                                              | 51.07 (t, $J = 120.0$ )                                                            | CH <sub>2</sub> Ph                                |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 6.80 (d, 2 H, J = 1.9)                      | C <sup>4,5</sup> of C <sub>5</sub> H <sub>3</sub> | 115.38 (m)                                                                         | =CMe                                              |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 6.84–7.27 (m, 16 H)                         | $C^2$ of $C_5H_3$ , Ph,                           | 121.10 (d, <i>J</i> = 170.5)                                                       | $C^{4,5}$ of $C_5H_3$                             |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                             | CH <sub>2</sub> Ph                                | 121.21 (d, J = 168.3)                                                              | $C^2$ of $C_5H_3$                                 |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                             |                                                   | 122.02, 122.89 (d, J = 156.0, 156.9)                                               | p- $Ph$ CH <sub>2</sub> , $p$ -PhN                |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                             |                                                   | 123.7, 120.32 (d, J = 159.2, 152.4)<br>128.62, 128.01 (d, J, 158.0, 158.2)         | m- $Ph$ CH <sub>2</sub> , $m$ -PhN                |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                             |                                                   | 120.05, 120.91 (d, J = 150.0, 150.2)<br>130 1 (m)                                  | $C^{1,3}$ of C H                                  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                             |                                                   | 148 02 (m)                                                                         | inso-PhCH.                                        |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                             |                                                   | 150.83 (m)                                                                         | ipso-PhN                                          |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>3b</b> [Hf(CH <sub>2</sub> Ph)(DAD)Cp"] | 0.04 (s, 18 H)                              | SiMe <sub>3</sub>                                 | 0.05 (q, J = 119.3)                                                                | SiMe <sub>3</sub>                                 |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 1.42 (s, 2 H)                               | $CH_2Ph$                                          | 16.14 (q, J = 127.6)                                                               | =CMe                                              |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 1.72 (s, 6 H)                               | =CMe                                              | 55.97 (t, <i>J</i> = 116.9)                                                        | CH₂Ph                                             |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 6.74 (d, 2 H, <i>J</i> = 1.9)               | $C^{4,5}$ of $C_5H_3$                             | 114.77 (m)                                                                         | =CMe                                              |  |  |
| $\begin{array}{ccc} {\rm CH_2Ph} & 121.44, 122.85  ({\rm d}, J=156.9, 157.7) & p-{\rm PhCH_2}, p-{\rm PhN} \\ 122.12  ({\rm d}, J=169.0) & {\rm C}^2  {\rm of}  {\rm C_5H_3} \\ 123.97, 127.03  ({\rm d}, J=159.2, 151.0) & m-{\rm PhCH_2}, m-{\rm PhN} \\ 128.50, 128.86  ({\rm d}, J=158.9, 158.1) & o-{\rm PhCH_2}, o-{\rm PhN} \\ 129.57  ({\rm m}) & {\rm C}^{1.3}  {\rm of}  {\rm C_5H_3} \\ 148.69  ({\rm m}) & ipso-Ph{\rm CH_2} \\ 150  93  ({\rm m}) & o-{\rm phN} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | 6.84–7.30 (m, 16 H)                         | $C^2$ of $C_5H_3$ , Ph,                           | 120.74 (d, J = 168.8)                                                              | C <sup>4,5</sup> of C <sub>5</sub> H <sub>3</sub> |  |  |
| $\begin{array}{ccccc} 122.12 & (d, \ J = 169.0) & C^2 \text{ of } C_5 H_3 \\ 123.97, 127.03 & (d, \ J = 159.2, 151.0) & m-PhCH_2, m-PhN \\ 128.50, 128.86 & (d, \ J = 158.9, 158.1) & o-PhCH_2, o-PhN \\ 129.57 & (m) & C^{1.3} \text{ of } C_5 H_3 \\ 148.69 & (m) & ipso-PhCH_2 \\ 150 & 93 & (m) & ipso-PhN \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                             | CH <sub>2</sub> Ph                                | 121.44, 122.85 (d, $J = 156.9, 157.7$ )                                            | p-PhCH <sub>2</sub> , $p$ -PhN                    |  |  |
| $\begin{array}{cccc} 125.9', 12'.03 (d, J = 159.2, 151.0) & m-PhCH_2, m-PhN \\ 128.50, 128.86 (d, J = 158.9, 158.1) & o-PhCH_2, o-PhN \\ 129.57 (m) & C^{1.3} \text{ of } C_5H_3 \\ 148.69 (m) & ipso-PhCH_2 \\ 150 93 (m) & ipso-PhN \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                             |                                                   | 122.12 (d, J = 169.0)<br>122.07 127.02 (d. J. 150.2.151.0)                         | $C^*$ of $C_5H_3$                                 |  |  |
| $\begin{array}{cccc} 126.30, 126.30 (d, J = 156.9, 156.1) & O-PhCH_2, O-PhN \\ 129.57 (m) & C^{1.3} \text{ of } C_5H_3 \\ 148.69 (m) & ipso-PhCH_2 \\ 150 93 (m) & ipso-PhN \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                             |                                                   | 123.97, 127.03 (a, $J = 139.2, 151.0$ )<br>128 50, 128 86 (d, $J = 159.0, 159.1$ ) | $m$ -rn $CH_2, m$ -rn $N$                         |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                             |                                                   | 120.30, 120.00 (u, J = 138.9, 138.1)<br>129 57 (m)                                 | $C^{1,3}$ of C H                                  |  |  |
| 150.93 (m) $inso-PhN$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                             |                                                   | 148.69 (m)                                                                         | inso-PhCH.                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                                             |                                                   | 150.93 (m)                                                                         | ipso-PhN                                          |  |  |

Table 1 (Contd.)

