## Dioxygen activation by a novel manganese(II) thiolate complex with hydrotris(3,5-diisopropylpyrazol-1-yl)borate ligand

Hidehito Komatsuzaki,<sup>*a,b*</sup> Yuichi Nagasu,<sup>*a*</sup> Kantaro Suzuki,<sup>*a*</sup> Takao Shibasaki,<sup>*a*</sup> Minoru Satoh,<sup>*a*</sup> Fujio Ebina,<sup>*a*</sup> Shiro Hikichi,<sup>*s,b*</sup> Munetaka Akita<sup>*b*</sup> and Yoshihiko Moro-oka<sup>*s,b*</sup>

<sup>a</sup> Department of Chemistry and Material Engineering, Ibaraki National College of Technology, 866 Nakane, Hitachinaka 312, Japan

<sup>b</sup> Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan

Reaction of a  $Mn^{II}$  thiolate complex bearing hydrotris(3,5diisopropylpyrazol-1-yl)borate with O<sub>2</sub> resulted in O–O bond activation to give a dinuclear  $Mn^{III}$  bis( $\mu$ -oxo) complex and a ligand-oxygenated dinuclear  $Mn^{III}$   $\mu$ -oxo complex, or the dinuclear  $Mn^{III,IV}$   $\mu$ -acetato-bis( $\mu$ -oxo) complex in the presence of a  $Mn^{II}$  acetate complex.

Dioxygen activation on transition-metal ions is one of the attractive topics from the standpoints of bioinorganic and synthetic chemistry. Manganese–oxygen (O<sub>2</sub><sup>-</sup>, O<sub>2</sub><sup>2-</sup>, O<sup>2-</sup>, etc.) species are suggested to take part in the physiological dioxygen metabolism and catalytic oxidation of organic compounds.<sup>1</sup> By using the hindered tris(pyrazolyl)borate ligand, hydrotris(3,5diisopropylpyrazol-1-yl)borate (L), we have investigated the chemistry of Mn complexes with dioxygen and its derivatives, for example, synthesis and characterization of the mononuclear Mn<sup>III</sup> peroxo complex,<sup>2</sup> aliphatic C-H bond oxygenation in the dimanganese complex with  $O_{2,3}^{3}$  and superoxide anion dismutation by the Mn<sup>II</sup>-carboxylate complexes.<sup>4</sup> It is notable that the co-ordinatively unsaturated carboxylate complex,  $Mn^{II}L(O_2CPh)$ ,<sup>4,5</sup> cannot activate  $O_2$ , although the Fe<sup>II</sup> derivative shows reversible  $O_2$  binding ability to give the corresponding dinuclear Fe<sup>III</sup>-µ-peroxo complex.<sup>6</sup> In order to realize O<sub>2</sub> activation on a MnL complex, we adopted a thiolate ligand, which is known to be a highly electrondonating soft base compared to such ligands as carboxylate, so as to increase the electron density at metal centers. In this communication, we report the dioxygen activation by a coordinatively unsaturated Mn<sup>II</sup>L-thiolate complex, and the intermediacy of a Mn-O<sub>2</sub> adduct has been confirmed by a trapping experiment.

Synthesis of the thiolate complex and its oxygenation reactions are summarized in Scheme 1. The  $Mn^{II}$  thiolate complex  $Mn^{II}L(SC_6H_4NO_2-p)$  1 † was prepared by reaction of a dinuclear  $Mn^{II}$  bis( $\mu$ -hydroxo) complex,  $LMn(\mu$ -OH)<sub>2</sub>MnL 2,<sup>7</sup> with *p*nitrobenzenethiol under Ar. Formulation of complex 1 is based



on its IR spectrum, with sharp absorptions around 1590–1570 cm<sup>-1</sup> arising from the *p*-nitrophenyl group, and its field desorption MS spectrum  $[m/z = 675 \ (M^+)]$ . The Mn center of **1** is assumed to have a co-ordinatively unsaturated geometry as found in the analogous PhO- and RS-LFe<sup>II</sup> complexes.<sup>8</sup>

