Gold(I) complex of 7-diphenylphosphino-2,4-dimethyl-1,8-naphthyridine (dpnapy) as a metalloligand for encapsulation of metal ions. Crystal structures of $\left[\mathrm{AuCu}(\text { dpnapy })_{3}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ and $\left[\mathrm{AuCd}(\text { dpnapy })_{3}\right]\left[\mathrm{ClO}_{4}\right]_{3}$

Wing-Han Chan, ${ }^{a}$ Kung-Kai Cheung, ${ }^{a}$ Thomas C. W. Mak ${ }^{b}$ and Chi-Ming Che ${ }^{*} \stackrel{\uparrow}{ }+\boldsymbol{a}$
${ }^{a}$ Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
${ }^{b}$ Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Reaction of dpnapy [dpnapy $=7$-diphenylphosphino-2,4-dimethyl-1,8-naphthyridine] with $[\mathrm{Au}(\mathrm{tht}) \mathrm{Cl}]$ (tht = tetrahydrothiophene) in dichloromethane afforded $\left[\mathrm{Au}(\text { dpnapy })_{3}\right]^{+}$, which shows a strong affinity towards Cu^{I} and Cd^{I} ions; crystal structures of $\left[\mathrm{AuCu}(\text { dpnapy })_{3}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ and $\left[\mathrm{AuCd}(\text { dpnapy })_{3}\right]-$ $\left[\mathrm{ClO}_{4}\right]_{3}$ revealed that $\left[\mathrm{Au}(\text { dpnapy })_{3}\right]^{+}$functions as a metalloligand with the three naphthyridyl groups positioned in a trigonal fashion.

The design of macropolycyclic ligands as receptor molecules that have binding sites positioned in a preferred geometry is an important area in molecular recognition and in host-guest chemistry. Examples of such ligand systems e.g. cryptands have been reported though their preparations are usually tedious. ${ }^{1}$ In this context, we envisaged co-ordination of pyridylphosphine ligands to d^{10} metal ions via the phosphorus atoms which could direct the spatial arrangement of the pendant pyridyl groups. Consequently, this may lead to a new class of metalloligands for encapsulation of ions in a preferred geometry. ${ }^{2}$ Whereas there are many tripodal ligands, such as 1,4,7triazacyclononane and 1,1,1-tris(diphenylphosphinomethyl)ethane, ${ }^{3,4}$ which co-ordinate metal ions in a facial manner, examples of planar tridentate chelating ligands are scarce. ${ }^{5}$ Herein is described the co-ordination of 7-diphenylphos-phino-2,4-dimethyl-1,8-naphthyridine ${ }^{6}$ (dpnapy) to gold(I) to give $\left[\operatorname{Au}(d p n a p y)_{3}\right]^{+} \mathbf{1}$, which has the three pendant naphthyridyl groups positioned in a trigonal arrangement.

Scheme 1 outlines the procedures for the preparation of cations 1-3. Complexes $\mathbf{2}\left[\mathrm{ClO}_{4}\right]_{2}$ and $\mathbf{3}\left[\mathrm{ClO}_{4}\right]_{3}$ were obtained by treating $1\left[\mathrm{ClO}_{4}\right]$ with a stoichiometric amount of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3}-\right.\right.$ $\left.\mathrm{CN})_{4}\right]\left[\mathrm{ClO}_{4}\right]$ and $\mathrm{Cd}\left(\mathrm{ClO}_{4}\right)_{2}$, respectively, in acetone. Recrystallisation of the crude products in acetonitrile-diethyl ether solution afforded red crystals of $2\left[\mathrm{ClO}_{4}\right]_{2}$ and yellow prisms of $3\left[\mathrm{ClO}_{4}\right]_{3} \cdot \mathrm{CH}_{3} \mathrm{CN} \ddagger$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$ show