|                                                                | <sup>1</sup> H NMR                |                                                            | <sup>13</sup> C NMR                                    |                                                   |  |  |
|----------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|--|--|
|                                                                | δ                                 | Assignment                                                 | δ                                                      | Assignment                                        |  |  |
| $4a \left[ Zr(C_2H_{\epsilon})(DAD)Cp'' \right]$               | 0.36 (s. 18 H)                    | SiMe <sub>2</sub>                                          | -0.08 (g. $J = 119.2$ )                                | SiMe <sub>2</sub>                                 |  |  |
|                                                                | 1.54 (s, 6 H)                     | =CMe                                                       | 15.55 (q. $J = 127.0$ )                                | =CMe                                              |  |  |
|                                                                | 2.54 (br d. 4 H. $J = 12.2$ )     | CH <sub>2</sub> of C <sub>2</sub> H <sub>6</sub>           | 62.77 (t. $J = 151.8$ )                                | CH <sub>2</sub> of C <sub>2</sub> H <sub>2</sub>  |  |  |
|                                                                | 5.40 (g. 1 H. $J = 12.2$ )        | CH of C <sub>2</sub> H <sub>e</sub>                        | 112.17 (m)                                             | =CMe                                              |  |  |
|                                                                | 6.63 (m. 2 H)                     | C <sup>4,5</sup> of C <sub>2</sub> H <sub>2</sub>          | 117.51 (d. $J = 168.3$ )                               | C <sup>4,5</sup> of C <sub>2</sub> H <sub>2</sub> |  |  |
|                                                                | 6.94 (m, 7 H)                     | $o$ -PhN, $p$ -PhN, $C^2$ of C <sub>5</sub> H <sub>3</sub> | 119.45 (d, J = 168.3)                                  | $C^2$ of $C_5H_3$                                 |  |  |
|                                                                | 7.30 (t, 4 H, $J = 7.2$ )         | <i>m</i> -PhN                                              | 122.18 (d, <i>J</i> = 157.7)                           | <i>p</i> -PhN                                     |  |  |
|                                                                |                                   |                                                            | 125.05 (d, J = 157.7)                                  | <i>m</i> -PhN                                     |  |  |
|                                                                |                                   |                                                            | 128.67 (d, <i>J</i> = 157.7)                           | o-PhN                                             |  |  |
|                                                                |                                   |                                                            | 137.71 (d, <i>J</i> = 147.2)                           | CH of C <sub>3</sub> H <sub>5</sub>               |  |  |
|                                                                |                                   |                                                            | 152.34 (m)                                             | ipso-PhN                                          |  |  |
| <b>4b</b> [Hf(C <sub>3</sub> H <sub>5</sub> )(DAD)Cp"]         | 0.04 (s, 18 H)                    | SiMe <sub>3</sub>                                          | -0.11 (q, $J = 119.2$ )                                | SiMe <sub>3</sub>                                 |  |  |
|                                                                | 1.55 (s, 6 H)                     | =CMe                                                       | 15.30 (q, J = 127.2)                                   | =CMe                                              |  |  |
|                                                                | 2.58 (br d, 4 H, <i>J</i> = 12.6) | CH <sub>2</sub> of C <sub>3</sub> H <sub>5</sub>           | 61.91 (t, <i>J</i> = 151.5)                            | CH <sub>2</sub> of C <sub>3</sub> H <sub>5</sub>  |  |  |
|                                                                | 5.34 (q, 1 H, J = 12.6)           | CH of C <sub>3</sub> H <sub>5</sub>                        | 110.95 (m)                                             | =CMe                                              |  |  |
|                                                                | 6.61 (m, 2 H)                     | C <sup>4,5</sup> of C <sub>5</sub> H <sub>3</sub>          | 117.31 (d, <i>J</i> = 169.2)                           | C <sup>4,5</sup> of C <sub>5</sub> H <sub>3</sub> |  |  |
|                                                                | 6.95 (m, 1 H)                     | C <sup>2</sup> of C <sub>5</sub> H <sub>3</sub>            | 118.63 (d, <i>J</i> = 169.2)                           | C <sup>2</sup> of C <sub>5</sub> H <sub>3</sub>   |  |  |
|                                                                | 6.99 (t, 2 H, J = 7.3)            | <i>p</i> -PhN                                              | 122.02 (d, J = 158.1)                                  | <i>p</i> -PhN                                     |  |  |
|                                                                | 7.06 (d, 4 H, J = 7.2)            | o-PhN                                                      | 125.40 (d, <i>J</i> = 159.8)                           | <i>m</i> -PhN                                     |  |  |
|                                                                | 7.31 (t, 4 H, $J = 7.3$ )         | <i>m</i> -PhN                                              | 128.63 (d, <i>J</i> = 158.1)                           | o-PhN                                             |  |  |
|                                                                |                                   |                                                            | 138.0 (d, $J = 147.6$ )                                | CH of C <sub>3</sub> H <sub>5</sub>               |  |  |
|                                                                |                                   |                                                            | 152.33 (m)                                             | ipso-PhN                                          |  |  |
| 5a [ZrCl{ $C_6H_4$ (NSiMe <sub>3</sub> ) <sub>2</sub> -        | 0.30, 0.33 (s, 18 H each)         | SiMe <sub>3</sub>                                          | 0.15, 1.95 (q, <i>J</i> = 119.4, 118.6)                | SiMe <sub>3</sub>                                 |  |  |
| 1,2}Cp"]                                                       | 5.37 (d, 2 H, J = 1.8)            | $C^{4,5}$ of $C_5H_3$                                      | 119.77 (d, <i>J</i> = 169.8)                           | C <sup>4,5</sup> of C <sub>5</sub> H <sub>3</sub> |  |  |
|                                                                | 6.96 (t, 1 H, J = 1.8)            | C <sup>2</sup> of C <sub>5</sub> H <sub>3</sub>            | 126.41, 128.83 (d, <i>J</i> = 161.5, 157)              | $o-C_6H_4$ , $m-C_6H_4$                           |  |  |
|                                                                | 7.12, 7.23 (m, 2 H each)          | $C_6H_4$                                                   | 127.15, 129.24 (m)                                     | $C^{1,3}$ of $C_5H_3$ ,                           |  |  |
|                                                                |                                   |                                                            |                                                        | ipso-C <sub>6</sub> H <sub>4</sub>                |  |  |
|                                                                |                                   |                                                            | 127.88 (d, $J = 168.3$ )                               | $C^2$ of $C_5H_3$                                 |  |  |
| <b>5b</b> [HfCl{ $C_6H_4$ (NSiMe <sub>3</sub> ) <sub>2</sub> - | 0.31, 0.32 (s, 18 H each)         | SiMe <sub>3</sub>                                          | 0.08, 2.07  (q, $J = 119.3, 118.6$ )                   | SiMe <sub>3</sub>                                 |  |  |
| 1,2}Cp"]                                                       | 5.64 (d, 2 H, $J = 2$ )           | $C^{4,3}$ of $C_5H_3$                                      | 119.68 (d, $J = 169.8$ )                               | $C^{4,3}$ of $C_5H_3$                             |  |  |
|                                                                | 6.84 (t, 1 H, $J = 2$ )           | $C^2$ of $C_5H_3$                                          | 125.12, 126.7 (d, J = 160.7, 159)                      | $o-C_{6}H_{4}, m-C_{6}H_{4}$                      |  |  |
|                                                                | 7.09, 7.21 (m, 2 H each)          | $C_6H_4$                                                   | 126.46 (d, J = 169)                                    | $C^2$ of $C_5H_3$                                 |  |  |
|                                                                |                                   |                                                            | 129.02, 129.26 (m)                                     | $C^{1,3}$ of $C_5H_3$ ,                           |  |  |
|                                                                |                                   | <b>C</b> '' <b>(</b>                                       |                                                        | $ipso-C_6H_4$                                     |  |  |
| <b>6a</b> $[NbCl_2 \{C_6H_4(NSiMe_3)_2 - 12) = 12 = 12$        | 0.35, 0.40 (s, 18 H each)         | $S_1Me_3$                                                  | 0.01, 3.55 (q, J = 119.7, 119.4)                       | $S_1Me_3$                                         |  |  |
| 1,2}Cp"]                                                       | 4.22 (br s, 2 H)                  | C <sup>4,5</sup> of C <sub>5</sub> H <sub>3</sub>          | 113.72 (d, $J = 173.6$ )                               | $C^{3,5}$ of $C_5H_3$                             |  |  |
|                                                                | 6.90 (m, 1 H)                     | $C^2$ of $C_5H_3$                                          | 121.65, 129.19 (m)                                     | $C^{1,3}$ of $C_5H_3$ ,                           |  |  |
|                                                                |                                   | C II                                                       |                                                        | $ipso-C_6H_4$                                     |  |  |
|                                                                | 6.85, 7.07  (m, 2 H each)         | $C_6H_4$                                                   | 130.4, 130.99 (d, J = 165.3, 163.7)                    | $0 - C_6 H_4, m - C_6 H_4$                        |  |  |
|                                                                |                                   | C'M                                                        | 134.2 (d, J = 1/5.8)                                   | $C_5 OI C_5 H_3$                                  |  |  |
| $1 2 C_{n}^{\prime}$                                           | 4.82 (4.2  H L - 2.0)             | $C^{4,5} \rightarrow C H$                                  | -0.05, 5.92 (q, $J = 119.8, 119.2$ )                   | $C^{4,5} \rightarrow C H$                         |  |  |
| 1,2}Cp]                                                        | $4.03 (U, 2 \Pi, J = 2.0)$        | $C^2 \text{ of } C^2 H_3$                                  | 113.10 (u, J = 1/4.3)<br>125.11 127.85 (m)             | $C^{1,3}$ of $C^{1,3}$                            |  |  |
|                                                                | $0.09 (1, 1 \Pi, J = 2.0)$        | $C$ of $C_5 \Pi_3$                                         | 123.11, 127.03 (III)                                   | $C = OI C_5 H_3$ ,                                |  |  |
|                                                                | 6.80, 6.06 (m, 2.41 cash)         | СЧ                                                         | 128.77 $128.0$ (d. $I = 162.2$ )                       | $\mu so - C_6 \Pi_4$                              |  |  |
|                                                                | 0.00, 0.90 (III, 2 11 cacil)      | $C_{6}^{11}$                                               | 120.77, 120.9 (d, J = 102.2)<br>132.65 (d, $J = 172$ ) | $C_{6}^{2}$ of C-H <sub>2</sub>                   |  |  |