As expected, the thiolate complex **1** readily reacted with dioxygen in a manner similar to the dinuclear  $Mn^{II}$  bis-(µ-hydroxo) complex **2**.<sup>3</sup> When a toluene solution of **1** was stirred under O<sub>2</sub> atmosphere for 1 d, the solution changed from yellow to dark brown. From this dark brown solution, three products were isolated: the dinuclear  $Mn^{III}$  bis(µ-oxo) complex,  $LMn(\mu-O)_2MnL$  **3**,<sup>7</sup> the ligand-oxygenated dinuclear  $Mn^{III}$  complex **4**,<sup>3</sup> and the corresponding disulfide (O<sub>2</sub>NC<sub>6</sub>H<sub>4</sub>S–SC<sub>6</sub>-H<sub>4</sub>NO<sub>2</sub>).‡ The thiolate complex **1** was not hydrolyzed by treatment with an excess amount of H<sub>2</sub>O [equation (1)]. We can

$$LMn^{II} - SR + H_2O \longrightarrow 2 + RSH (1)$$

conclude that the present oxidation reactions proceed *via* degradation of  $Mn-O_2$  species which are formed by reaction of  $O_2$  and 1 (not 2) as will be discussed below.



<sup>‡</sup> The disulfide product was obtained almost quantitatively. The yield (based on complex 1) was determined by GC analysis. Yield of RS–SR in the reaction of 1 with  $O_2$  in the absence of 5 88.2%, in the presence of 5 87.4%.

<sup>†</sup> Spectroscopic data for complex **1** (Found: C, 59.13; H, 7.40; N, 14.45. Calc. for C<sub>33</sub>H<sub>50</sub>BMnN<sub>7</sub>O<sub>2</sub>: C, 58.75; H, 7.47; N, 14.53%). IR (KBr pellet,  $\bar{\nu}/cm^{-1}$ ): 2550m (BH), 1586, 1571s (PhC=C and NO<sub>2</sub>). Field desorption MS: *mlz* 675 (*M*<sup>+</sup>). The two co-ordinating MeCN molecules are dissociated from the metal center in non-co-ordinating solvent such as toluene or CH<sub>2</sub>Cl<sub>2</sub>, evidenced by the reversible color change from yellow (in toluene) to reddish orange (in MeCN). UV/VIS data: [toluene solution, 23 °C, nm ( $\epsilon/M^{-1}$  cm<sup>-1</sup>)] 322 (9860); [MeCN solution, 23 °C, nm ( $\epsilon/M^{-1}$  cm<sup>-1</sup>)] 318 (7580), 487 (9740). In the present study, oxygenation reactions were carried out in toluene to avoid the co-ordination of solvent. The monomeric structure of **1** has been confirmed by X-ray crystallography. Single crystal suitable for analysis have been obtained from MeCN solution. The Mn<sup>II</sup> center is co-ordinated by an N<sub>5</sub>S donor set including two MeCN molecules. Crystal data for MnL(SC<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>)(MeCN)<sub>2</sub>·3.5MeCN: C<sub>44</sub>H<sub>68</sub>BMnN<sub>12.5</sub>O<sub>2</sub>S, M = 901.9, monoclinic, space group C2/c (no. 15), a = 42.99(6), b = 12.475(4), c = 19.686(6) Å,  $\beta = 94.85(6)^\circ$ , U = 10.519(5) Å<sup>3</sup>, Z = 8, T = -60 °C,  $D_c = 1.14$  g cm<sup>-1</sup>,  $\mu$ (Mo-Ka) = 3.36 cm<sup>-1</sup>, R(R') = 10.01 (10.98)% for 3728 reflections with 484 parameters. CCDC reference number 186/859.



Although no Mn-O2 species was detected, its participation was supported by the following trapping experiment. Reaction of 1 with dioxygen in the presence of a  $Mn^{II}$  acetate complex, MnL(OAc) 5,§ resulted in the predominant formation of the Mn<sup>III,IV</sup> µ-acetato-bis(µ-oxo) complex, LMn(µ-OAc)(µ-O)<sub>2</sub>-MnL 6¶ (59% isolated yield based on 1),<sup>9</sup> and the disulfide.‡ It is worth noting that the acetate complex 5 is sluggish toward oxidation under similar reaction conditions. When a toluene solution of 5 was stirred under  $O_2$ , the solution turned from pale yellow to pale brown, but the reaction was very slow (over a week), and neither the Mn-O<sub>2</sub> adducts nor the Mn<sup>III,IV</sup> complex 6 were detected. In addition, reactions of the  $bis(\mu-oxo)$ complex 3 and the acetate complex 5 or aqueous NaOAc or acetic acid under O<sub>2</sub> did not yield 6 [equation (2)]. Therefore, it