\dagger E-Mail: CMCHE@HKUCC.HKU.HK

$\ddagger \mathbf{1}\left[\mathrm{ClO}_{4}\right]$: a mixture of $[\mathrm{Au}(\mathrm{tht}) \mathrm{Cl}](\mathrm{tht}=$ tetrahydrothiophene $)(0.32 \mathrm{~g}$, 1 mmol) and dpnapy ($1.0 \mathrm{~g}, 3 \mathrm{mmol}$) in dichloromethane (25 ml) was stirred for 1 h at room temperature. Metathesis of the product with $\mathrm{LiClO}_{4}(0.11 \mathrm{~g}, 1 \mathrm{mmol})$ in methanol afforded pale yellow microcrystals of $1(0.69 \mathrm{~g}, 52 \%)$ (Found: C, $58.20 ; \mathrm{H}, 4.62 ; \mathrm{N}, 6.22$. Calc. for $\left.1\left[\mathrm{ClO}_{4}\right] \cdot \mathrm{CH}_{3} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 58.59 ; \mathrm{H}, 4.62 ; \mathrm{N}, 6.12 \%\right)$.
$\mathbf{2}\left[\mathrm{ClO}_{4}\right]_{2}$: a mixture of $\mathbf{1}\left[\mathrm{ClO}_{4}\right](1.3 \mathrm{~g}, 1 \mathrm{mmol})$ and $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]$ $\left[\mathrm{ClO}_{4}\right](0.33 \mathrm{~g}, 1 \mathrm{mmol})$ in acetone $(25 \mathrm{ml})$ was stirred for 1 h at room temperature. The solvent was removed in vacuo. The crude product was recrystallized by diffusion of diethyl ether into an acetonitrile solution to afford red crystals $(0.92 \mathrm{~g}, 62 \%)$ (Found: C, $54.02 ; \mathrm{H}, 3.80$; N, 5.55 . Calc. for $\left.2\left[\mathrm{ClO}_{4}\right]_{2}: \mathrm{C}, 53.33 ; \mathrm{H}, 3.86 ; \mathrm{N}, 5.65 \%\right)$.
$3\left[\mathrm{ClO}_{4}\right]_{3}$: a mixture of $1\left[\mathrm{ClO}_{4}\right](1.3 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{Cd}\left(\mathrm{ClO}_{4}\right)_{2}(0.31 \mathrm{~g}$, 1 mmol) in acetone (25 ml) was stirred for 1 h at room temperature. The solvent was removed in vacuo. The crude product was recrystallized by diffusion of diethyl ether into an acetonitrile solution to afford yellow crystals $(0.83 \mathrm{~g}, 51 \%)$ (Found: C, $48.11 ; \mathrm{H}, 3.80 ; \mathrm{N}, 5.65$. Calc. for $\left.3\left[\mathrm{ClO}_{4}\right]_{3} \cdot \mathrm{CH}_{3} \mathrm{CN}: \mathrm{C}, 48.73 ; \mathrm{H}, 3.61 ; \mathrm{N}, 5.85 \%\right)$.
that the 2 -Me resonances are comparable to those of the free ligand whereas downfield shifts are observed for those of $\mathbf{2}$ and 3.§ These downfield shifts evidence the metal-naphthyridyl co-ordination. The ${ }^{31} \mathrm{P}$ NMR spectra of cations 1-3 display a single resonance revealing that the three dpnapy ligands in the complexes are equivalent.
The structure of $\mathbf{1}\left[\mathrm{ClO}_{4}\right]$ has been established by X-ray crystal analysis. However, the high R^{\prime} value of the structure precludes a detailed discussion. Nevertheless the structure reveals that the Au atom adopts a trigonal-planar geometry. The dpnapy ligands are P-monodentate with three naphthyridyl moieties radiating from the Au atom to form a void. In this context, the Au atom can be viewed as a template to fix the ligating sites of the naphthyridyl rings. The crystal structures of complexes $2\left[\mathrm{ClO}_{4}\right]_{2}$ and $3\left[\mathrm{ClO}_{4}\right]_{3} \cdot \mathrm{CH}_{3} \mathrm{CN}$ have been determined by X-ray analyses and perspective views of the complex cations are depicted in Figs. 1 and 2. $\|$ In both complexes, the Au atom retains a trigonal-planar geometry with $\mathrm{P}-\mathrm{Au}-\mathrm{P}$ angles and $\mathrm{Au}-\mathrm{P}$ distances comparable to those in 1. For 2, the [Au (dpnapy) $\left.)_{3}\right]^{+}$unit binds to the Cu atom via three N_{1} donors to give a face-to-face hetero-metallocycle. The $\mathrm{Cu}(1)$ atom adopts a distorted trigonal-planar co-ordination and the AuP_{3} and CuN_{3} planes are nearly parallel (dihedral angle of 3.5°). This