\* In C<sub>6</sub>D<sub>6</sub>, 25 °C, J in Hz.



Scheme 2 (*i*) [MCl<sub>3</sub>Cp"], Et<sub>2</sub>O, -78 °C to room temperature; (*ii*) [MCl<sub>4</sub>Cp"], Et<sub>2</sub>O, -78 °C to room temperature

solids in high yields. Spectroscopic data for all new compounds are given in Table 1.

The most significant feature of these complexes are the different co-ordination modes and conformations that can be



adopted by these nitrogen ligands in comparison with the 1,3diene ligands in  $[MX(\eta^4-C_4H_4R_2)Cp'']$  (R = H or Me) complexes reported earlier.<sup>4a</sup> For complexes of dimethylbutadiene and related dienes the 'folded envelope' geometry is well established,<sup>7</sup> the bonding of which is best described by a  $\sigma^2$ - $\pi$  structure, with extensive dianionic character of the diene which acts as a four-electron donor, as shown in structure **A**. In the

**Table 2** Selected bond distances (Å) and angles (°) for  $[Zr(C_3H_5)-(DAD)Cp'']$  **4a** with estimated standard deviations (e.s.d.s) in parentheses

| Zr(1)-C(1) Zr(1)-C(2) Zr(1)-C(3) Zr(1)-C(4) Zr(1)-C(5) Zr(1)-C(6) Zr(1)-C(7) Zr(1)-N(6) Zr(1)-N(7) Zr(1)-N(7) Zr(1)-C(8) Zr(1)-C(9)                                                                                                   | 2.517(5)<br>2.505(4)<br>2.551(5)<br>2.541(5)<br>2.516(5)<br>2.597(5)<br>2.597(5)<br>2.591(5)<br>2.100(4)<br>2.105(4)<br>2.480(5)<br>2.518(5) | Zr(1)-C(10) N(6)-C(61) N(6)-C(6) C(6)-C(7) C(6)-C(67) C(7)-N(7) N(7)-C(71) C(7)-C(77) C(8)-C(9) C(9)-C(10)                                                                                                                           | $\begin{array}{c} 2.490(5)\\ 1.403(6)\\ 1.409(6)\\ 1.384(7)\\ 1.519(6)\\ 1.406(6)\\ 1.400(6)\\ 1.514(7)\\ 1.366(8)\\ 1.388(8)\\ \end{array}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{l} N(6)-Zr(1)-N(7)\\ C(8)-Zr(1)-C(10)\\ C(61)-N(6)-C(6)\\ C(61)-N(6)-Zr(1)\\ C(6)-N(6)-Zr(1)\\ C(7)-C(6)-N(6)\\ C(7)-C(6)-C(67)\\ N(6)-C(6)-C(67)\\ N(6)-C(6)-Zr(1)\\ N(6)-C(6)-Zr(1)\\ C(8)-C(9)-C(10)\\ \end{array}$ | 81.5(2)<br>59.1(2)<br>119.4(4)<br>146.3(3)<br>93.4(3)<br>118.9(4)<br>121.8(4)<br>118.7(4)<br>74.3(3)<br>53.8(2)<br>125.8(6)                  | $\begin{array}{l} N(7)-Zr(1)-C(8)\\ N(6)-Zr(1)-C(10)\\ C(71)-N(7)-C(7)\\ C(71)-N(7)-Zr(1)\\ N(7)-C(7)-Zr(1)\\ C(6)-C(7)-N(7)\\ C(6)-C(7)-N(7)\\ C(6)-C(7)-C(77)\\ N(7)-C(7)-C(77)\\ C(6)-C(7)-Zr(1)\\ C(7)-N(7)-Zr(1)\\ \end{array}$ | 91.3(2)<br>85.8(2)<br>118.8(4)<br>147.9(3)<br>54.2(2)<br>118.9(4)<br>121.6(4)<br>119.1(4)<br>74.8(3)<br>92.9(3)                              |



Fig. 1 Crystal structure of  $[Zr(\eta^3-C_3H_3)(DAD)Cp'']$  4a showing the atomic numbering scheme. Ellipsoids are drawn at 40% probability

compounds [MX(diene)Cp"] and most related complexes the diene ligand adopts a supine conformation<sup>7,8</sup> which minimises steric interactions with the Cp ring.

The diazadiene complexes 1–4 also prefer a supine conformation, for similar steric reasons. This is evident from the spectroscopic data. In the <sup>13</sup>C NMR spectra of 1–4 the signals of imine C atoms are observed between  $\delta$  110 and 116. By contrast, the corresponding resonances of the unco-ordinated DAD ligand are found at *ca*.  $\delta$  160, and for diazadienes coordinated in  $\sigma^2$ -N,N'-4e fashion, *i.e. via* the nitrogen donor atoms only, the diene <sup>13</sup>C resonances occur at even lower field, *e.g.* for [ZrCl<sub>4</sub>{RN=C(Ph)C(Ph)=NR}] at  $\delta$  177.3 (R = C<sub>6</sub>H<sub>4</sub>-Me-4).<sup>9</sup> The data are in agreement with an s-*cis* configurated  $\eta^4$ bound DAD ligand <sup>5</sup> with significant dianionic (enediamido) character. The MN<sub>2</sub>C<sub>2</sub> core in 1–4 is best described as a  $\sigma^2$ - $\pi$ -1,3-diazametallacyclopent-2-ene moiety with a 'folded envelope' geometry, as confirmed crystallographically in the case of **4a**.