$$\begin{array}{cccc}
 5 \\
 or & O_2 \\
 3 + HOAc & \longrightarrow 6 (2) \\
 or & NaOAc(aq)
\end{array}$$

is concluded that the dinuclear Mn<sup>III,IV</sup> complex 6 is formed via a trapping process of the Mn–O<sub>2</sub> adduct by 5.

Plausible mechanisms for the present  $O_2$  activation reactions are summarized in Scheme 2. Reaction of complex 1 with O<sub>2</sub> may form a Mn<sup>III</sup>-superoxo complex 7, which further reacts with another molecule of the  $Mn^{II}$  complex 1 or 5 to give the corresponding dinuclear  $Mn^{III}$  µ-peroxo intermediate 8. Metal– superoxo species are known to work as nucleophiles, therefore, the nucleophilic attack of anionic 7 at the positive  $Mn^{\rm II}$  center of 5 is more favorable than that of 1 and therefore the trapping experiment is successful. Subsequent homolysis of the O-O and Mn-S bonds || results in the formation of 3, 4 and/or **6**.<sup>10</sup> During the formation of the  $\mu$ -acetato-bis( $\mu$ -oxo) complex 6, the acetate ligand in 5 bridges the two metal centers (socalled 'carboxylate shift') as observed in the formation of the dinuclear Fe<sup>III</sup> µ-peroxo complex containing L.<sup>11</sup>

It is known that reduction of dioxygen to superoxide in a one-electron transfer step has a more negative electrochemical potential than that of the two-electron reduction (O<sub>2</sub> to  $O_2^{2-}$ ).<sup>12</sup> The O2 activation ability of the co-ordinatively unsaturated thiolate complex 1 may arise from the high electron density at the Mn<sup>II</sup> center as we anticipated. Thiolate complexes with redoxactive metal ions are known to cause homolytic metal-sulfur bond cleavage to give the corresponding disulfides and reduced metal ions, in fact, the thiolate ligand of 1 works as a good leaving group as well as a reductant toward the Mn center. In the case of our previous O<sub>2</sub> activation studies by the hydroxo complex  $2^{3}$ , the dinuclear structure constructed by two fiveco-ordinated Mn<sup>II</sup> centers is advantageous for the two-electron reduction of O<sub>2</sub> giving the µ-peroxo intermediates, and the hydroxide ligands are proposed to be eliminated as H<sub>2</sub>O during further O-O bond activation.3 Therefore, it is concluded that a requisite of the O2-activating Mn<sup>II</sup> complex is the presence of co-ordinatively unsaturated metal centers with O<sub>2</sub> reducing potential, and good leaving ligands to induce further O-O bond activation.

In conclusion, O<sub>2</sub> activation has been achieved by a Mn<sup>II</sup>thiolate complex and the resulting superoxo intermediate reacts with an acetate complex to give a  $\mu$ -peroxo intermediate 8, which is converted into the  $\mu$ -acetato-bis( $\mu$ -oxo) complex 6 after O-O and Mn-S bond rupture. Further investigations including detection of the O2 adducts and oxidation reactions of external substrates will be performed.

## Acknowledgements

We are grateful to the Ministry of Education, Science, Sports and Culture of the Japanese government for financial support of the research (Grant-in-Aid for Specially Promoted Scientific Research: No. 08102006).