Scheme 1 Preparation of complexes 1-3
§ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 2-\mathrm{Me} \mathbf{1}\left[\mathrm{ClO}_{4}\right], 2.69$ (s); 2[$\left.\mathrm{ClO}_{4}\right]_{2}, 2.79$ (s); $3\left[\mathrm{ClO}_{4}\right]_{3} \cdot \mathrm{CH}_{3} \mathrm{CN}, 2.75(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 2-\mathrm{Me} 1\left[\mathrm{ClO}_{4}\right], 25.1$ (s); $2\left[\mathrm{ClO}_{4}\right]_{2}, 26.1(\mathrm{~s}) ; 3\left[\mathrm{ClO}_{4}\right]_{3} \cdot \mathrm{CH}_{3} \mathrm{CN}, 25.9$ (s). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$: $\delta \mathbf{1}\left[\mathrm{ClO}_{4}\right], 39.6(\mathrm{~s}) ; \mathbf{2}\left[\mathrm{ClO}_{4}\right]_{2}, 38.5(\mathrm{~s}) ; \mathbf{3}\left[\mathrm{ClO}_{4}\right]_{3} \cdot \mathrm{CH}_{3} \mathrm{CN}, 41.0(\mathrm{~s})$.

Fig. 1 A perspective view of complex cation 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Au}(1)-\mathrm{P}(1)$ 2.363(3), $\mathrm{Au}(1)-\mathrm{P}(2) \quad 2.367(3)$, $\mathrm{Au}(1)-\mathrm{P}(3) \quad 2.367(3), \quad \mathrm{Cu}(1)-\mathrm{N}(2) \quad 2.025(8), \quad \mathrm{Cu}(1)-\mathrm{N}(4) \quad 2.029(9)$, $\mathrm{Cu}(1)-\mathrm{N}(6) \quad 2.045(8) ; \quad \mathrm{P}(1)-\mathrm{Au}(1)-\mathrm{P}(2) \quad 120.6(1), \quad \mathrm{P}(2)-\mathrm{Au}(1)-\mathrm{P}(3)$ $115.8(1), \quad \mathrm{P}(1)-\mathrm{Au}(1)-\mathrm{P}(3) \quad 120.5(1), \quad \mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(4) \quad 126.9(4)$, $\mathrm{N}(2)-\mathrm{Cu}(1)-\mathrm{N}(6) 119.3(4), \mathrm{N}(4)-\mathrm{Cu}(1)-\mathrm{N}(6) 110.8(4)$
features an interesting face-to-face $\mathrm{d}^{10}-\mathrm{d}^{10}$ hetero-bimetallic complex. Complex $\mathbf{3}$ is a rare hetero-bimetallic $\mathrm{Au}^{\mathrm{I}}-\mathrm{Cd}^{\mathrm{II}}$ complex, in which the Cd atom is captured by $\left[\mathrm{Au}(\mathrm{dpnapy})_{3}\right]^{+}$ through co-ordination to three naphthyridyl moieties. The coordination polyhedron of the Cd atom is distorted trigonalprismatic, with a chelate bite $[\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(2)]$ of $56.83(3)^{\circ}$. In both 2 and 3 , a view down the $\mathrm{Au}-\mathrm{M}$ axis ($\mathrm{M}=\mathrm{Cu}$ or Cd) shows that the $\mathrm{Au}-\mathrm{P}$ and $\mathrm{M}-\mathrm{N}$ bonds are staggered with respect to each other. The $\mathrm{P}-\mathrm{Au} \cdots \mathrm{M}-\mathrm{N}$ torsional angles range from 53.1 to 60.4°, which are near to 60° required for a perfectly staggered conformation. The $\mathrm{Au} \cdots \mathrm{Cu}$ and $\mathrm{Au} \cdots \mathrm{Cd}$ separations of 4.469 and $3.745 \AA$ A respectively suggest no metalmetal interaction.