Whereas diene complexes of the type [MX(diene)Cp] are clearly 14-electron compounds, bonding of a diazadiene involves the nitrogen lone pairs in addition to the  $\pi$  electrons of

the C=C double bonds, and such a ligand is therefore capable of effectively donating (up to) eight electrons, as indicated in structures B and C, leading to electronically comparatively saturated complexes. The  $\pi$  donation from the nitrogen lone pairs makes the alkyl compounds 2 and 3 thermally more robust than the related 14-electron butadiene complexes.4a,6 Further evidence for the reduced electron deficiency of the metal centre comes from a comparison of the spectroscopic data with the analogous diene complexes. The M-CH<sub>3</sub> ligands in 2 show <sup>13</sup>C chemical shifts of  $\delta$  22.7 (2a) and 28.5 (2b); *i.e.* they are high-field shifted by  $\Delta \delta = 22.4$  and 24.8 ppm, respectively, compared to the M-CH<sub>3</sub> signals of the corresponding 1,3-dimethylbutadiene complexes ( $\delta$  45.1 and 53.3).<sup>4a</sup> In the benzyl complexes 3 the resonances due to the *ipso*-carbons of the phenyl rings, at  $\delta$  148, and the  ${}^{1}J_{C-H}$  coupling constants (3a: 120 Hz; 3b: 116.9 Hz) of the benzylic methylene groups are clear evidence for  $\eta^1$ -bound benzyl ligands, whereas in the related buta-1,3-diene they are  $\eta^2$ co-ordinated.<sup>10</sup> More significantly, at room temperature the <sup>1</sup>H NMR spectra of 4 exhibit only two signals in a 1:4 ratio for the central and terminal protons, respectively, of the allyl ligands, indicative of rapid exchange between the syn and anti protons. Such an exchange involves the rapid equilibration between  $\eta^3$ and  $\eta^1$ -allyl co-ordination modes, not observed in the case of 1,3-diene allyl complexes. The slow exchange limit for this process is reached at 268 K (M = Zr) and 203 K (M = Hf). The estimated activation barriers at the coalescence temperatures for the allylic rearrangements,  $\Delta G^{\ddagger} = 50.2$  and 38.8 kJ mol<sup>-1</sup> for 4a and 4b, respectively, are very low and close to those values reported for complexes in which the  $\eta^3$ -bound allyl ligand is significantly distorted toward an n<sup>1</sup>-bonded configuration.<sup>11</sup>

Apart from these allylic rearrangements there are also other fluxional processes. On lowering the temperature, for all of these compounds, the resonances for the SiMe<sub>3</sub> groups and methyl substituents of the DAD ligands split into two peaks. This behaviour can be explained in terms of the hindered rotation of Cp" about the Cp-M vector, most likely due to the interaction with the N-phenyl substituents of the DAD ligands. This leads to rotational activation barriers (2a, 37.6; **2b**, 38.3; **3a**, 40.9; **3b**, 41; **4a**, 43.1; **4b**, 42.4 kJ mol<sup>-1</sup>) close to those observed in metallocene complexes.<sup>12</sup> The inequivalence of the two C5H3-SiMe3 groups suggests a ground-state conformation where one of them is trapped between the two phenyl groups of the DAD ligand; this conformation is indeed found in the solid-state structure of 4a (see below). Finally, for 4a is observed a third rearrangement process which leads to two sets of NMR resonances belonging to two different isomers in which the allyl ligands adopt supine and prone conformations.

The same disposition towards  $\eta^4$ -co-ordination as discussed above for DAD ligands has to be considered for the phenylenediamide complexes **5** and **6**, which in this case would involve donation of electron density from the C<sub>6</sub>H<sub>4</sub> ring to the metal.<sup>13</sup> An indication of the conformation adopted by the phenylene ring is provided by the <sup>1</sup>H NMR resonance of the hydrogen atoms in 4- and 5-position of the Cp" ligand which show a significant upfield shift. Such a shift would be expected if a prone (*endo*) conformation **D** was adopted, so that the Cp protons are positioned close enough to the phenylene ring to experience the influence of its magnetic anisotropy. This prone conformation of the diamido ligand is sterically favoured since it allows the bulky SiMe<sub>3</sub> substituents to point away from the Cp" ligand and was confirmed crystallographically for the tantalum complex **6b** (see below).

#### Structural studies

The structures of complexes 4a and 6b were determined by X-ray diffraction. The structure of 4a is shown in Fig. 1, selected bond lengths and angles are given in Table 2. The ligand environment about the Zr atom is approximately squarepyramidal, with the DAD ligand in a supine conformation. The

| Table 3 | Selected bond distances (A | Å) and angles ( | °) for | $[TaCl_2{C_6H_4}($ | $NSiMe_3)_2-1,2$ | 2}Cp"] 6b | with e.s.d.s in parentheses |
|---------|----------------------------|-----------------|--------|--------------------|------------------|-----------|-----------------------------|
|---------|----------------------------|-----------------|--------|--------------------|------------------|-----------|-----------------------------|