## References

- 1 Manganese Redox Enzymes, ed. V. L. Pecoraro, VCH, New York, 1992; K. Wieghardt, Angew. Chem., Int. Ed. Engl., 1989, 28, 1153; V. L. Pecoraro, M. J. Baldwin and A. Gelasco, Chem. Rev., 1994, 94, 807; T. Mukaiyama and T. Yamada, Bull. Chem. Soc. Jpn., 1995, 68, 17
- 2 N. Kitajima, H. Komatsuzaki, S. Hikichi, M. Osawa and Y. Morooka, J. Am. Chem. Soc., 1994, 116, 11 596.
- 3 N. Kitajima, M. Osawa, M. Tanaka and Y. Moro-oka, J. Am. Chem. Soc., 1991, 113, 8952.
- 4 N. Kitajima, M. Osawa, N. Tamura, Y. Moro-oka, T. Hirano, M. Hirobe and T. Nagano, Inorg. Chem., 1993, 32, 1879.
- 5 M. Osawa, Y. Moro-oka and N. Kitajima, Yuki Gosei Kagaku Kyokaishi, 1993, 51, 921.
- 6 N. Kitajima, H. Fukui, Y. Moro-oka, Y. Mizutani and T. Kitagawa, J. Am. Chem. Soc., 1990, 112, 6402; N. Kitajima, N. Tamura, H. Amagai, H. Fukui, Y. Moro-oka, Y. Mizutani, T. Kitagawa, R. Mathur, K. Heerwegh, C. A. Reed, C. R. Randall, L. Que, jun. and K. Tatsumi, J. Am. Chem. Soc., 1994, 116, 9071.
- 7 N. Kitajima, U. P. Singh, H. Amagai, M. Osawa and Y. Moro-oka, J. Am. Chem. Soc., 1991, 113, 7757
- 8 M. Ito, H. Amagai, H. Fukui, N. Kitajima and Y. Moro-oka, Bull. Chem. Soc. Jpn., 1996, 69, 1937.
- 9 M. Osawa, K. Fujisawa, N. Kitajima and Y. Moro-oka, Chem. Lett., 1997, 919.
- 10 Oxygen-oxygen bond activation via a dinuclear Mn<sup>III</sup>-µ-peroxo intermediate has been reported recently. Z. Shirin, V. G. Young, jun. and A. S. Borovik, Chem. Commun., 1997, 1967.
- 11 K. Kim and S. J. Lippard, J. Am. Chem. Soc., 1996, 118, 4914.
- 12 D. T. Sawyer, in Oxygen Complexes and Oxygen Activation by Transition Metals, eds. A. E. Martell and D. T. Sawyer, Plenum, New York, 1988, p. 131.

Received 14th November 1997; Communication 7/08210J

 $<sup>\</sup>$  The acetate complex 5 was obtained by treating  $Mn(OAc)_2{\cdot}4H_2O$  with KL. Spectroscopic data for **5** (Found: C, 59.84; H, 8.65; N, 14.61. Calc. for C<sub>29</sub>H<sub>49</sub>-BMnN<sub>6</sub>O<sub>2</sub>: C, 60.11; H, 8.52; N, 14.50%). IR (KBr pellet, v/cm<sup>-1</sup>): 2545m (BH), JSIII  $CO_{2(asym)}$ . Field desorption MS: m/z S79 ( $M^+$ ). The acetate ligand is assumed to bind to the Mn<sup>II</sup> center in a bidentate fashion on the basis of the similarity of the v[CO<sub>2(asym</sub>] of the benzoate analogue MnL(O<sub>2</sub>CPh) (1568 cm<sup>-1</sup>), which has a five-co-ordinated distorted trigonal bipyramid  $Mn^{II}$  center with the bidentate carboxylate ligand established by crystallography (see refs. 4 and 5). The v[CO<sub>2(asym</sub>] of 5 is indistinguishable from other peaks arising from the MnL moiety, whereas the unidentate acetatozinc complex with the same ligand gives v[CO<sub>2(asym</sub>] and v[CO<sub>2(asym</sub>]] at 1601 and 1331 cm<sup>-1</sup>, respectively. ¶ The dinuclear Mn<sup>III,IV</sup>  $\mu$ -acetato-bis( $\mu$ -oxo) complex 6 was identified by comparison with the data (EPR, field desorption MS, IR and X-ray crystallography)

of an authentic sample (see ref. 9).

<sup>||</sup> The O–O bond homolysis of a dinuclear  $\mu$ -peroxo core  $[M^{n+}(\mu-O_2^{--})M^{n+}]$  gives the corresponding two-electron oxidized bis $(\mu$ -oxo) core  $[M^{(n+1)+}(\mu-O^{2-})_2M^{(n+1)+}]$ and metal-sulfur bond homolysis of a  $M^{n+1}(SR)$  core yields a one-electron reduced metal  $[M^{(n-1)+}]$  center.