The spectroscopic data of complexes 1-3 are summarized in Table 1. Their UV/VIS absorption spectra are characterized by an absorption band at $320-360 \mathrm{~nm}(\mathbf{1}: 325, \mathbf{2}: 320, \mathbf{3}: 360 \mathrm{~nm}$), which is assigned to the $\mathrm{d}(\mathrm{Au}) \longrightarrow \pi^{*}$ (dpnapy) MLCT transition. For complex 2, a low energy absorption tail from 420-450 nm has been observed, which is attributed to the $\mathrm{d}(\mathrm{Cu}) \longrightarrow \pi^{*}$ (dpnapy) MLCT transition. The red shift in the $\mathrm{d}(\mathrm{Au}) \longrightarrow \pi^{*}$ (dpnapy) transition from $\mathbf{1}$ to $\mathbf{3}$ is due to the lowering of the π^{*} energy of the naphthyridyl rings through co-ordination to $\mathrm{Cd}^{\mathrm{II}}$. Upon excitation at 360 nm , complex $\mathbf{1}\left[\mathrm{ClO}_{4}\right]$ displays a low energy emission at 560 nm , which is tentatively assigned to the

[^0]

Fig. 2 A perspective view of complex cation 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Au}(1)-\mathrm{P}(1) \quad 2.362(3), \quad \mathrm{Cd}(1)-\mathrm{N}(1)$ 2.438(9), $\mathrm{Cd}(1)-\mathrm{N}(2) 2.288(9) ; \mathrm{P}(1)-\mathrm{Au}(1)-\mathrm{P}\left(1^{*}\right) 118.69(3), \mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}\left(1^{*}\right)$ $100.5(2), \quad \mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(2) \quad 56.8(3), \quad \mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}\left(2^{*}\right) \quad 101.0(3)$, $\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}\left(2^{* *}\right) \quad 151.3(3), \quad \mathrm{N}\left(1^{*}\right)-\mathrm{Cd}(1)-\mathrm{N}\left(2^{*}\right) \quad 56.8(3)$, $\mathrm{N}\left(1^{*}\right)-\mathrm{Cd}(1)-\mathrm{N}\left(2^{* *}\right) \quad 101.0(3), \quad \mathrm{N}\left(1^{* *}\right)-\mathrm{Cd}(1)-\mathrm{N}\left(2^{* *}\right) \quad 56.8(3)$, $\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{N}\left(2^{*}\right) 106.7(2)$

Table 1 Spectroscopic data for complexes 1-3 in degassed acetonitrile at room temperature

		$\lambda_{\text {em }} / \mathrm{nm}($ excitation	
Complex	$\lambda_{\text {abs }} / \mathrm{nm}\left(\varepsilon_{\text {max }} / \mathrm{cm}^{-1} \mathrm{M}^{-1}\right)$	$360 \mathrm{~nm})$	$\tau / \mu \mathrm{s}$
$\mathbf{1}$	$268(54710), 325(21570)$	560	0.96
$\mathbf{2}$	$264(46730), 320(29460)$,	530	-
$\mathbf{3}$	$435(\mathrm{sh}, 14400)$		
	$268(55320), 318(16300)$,	606	0.71
	$360(12080)$		