|                    | Molecule 1 | Molecule 2 |                      | Molecule 1 | Molecule 2 |
|--------------------|------------|------------|----------------------|------------|------------|
| Ta(1)-Cl(1)        | 2.4450(10) | 2.4369(10) | N(1)-C(1)            | 1.414(5)   | 1.406(5)   |
| Ta(1)-Cl(2)        | 2.3995(11) | 2.4041(10) | N(1) - Si(1)         | 1.758(3)   | 1.775(3)   |
| Ta(1) - N(1)       | 2.014(3)   | 2.025(3)   | C(1) - C(2)          | 1.403(6)   | 1.419(5)   |
| Ta(1) - N(2)       | 2.023(3)   | 2.033(3)   | C(1) - C(6)          | 1.417(6)   | 1.406(5)   |
| Ta(1)-C(1)         | 2.557(4)   | 2.581(4)   | N(2) - C(2)          | 1.416(5)   | 1.392(5)   |
| Ta(1)-C(2)         | 2.532(4)   | 2.544(4)   | N(2)-Si(2)           | 1.762(4)   | 1.767(3)   |
| Ta(1)-C(7)         | 2.445(4)   | 2.458(4)   | C(2) - C(3)          | 1.421(5)   | 1.421(5)   |
| Ta(1) - C(8)       | 2.463(4)   | 2.513(4)   | C(3) - C(4)          | 1.351(6)   | 1.355(6)   |
| Ta(1) - C(9)       | 2.554(4)   | 2.544(4)   | C(4) - C(5)          | 1.387(6)   | 1.412(6)   |
| Ta(1) - C(10)      | 2.433(4)   | 2.424(4)   | C(5) - C(6)          | 1.376(6)   | 1.366(5)   |
| Ta(1) - C(11)      | 2.401(4)   | 2.387(4)   |                      |            |            |
| N(1)-Ta(1)-N(2)    | 82.91(13)  | 83.42(13)  | Si(1) - N(1) - Ta(1) | 138.5(2)   | 136.4(2)   |
| N(1)-Ta(1)-Cl(1)   | 81.42(9)   | 83.48(8)   | C(1)-C(2)-N(2)       | 116.8(3)   | 117.3(3)   |
| N(1)-Ta(1)-Cl(2)   | 130.00(10) | 130.87(10) | N(2)-C(2)-C(3)       | 123.9(4)   | 124.2(4)   |
| N(2)-Ta(1)-Cl(2)   | 81.66(9)   | 81.22(9)   | C(1)-C(2)-Ta(1)      | 75.0(2)    | 75.4(2)    |
| Cl(1)-Ta(1)-Cl(2)  | 79.58(4)   | 79.06(4)   | N(2)-C(2)-Ta(1)      | 52.9(2)    | 52.9(2)    |
| C(2) - C(1) - N(1) | 116.4(3)   | 117.0(3)   | C(3)-C(2)-Ta(1)      | 141.9(3)   | 143.3(3)   |
| C(2) - C(1) - C(6) | 119.5(4)   | 119.3(3)   | C(2) - N(2) - Si(2)  | 121.0(3)   | 122.0(3)   |
| N(1)-C(1)-C(6)     | 123.8(4)   | 123.3(4)   | C(2)-N(2)-Ta(1)      | 93.2(2)    | 94.1(2)    |
| C(2)-C(1)-Ta(1)    | 73.0(2)    | 72.5(2)    | Si(2)-N(2)-Ta(1)     | 145.1(2)   | 142.8(2)   |
| N(1)-C(1)-Ta(1)    | 51.7(2)    | 51.3(2)    | C(4) - C(3) - C(2)   | 119.8(4)   | 120.7(4)   |
| C(6)-C(1)-Ta(1)    | 145.8(3)   | 147.0(3)   | C(3)-C(4)-C(5)       | 121.6(4)   | 120.6(4)   |
| C(1)-N(1)-Si(1)    | 122.3(3)   | 123.8(3)   | C(6)-C(5)-C(4)       | 120.4(4)   | 120.0(4)   |
| C(1)-N(1)-Ta(1)    | 94.8(2)    | 95.9(2)    | C(5)-C(6)-C(1)       | 119.5(4)   | 120.8(4)   |

five-membered  $ZrN_2C_2$  ring is folded along the N(7)···N(6) vector, as seen in other structures reported for Group 4 enediamido complexes.<sup>5,14</sup> The allyl ligand is  $\eta^3$ -co-ordinated, with a prone (*endo*) conformation; it contrasts in this respect with the allyl ligands in a number of 1,3-diene complexes [M( $\eta^3$ -C<sub>3</sub>H<sub>3</sub>)( $\eta^4$ -diene)Cp]<sup>4a,15</sup> which show supine conformation. The Cp ligand is oriented such that one of the SiMe<sub>3</sub> groups is in the plane bisecting the N–Zr–N angle, and both N-phenyl groups are twisted to minimise steric repulsion.

The nitrogen atoms maintain a trigonal-planar environment and are sp<sup>2</sup> hybridised, as seen by the angle sums at the N atoms (359.1 and 359.9°). The average Zr–N distances of 2.103(4) Å are comparatively short, in agreement with a significant  $p_{\pi}-d_{\pi}$ interaction. We have shown earlier that Zr–N  $\sigma$ -bond lengths can be quite variable, depending on the degree of electronic unsaturation of the metal centre, and can range from *ca.* 2.05 to 2.2 Å, the latter value being indicative of little or no  $\pi$ -bonding contribution.<sup>3j</sup>

The structural parameters within the diazadiene are in agreement with an enediamido dianion, as discussed above, *i.e.* the C–N distances are significantly longer than in the uncoordinated ligand,<sup>16</sup> and the C(6)–C(7) distance of 1.384(7) Å indicates a C=C double bond. As a result of the folding of the ZrN<sub>2</sub>C<sub>2</sub> ring the distances between Zr and C(6) and C(7) [2.597(5) and 2.591(5) Å] fall well within the range expected for  $\pi$  co-ordination to the C=C bond. However, this is weaker than in the butadiene complex [Zr( $\eta^3$ -C<sub>3</sub>H<sub>5</sub>)( $\eta^4$ -C<sub>4</sub>H<sub>4</sub>Me<sub>2</sub>)Cp] where the bonds to C(6) and C(7) are on average 0.09 Å shorter.

Crystals of the tantalum complex **6b** contain two crystallographically independent molecules. The structure of molecule 2 is shown in Fig. 2. Selected bond lengths and angles are collected in Table 3. The compound strongly resembles the recently reported, sterically slightly bulkier SiPr<sup>i</sup><sub>3</sub> derivative [TaCl<sub>2</sub>-{C<sub>6</sub>H<sub>4</sub>(NSiPr<sup>i</sup><sub>3</sub>)<sub>2</sub>}Cp\*] **7**.<sup>13b</sup> Both C<sub>5</sub>H<sub>3</sub>–SiMe<sub>3</sub> groups point away from the phenylenediamide ligand; in contrast to the Cp" orientation in the diazadiene complex **4a**. Complex **6b** shows rather short Ta–N bond distances [average 2.020 Å for molecule 1 and 2.029 Å for molecule 2] compared to **7** (2.037 Å). The N(1)–M–N(2) angles for both compounds are similar (**4a**: 81.5°; **6b**: 83°). The Ta–Cl distances and the Cl(1)–Ta–Cl(2) angles are comparable to those in **7**. The nitrogen atoms are essentially trigonal planar, although in both independent molecules one nitrogen tends slightly more towards pyramidality than the



Fig. 2 Crystal structure of  $[TaCl_2{C_6H_4(NSiMe_3)_2-1,2}Cp'']$  6b (molecule 2), showing the atomic numbering scheme. Ellipsoids are drawn at 40% probability

other, with angle sums of 355.7 and 359.3° for molecule 1 and 356.1 and 358.8° for molecule 2. As expected on the basis of the NMR spectra, the amido ligand is co-ordinated in a prone conformation. The metal centre interacts closely with the C(1)-C(2) bond of the phenylene ring. The TaN<sub>2</sub>C<sub>2</sub> ring is folded, with a dihedral angle between the TaN<sub>2</sub> and  $C(1)C(2)N_2$  least squares planes of 56.8(2)° for molecule 1 and 53.8(2)° for molecule 2. The N(1)–C(1) and N(2)–C(2) distances are identical within experimental error to the corresponding bond lengths in the diazadiene complex **4a** above, within the range expected for partial N–C double-bond character of an  $\eta^4$ -bound ligand. Similar geometric parameters have recently been observed in  $[Zr\{C_6H_4(NSiPr_{3})_2-1,2\}_2], [TiCl_2\{C_6H_4(NSiPr_{3})_2-1,2\}].^{13}$ 

### Conclusion

Monocyclopentadienyl complexes of Group 4 and 5 metals readily form compounds with chelating nitrogen ligands in

#### Table 4 Analytical data of complexes 1-6

|                                                                            |              | Yield (%) | Analysis* (%) |           |           |             |
|----------------------------------------------------------------------------|--------------|-----------|---------------|-----------|-----------|-------------|
| Complex                                                                    | Colour       |           | С             | Н         | N         | Cl          |
| 1a [ZrCl(DAD)Cp"]                                                          | Pale yellow  | 76        | 55.9 (56.6)   | 6.7 (6.5) | 5.0 (4.8) |             |
| 1b [HfCl(DAD)Cp"]                                                          | Pale yellow  | 78        | 48.6 (49.2)   | 6.1 (5.7) | 4.1 (4.2) |             |
| 2a [ZrMe(DAD)Cp"]                                                          | Yellow-green | 85        | 60.9 (60.9)   | 7.6 (6.7) | 5.0 (5.1) |             |
| 2b [HfMe(DAD)Cp"]                                                          | Light brown  | 82        | 51 (52.6)     | 5.8 (5.8) | 4.3 (4.4) |             |
| 3a [Zr(CH <sub>2</sub> Ph)(DAD)Cp"]                                        | Yellow       | 93        | 64.3 (65.0)   | 7.2 (7.1) | 4.3 (4.5) |             |
| 3b [Hf(CH <sub>2</sub> Ph)(DAD)Cp"]                                        | Orange-brown | 90        | 56.3 (57.1)   | 6.7 (6.2) | 3.1 (3.9) |             |
| $4a \left[Zr(C_3H_5)(DAD)Cp''\right]$                                      | Pale yellow  | 88        | 59.0 (58.2)   | 7.5 (7.3) | 4.7 (4.8) |             |
| 4b $[Hf(C_3H_5)(DAD)Cp'']$                                                 | Pale yellow  | 87        | 51.3 (50.5)   | 6.5 (6.4) | 3.6 (4.2) |             |
| 5a $[ZrCl{C_6H_4(NSiMe_3)_2}Cp'']$                                         | Green        | 92        | 47.3 (47.1)   | 7.5 (7.4) | 4.7 (4.8) | 6.0 (6.0)   |
| 6a [NbCl <sub>2</sub> { $C_6H_4$ (NSiMe <sub>3</sub> ) <sub>2</sub> }Cp''] | Red          | 88        | 44.1 (44.3)   | 7.1 (7.0) | 4.5 (4.5) | 11.1 (11.4) |
| <b>6b</b> $[TaCl_2{C_6H_4(NSiMe_3)_2}Cp'']$                                | Red-brown    | 90        | 39.1 (38.8)   | 6.2 (6.1) | 3.8 (3.9) | 9.6 (10.0)  |
| Required values given in parentheses.                                      |              |           |               |           |           |             |

which  $\sigma^2$ - $\pi$  co-ordination is adopted. The compounds are thermally more stable than the related 1,3-diene complexes and show different ground-state conformations. The increased electronic saturation through  $\pi$  interactions with the nitrogen atoms leads to pronounced fluxionality of the allyl derivatives. The influence of these changes on the activity of these complexes as precursors for olefin polymerisation catalysts will be reported separately.

## Experimental

## **General procedures**

All manipulations were performed under dried nitrogen using Schlenk techniques. Solvents were distilled under nitrogen from sodium (toluene), sodium–benzophenone (diethyl ether, thf), sodium–potassium alloy (light petroleum, b.p. 40–60 °C) or CaH<sub>2</sub> (CH<sub>2</sub>Cl<sub>2</sub>). Deuteriated solvents were stored over activated 4 Å molecular sieves and degassed by several freeze–thaw cycles. The compounds [MCl<sub>3</sub>Cp"] (M = Zr or Hf),<sup>17</sup> [MCl<sub>4</sub>Cp"] (M = Nb or Ta),<sup>18</sup> 1,4-diphenyl-2,3-dimethyl-1,4-diazabuta-1,3-diene (DAD)<sup>19</sup> and C<sub>6</sub>H<sub>4</sub>(NHSiMe<sub>3</sub>)<sub>2</sub>-1,2<sup>20</sup> were prepared according to published procedures. The NMR spectra were recorded on a Bruker DPX300 spectrometer and referenced to the residual solvent protons. Analytical data are collected in Table 4.

## Preparation of [ZrCl(DAD)Cp"] 1a

A solution of  $[ZrCl_3Cp'']$  (4.6 g, 11.3 mmol) in Et<sub>2</sub>O (60 cm<sup>3</sup>) at -78 °C was added to a mixture of activated Mg turnings (5.5 g, 226 mmol) and DAD (2.7 g, 11.4 mmol). The reaction mixture was allowed to warm to room temperature and stirred for 12 h. The Et<sub>2</sub>O was removed and the residue extracted with toluene (2 × 50 cm<sup>3</sup>). The filtrate was taken to dryness and washed with light petroleum (20 cm<sup>3</sup>). On drying under vacuum **1a** was obtained as a pale yellow solid (4.9 g, 8.5 mmol, 76%).

### Preparation of [HfCl(DAD)Cp"] 1b

The compound was prepared from  $[HfCl_3Cp'']$  (5.1 g, 10.3 mmol) following the method given for **1a** and obtained as a pale yellow solid (5.3 g, 8 mmol, 78%).

## Preparation of [Zr(CH<sub>2</sub>Ph)(DAD)Cp"] 3a

To a solution of **1a** (1.77 g, 3.1 mmol) in Et<sub>2</sub>O (30 cm<sup>3</sup>) at -40 °C was added by syringe 3.1 cm<sup>3</sup> of a 1.0 M solution of PhCH<sub>2</sub>MgCl (3.1 mmol) in Et<sub>2</sub>O. The mixture was allowed to warm to room temperature and stirred for 3 h. After removal of the solvent the resultant solid was extracted with light petroleum (2 × 20 cm<sup>3</sup>) to give a bright yellow solution and a white precipitate of magnesium chloride. Concentration and cooling of the filtrate produced **3a** as a yellow solid (1.8 g, 2.9 mmol, 93%).

The other methyl (2), benzyl (3b) and allyl (4) derivatives [M(R)(DAD)Cp''] were prepared similarly in yields of 82–93% which gave satisfactory elemental analyses (Table 4).

## Preparation of [ZrCl{C<sub>6</sub>H<sub>4</sub>(NSiMe<sub>3</sub>)<sub>2</sub>-1,2}Cp"] 5a

A solution of C<sub>6</sub>H<sub>4</sub>(NLiSiMe<sub>3</sub>)<sub>2</sub>-1,2 (1.27 g, 4.8 mmol) in Et<sub>2</sub>O (20 cm<sup>3</sup>) was added to a solution of [ZrCl<sub>3</sub>Cp''] (1.92 g, 4.72 mmol) in Et<sub>2</sub>O (30 cm<sup>3</sup>) at -78 °C. The solution was stirred for 12 h, while slowly being allowed to warm to room temperature. The volatile material was removed under vacuum, and the residue extracted with light petroleum (2 × 30 cm<sup>3</sup>), The resulting solution was taken to dryness, kept under high vacuum for several days and cooled (-20 °C) for 2 months to afford **5a** as a green solid (2.58 g, 4.32 mmol, 92%).