$\mathrm{d}(\mathrm{Au}) \longrightarrow \pi^{*}$ (dpnapy) MLCT excited state. Interestingly, coordination of $\mathrm{Cu}^{\mathbf{I}}$ to $\left[\mathrm{Au}(\text { dpnapy })_{3}\right]^{+}$in cation $\mathbf{2}$ results in a shift of the MLCT emission to 530 nm , which may be attributable to an admixture of two excited states of similar energy, $\mathrm{d}(\mathrm{Au}) \longrightarrow \pi^{*}$ (dpnapy) and $\mathrm{d}(\mathrm{Cu}) \longrightarrow \pi^{*}$ (dpnapy). In cation 3, co-ordination of $\mathrm{Cd}^{\mathrm{II}}$ to $\left[\mathrm{Au}(\mathrm{dpnapy})_{3}\right]^{+}$lowers the energy of the $\mathrm{d}(\mathrm{Au}) \longrightarrow \pi^{*}($ dpnapy $)$ excited state and hence the MLCT emission is red shifted to a longer wavelength, 606 nm .

Acknowledgements

We acknowledge support from the University of Hong Kong and the Croucher Foundation of Hong Kong, and the Hong Kong Research Grants Council.

References

1 J. M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995.
2 S. J. Shieh, D. Li, S. M. Peng and C. M. Che, J. Chem. Soc., Dalton Trans., 1993, 195; R. H. Uang, C. K. Chan, S. M. Peng and C. M. Che, J. Chem. Soc., Chem. Commun., 1994, 2561.

3 F. A. Cotton and B. Hong, Prog. Inorg. Chem., 1992, 40, 179.
4 P. Chaudhuri and K. Wieghardt, Prog. Inorg. Chem., 1987, 35, 329.
5 C. M. Hartshorn and P. J. Steel, Angew. Chem., Int. Ed. Engl., 1996, 35,2655 , and refs. therein.
6 M. Grassi, G. D. Munno, F. Nicolo and S. L. Schiavo, J. Chem. Soc., Dalton Trans., 1992, 2367.

[^0]: - $2\left[\mathrm{ClO}_{4}\right]_{2}: \mathrm{C}_{66} \mathrm{H}_{57} \mathrm{AuCl}_{2} \mathrm{CuN}_{6} \mathrm{O}_{8} \mathrm{P}_{3}, M=1486.5$, triclinic, space group $P \overline{1}$ (no. 2), $a=15.795(1), b=16.092(1), c=16.491$ (1) $\AA, \alpha=87.75(1)$, $\beta=62.93(1), \gamma=65.31(1), U=3331.7(4) \AA^{3}, Z=2, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=27.28$ cm^{-1}, crystal dimensions $0.20 \times 0.20 \times 0.18 \mathrm{~mm}, T=293 \mathrm{~K}, F(000)=$ 1492, no. of unique reflections $=10333$, no. of reflections with $I \geqslant 2 \sigma(I)=9505$, no. of variables $=829, R=0.079, R^{\prime}=0.088$, goodness of fit $=1.22$.
 $3\left[\mathrm{ClO}_{4}\right]_{3} \cdot \mathrm{CH}_{3} \mathrm{CN}: \mathrm{C}_{68} \mathrm{H}_{60} \mathrm{AuCdCl}_{3} \mathrm{~N}_{7} \mathrm{O}_{12} \mathrm{P}_{3}, \quad M=1675.9$, trigonal, space group $P \overline{3}$ (no. 147), $a=13.873$ (1), $c=21.611$ (2) $\AA, U=3602.1$ (3) $\AA^{3}, \quad Z=2, \quad \mu(\mathrm{Mo}-\mathrm{K} \alpha)=25.78 \mathrm{~cm}^{-1}, \quad$ crystal of dimensions $0.15 \times 0.10 \times 0.30 \mathrm{~mm}, T=301 \mathrm{~K}, F(000)=1672$, reflections measured $=4662$, no. of unique reflections $=4258$, no. of reflections with $I \geqslant 3 \sigma(I)=2806$, no. of variables $=301, R=0.055, R^{\prime}=0.075$, goodness of fit $=2.13$. Singly starred $\left({ }^{*}\right)$ atoms have coordinates at $(1-y$, $1+x-y, z$) and doubly starred $\left({ }^{* *}\right)$ atoms have coordinates at $(y-x$, $1-x, z$).

 CCDC reference number 186/901.