#### Preparation of [HfCl{C<sub>6</sub>H<sub>4</sub>(NSiMe<sub>3</sub>)<sub>2</sub>-1,2}Cp"] 5b

This compound was prepared from [HfCl<sub>3</sub>Cp''] (2.24 g, 4.53 mmol) following the method given for 5a and obtained as a dark orange oil in 93% yield.

## Preparation of [NbCl<sub>2</sub>{C<sub>6</sub>H<sub>4</sub>(NSiMe<sub>3</sub>)<sub>2</sub>-1,2}Cp"] 6a

A solution of  $C_6H_4$ (NLiSiMe<sub>3</sub>)<sub>2</sub>-1,2 (1.50 g, 5.67 mmol) in Et<sub>2</sub>O (20 cm<sup>3</sup>) was added to a suspension of [NbCl<sub>4</sub>Cp''] (2.52 g, 5.67 mmol) in Et<sub>2</sub>O (50 cm<sup>3</sup>) at -78 °C. The solution was stirred for 12 h and allowed to warm slowly to room temperature. The volatiles were removed *in vacuo*, and the residue was extracted with light petroleum (2 × 50 cm<sup>3</sup>). The resulting solution was concentrated and cooled (-20 °C) to afford **6a** as a red crystal-line solid (3.11 g, 4.99 mmol, 88%).

# Preparation of [TaCl<sub>2</sub>{C<sub>6</sub>H<sub>4</sub>(NSiMe<sub>3</sub>)<sub>2</sub>-1,2}Cp"] 6b

The compound was prepared from  $[TaCl_4Cp'']$  (2 g, 3.75 mmol) following the method given for **6a** and obtained as a crystalline red-brown solid (2.4 g, 3.38 mmol, 90% yield). Crystals suitable for X-ray diffraction were obtained from toluene.

#### X-Ray crystallography

Data for compound **4a** were collected at 160 K on a Stoe STADI4 diffractometer operating in the  $\omega$ - $\theta$  scan mode. Data for **6b** were collected at 150 K on a Delft Instruments FAST TV-area detector diffractometer positioned at the window of a rotating anode generator and following previously described procedures.<sup>21</sup> In both cases Mo-Ka radiation ( $\lambda = 0.710$  73 Å) was used. Full details of crystal data, data collection and structure refinement are given in Table 5.

The structures of both compounds were solved by standard heavy-atom methods using SHELXS 86.<sup>23</sup> Refinement, by full-matrix least squares on  $F^2$  using SHELXL 93,<sup>24</sup> was essentially the same for both compounds. Non-hydrogen atoms were

#### Table 5 Crystal data for compounds 4a and 6b

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4a                                                                | 6b                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C <sub>30</sub> H <sub>42</sub> N <sub>2</sub> Si <sub>2</sub> Zr | $C_{23}H_{43}Cl_2N_2Si_4Ta$                                                                |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 578.06                                                            | 711.89                                                                                     |
| Crystal dimensions/mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.41 \times 0.28 \times 0.19$                                    | $0.35 \times 0.215 \times 0.215$                                                           |
| Crystal system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Monoclinic                                                        | Monoclinic                                                                                 |
| Space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $P2_1/n$                                                          | $P2_1/c$                                                                                   |
| aĺÅ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0793(8)                                                        | 21.803(3)                                                                                  |
| b/Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.201(2)                                                         | 13.681(2)                                                                                  |
| c/Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.707(2)                                                         | 23.7284(9)                                                                                 |
| β/°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98.890(8)                                                         | 114.672(11)                                                                                |
| $U/Å^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3033.1(5)                                                         | 6431.7(13)                                                                                 |
| Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                 | 8                                                                                          |
| $D_{\rm c}/{ m g~cm^{-3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.27                                                              | 1.47                                                                                       |
| $\mu/mm^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.462                                                             | 3.564                                                                                      |
| F(000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1216                                                              | 2864                                                                                       |
| Absorption correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ψ scans                                                           | DIFABS <sup>22</sup>                                                                       |
| Maximum, minimum transmission factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.917, 0.529                                                      | 0.616, 0.371                                                                               |
| θ Range/°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1.66 \le \theta \le 24.99$                                       | $1.76 \le \theta \le 24.99$                                                                |
| Index range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-11 \le h \le 11,$                                               | $-25 \le h \le 21,$                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0 \le k \le 20,$                                                 | $-15 \le k \le 12,$                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0 \le l \le 21$                                                  | $-26 \le l \le 24$                                                                         |
| Reflections collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5962                                                              | 24 855                                                                                     |
| Unique reflections, n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $5335 (R_{\rm int} = 0.069)$                                      | 9616 ( $R_{\rm int} = 0.046$ )                                                             |
| Reflections with $F_c^2 > 2.0\sigma(F_c^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4201                                                              | 8123                                                                                       |
| Number of parameters, p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 340                                                               | 601                                                                                        |
| Goodness of fit on $F^2$ , $s^a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.197                                                             | 0.993                                                                                      |
| $R1^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0508                                                            | 0.0278                                                                                     |
| $wR2^{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.1611                                                            | 0.0647                                                                                     |
| Weighting parameters $a, b^{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0673, 8.242                                                     | 0.0325, 0.0000                                                                             |
| Largest difference peak, hole/e Å <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.621, -0.702                                                     | 1.955, -1.025                                                                              |
| $\sum_{n=1}^{\infty} (1-p)^{\frac{1}{2}} k^{\frac{1}{2}} k^{\frac{1}{2}} k^{\frac{1}{2}} = \sum_{n=1}^{\infty}  F_n  -  F_n  \sum_{n=1}^{\infty}  F_n  k^{\frac{1}{2}} k^$ | $W(F_0^2 - F_c^2)^2 ]/\Sigma [W(F_0^2)^2] \}^{\frac{1}{2}}$       | $^{d}w = [\sigma^{2}(F_{0}^{2}) + (aP)^{2} + bP]^{-1}$ , where $P = (F_{0}^{2} + bP)^{-1}$ |

 $^{a} s = \{ \Sigma [w(F_{o} 2F_{c}^{2})/3. \}$ 

refined with anisotropic displacement parameters. Hydrogen atoms were constrained to idealised positions using a riding model (with free rotation for methyl groups).

CCDC reference number 186/816.

See http://www.rsc.org/suppdata/dt/1998/393/ for crystallographic files in .cif format.

## Acknowledgements

G. J. P. thanks the Spanish Ministry for Education and Science for a research fellowship. We are grateful to Professor M. B. Hursthouse (EPSRC National Crystallographic Service, University of Wales, Cardiff) for the collection of the X-ray data set of complex **6b**.

#### References

- Reviews: M. Bochmann, J. Chem. Soc., Dalton Trans., 1996, 255;
   H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger and R. Waymouth, Angew. Chem., Int. Ed. Engl., 1995, 34, 1143.
- 2 J. C. Stevens, F. J. Timmers, D. R. Wilson, G. F. Schmidt, P. N. Nickias, R. K. Rosen, G. W. Knight and S. Lai (to Dow), *Eur. Pat. Appl.*, 416 815, 1990; J. A. M. Canich (to Exxon), *Eur. Pat. Appl.*, 420 436, 1990.
- 3 (a) J. A. M. Canich and H. W. Turner (to Exxon), WO 92/12162, 1991; (b) A. D. Horton and J. de With, Chem. Commun., 1996, 1375; (c) A. D. Horton, J. de With, A. J. van der Linden and H. van de Weg, Organometallics, 1996, 15, 2672; (d) S. Tinkler, R. J. Deeth, D. J. Duncalf and A. McCamley, Chem. Commun., 1996, 2623; (e) F. G. N. Cloke, T. J. Geldbach, P. B. Hitchcock and J. B. Love, J. Organomet. Chem., 1996, 506, 343; (f) S. A. A. Shah, H. Dorn, A. Voigt, H. W. Roesky, E. Parisini, H. G. Schmidt and M. Noltemeyer, Organometallics, 1996, 15, 3176; (g) J. D. Scollard, D. H. McConville, N. C. Payne and J. J. Vittal, Macromolecules, 1996, 29, 5241; (h) J. D. Scollard and D. H. McConville, J. Am. Chem. Soc., 1996, 118, 10 008; (i) R. Baumann, W. M. Davis and R. R. Schrock, J. Am. Chem. Soc., 1997, 119, 3830; (j) N. A. H. Male, M. Thornton-Pett and M. Bochmann, J. Chem. Soc., Dalton Trans., 1997, 2487.
- 4 (a) G. Jiménez Pindado, M. Thornton-Pett and M. Bochmann, J. Chem. Soc., Dalton Trans., 1997, 3115; (b) G. Jiménez Pindado,

M. Thornton-Pett, M. Bowkamp, A. Meetsma, B. Hessen and M. Bochmann, *Angew. Chem.*, *Int. Ed. Engl.*, 1997, **36**, 2358; (c) B. Hessen and H. van der Heijden, *J. Organomet. Chem.*, 1997, **534**, 237.

- 5 For related Ti and Zr diazadiene complexes see, for example: D. Walther, G. Kreisel and R. Kirmse, Z. Anorg. Allg. Chem., 1982, 487, 149; H. tom Dieck, H. J. Rieger and G. Fendesak, Inorg. Chim. Acta, 1990, 177, 191; J. Scholz, M. Dlikan, D. Ströhl, A. Dietrich, H. Schumann and K. H. Thiele, Chem. Ber., 1990, 123, 2279; J. Scholz, A. Dietrich, H. Schumann and K. H. Thiele, Chem. Ber., 1991, 124, 1035.
- 6 G. Jiménez Pindado, M. Thornton-Pett and M. Bochmann, *Chem. Commun.*, 1997, 609.
- 7 G. Erker, C. Krüger and G. Müller, Adv. Organomet. Chem., 1985, 24, 1; J. Blenkers, B. Hessen, F. van Bolhius, A. J. Wagner and J. H. Teuben, Organometallics, 1987, 6, 459.
- 8 H. Yamamoto, H. Yasuda, K. Tatsumi, K. Lee, A. Nakamura, J. Chen, Y. Kai and N. Nasai, *Organometallics*, 1989, **8**, 105.
- 9 J. Scholz, B. Richter, R. Goddard and C. Krüger, *Chem. Ber.*, 1993, 126, 57.
- 10 G. Jiménez Pindado, M. Thornton-Pett and M. Bochmann, unpublished work.
- T. J. Prins, B. E. Hauger, P. J. Vance, M. E. Wemple, D. A. Kort, J. P. O'Brien, M. E. Silver and J. C. Huffman, *Organometallics*, 1991, 10, 979; E. J. Larson, P. C. Van Dort, J. R. Lakanen, D. W. O'Neill, L. M. Pederson, J. J. McCandless, M. E. Silver, S. O. Russo and J. C. Huffmann, *Organometallics*, 1988, 7, 1183.
- 12 G. Erker, R. Natte, C. Krüger, R. Schlund, R. Benn, H. Grondey and R. Mynott, *J. Organomet. Chem.*, 1989, 364, 119; G. Erker, R. Natte, G. Tainturier and A. Rheingold, *Organometallics*, 1989, 8, 454.
- 13 (a) K. Aoyagi, P. K. Gantzel and T. D. Tilley, *Polyhedron*, 1996, 23, 4299; (b) K. Aoyagi, P. K. Gantzel, K. Kalai and T. D. Tilley, *Organometallics*, 1996, 15, 923; (c) D. D. VanderLende, K. A. Abboud and J. M. Boncella, *Organometallics*, 1994, 13, 3378.
- F. J. Berg and J. L. Petersen, Organometallics, 1991, 10, 1599;
   B. Hessen, J. E. Bol, J. L. de Boer, A. Meetsma and J. H. Teuben, J. Chem. Soc., Chem. Commun., 1989, 1276; J. E. Bol, B. Hessen, J. H. Teuben, W. J. J. Smeets and A. L. Spek, Organometallics, 1992, 11, 1981; J. R. Bocarsly, C. Floriani, A. Chiesi-Villa and C. Guastini, Organometallics, 1986, 5, 2380; L. R. Chamberlain, L. D. Durfee, P. E. Fanwick, L. M. Kobriger, S. L. Latesky, A. K. McMullen, B. D. Steffey, I. P. Rothwell, K. Folting and J. C. Huffman, J. Am. Chem. Soc., 1987, 109, 6068.

- 15 G. Erker, K. Berg, C. Krüger, G. Müller, K. Angermund, R. Benn and G. Schroth, Angew. Chem., Int. Ed. Engl., 1984, 23, 455.
- 16 G. van Koten and K. Vrieze, Adv. Organomet. Chem., 1982, 21, 153; C. J. M. Huige, A. L. Spek and J. L. de Boer, Acta Crystallogr., Sect. *C*, 1985, **41**, 113.
- 17 C. H. Winter, X. X. Zhou, D. A. Dobbs and M. J. Heeg, Organometallics, 1991, 10, 210.
- 18 A. M. Cardoso, R. J. H. Clark and S. Moorhouse, J. Chem. Soc., Dalton Trans., 1980, 1156.
- 19 H. tom Dieck and I. W. Renk, Chem. Ber., 1971, 104, 92; 1972, 105, 1403
- 20 D. Kummer and E. G. Rochow, Angew. Chem., 1963, 75, 207; R. Goetze and H. Nöth, Chem. Ber., 1976, 109, 3247; L. Birkofer, H. P. Kühlthau and A. Ritter, Chem. Ber., 1960, 93, 2810.
- 21 A. Darr, S. R. Drake, M. B. Hursthouse and K. M. A. Malik, Inorg. Chem., 1993, 32, 5704.
- 22 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
- 23 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
  24 G. M. Sheldrick, SHELXL 93, Program for refinement of crystal structures, University of Göttingen, 1993.

Received 10th October 1997; Paper 7/07331C