Halogen derivatives of monocarbon carboranes, *nido*-7-Me₃N-7-CB₁₀H₁₂, *closo*-2-Me₃N-2-CB₁₀H₁₀ and *closo*-1-Me₃N-1-CB₁₁H₁₁‡

John H. Morris, *', *', a Kenneth W. Henderson a and Valentina A. Ol'shevskaya

^a Department of Pure and Applied Chemistry, Strathclyde University, Glasgow, UK G1 1XL ^b A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation

DALTON FULL PAPER

Electrophilic iodination and bromination (X_2 -AlCl₃) of *nido*-7-Me₃N-7-CB₁₀H₁₂ gave *nido*-4-I-7-Me₃N-7-CB₁₀H₁₁ and *nido*-4,6-I₂-7-Me₃N-7-CB₁₀H₁₀ and the bromine-substituted analogues *nido*-4-Br-7-Me₃N-7-CB₁₀H₁₁ and *nido*-4,6-Br₂-7-Me₃N-7-CB₁₀H₁₀. Electrophilically induced nucleophilic substitution (HI–AlCl₃) gave *nido*-9-I-7-Me₃N-7-CB₁₀H₁₀. These compounds readily deprotonated to the dianions [*nido*-7-Me₃N-7-CB₁₀H₁₀]²⁻, [*nido*-4-I-7-Me₃N-7-CB₁₀H₉]²⁻ and [*nido*-4,6-I₂-7-Me₃N-7-CB₁₀H₈]²⁻, and oxidation (chemical or electrochemical) gave derivatives of *closo*-2-Me₃N-2-CB₁₀H₁₀ and *closo*-3-I-2-Me₃N-2-CB₁₀H₉. Low temperature insertion reactions of the anions with PhBCl₂ gave *closo*-8-I-2-Ph-1-Me₃N-1-CB₁₁H₉ and *closo*-8-Br-2-Ph-1-Me₃N-1-CB₁₁H₉, while electrophilic iodination occurred at B(12) to give *closo*-12-I-1-Me₃N-1-CB₁₁H₁₀. Palladium catalysed substitution of iodine resulted in the *nido* and *closo* derivatives *closo*-8-CH₂=CHCH₂-2-Ph-1-Me₃N-1-CB₁₁H₉ and *nido*-4-CH₂=CHCH₂-7-Me₃N-7-CB₁₀H₁₁. AM1 Calculations were used to help rationalise a mechanism for the boron insertion reactions.

In the search for monocarbon carboranes with biologically active functional substituents for application in ¹⁰B neutron capture therapy we required as synthons halogenated derivatives with a replaceable halogen such as iodine, amenable to further substitution by palladium-catalysed reactions with Grignard reagents or other organometallic derivatives. We also require to be able to achieve iodine substitution for ¹³¹I radiolabelled derivatives. Such iodine derivatives of nido-7-Me₃N-7-CB₁₀H₁₂ have not been reported to date, although 7,12 disubstitution of $[CB_{11}H_{12}]^-$ has been reported.¹ Monoiodination of closo-1,2- and 1,7-C₂B₁₀H₁₂ was accomplished by electrophilic halogenation to yield mainly the 9-I-substituted products.² The halogenation reactions of nido-7-Me₃N-7-CB₁₀H₁₂ using Cl₂, N-chlorosuccinimide, and Br₂ were reported under vigorous conditions to occur at the 4(6) position for monosubstitution, or at the 4,6 positions for disubstitution,³ but the reactions failed to yield iodine-substituted compounds. Other substitution reactions of nido-7-Me₃N-7-CB₁₀H₁₂ have given isomeric products, depending on the reaction conditions. The compound nido-4-Cl-7-Me₃N-7-CB₁₀H₁₁ was obtained by electrochemical oxidation using a chloride electrolyte, whereas nido-9-Cl-7-Me₃N-7-CB₁₀H₁₁ and 6,9-Cl₂-7-Me₃N-7-CB₁₀H₁₀ resulted from electrophilic-induced nucleophilic substitution using HCl and AlCl₃.4

In this work we have investigated the electrophilic and electrophilically induced nucleophilic substitution of *nido*-7-Me₃-N-7-CB₁₀H₁₂ and *closo*-1-Me₃N-1-CB₁₁H₁₁ using I₂, Br₂ or HI in the presence of AlCl₃, and reactions of the dianion [*nido*-7-Me₃N-7-CB₁₀H₁₀]²⁻ with halogens generated chemically and electrochemically. We report studies of the electrochemical oxidation of *nido*-7-Me₃N-7-CB₁₀H₁₂ and *nido*-4-I-7-Me₃N-7-CB₁₀H₁₁, and the dianions [*nido*-7-Me₃N-7-CB₁₀H₁₂ and *nido*-4-I-7-Me₃N-7-CB₁₀H₁₀]²⁻ and [*nido*-4-I-7-Me₃N-7-CB₁₀H₁₉]²⁻ to give the *closo* compounds *closo*-2-Me₃N-2-CB₁₀H₁₀ and *closo*-3-I-2-Me₃N-2-CB₁₀H₉.

We have also achieved low-temperature insertion reactions into iodine-substituted *nido* derivatives to yield the substituted derivatives *closo*-8-I-2-Ph-1-Me₃N-1-CB₁₁H₁₀ and *closo*-8-Br-2-Ph-1-Me₃N-1-CB₁₁H₁₀, and have investigated the mechanism

Scheme 1 Structures and numbering schemes ⁵ for (a) *nido*-7-Me₃N-7-CB₁₀H₁₂, (b) *closo*-2-Me₃N-2-CB₁₀H₁₀ and (c) *closo*-1-Me₃N-1-CB₁₁H₁₁

of the boron insertion reaction using semiempirical (AM1) calculations. Palladium-catalysed substitution of *nido* and *closo* iodinated derivatives was also performed to give the organic derivatives $4\text{-CH}_2\text{=}CHCH_2\text{-}7\text{-}Me_3N\text{-}7\text{-}CB_{10}H_{11}$ and $8\text{-}CH_2\text{=}CHCH_2\text{-}2\text{-}Ph\text{-}1\text{-}Me_3N\text{-}1\text{-}CB_{11}H_{10}$ for the first time. The structures and numbering schemes for the clusters in this work are illustrated in Scheme 1.

Results and Discussion

Preparative chemical reactions

The preparation of the previously unknown 4-iodinesubstituted derivatives of *nido*-7-Me₃N-7-CB₁₀H₁₂ was achieved through the electrophilic substitution reaction of iodine in the presence of aluminium chloride and CH₂Cl₂. The products *nido*-4-I-7-Me₃N-7-CB₁₀H₁₁ 1 and *nido*-4,6-I₂-7-Me₃N-7-CB₁₀-H₁₀ 2 were obtained by selecting the reactant ratios of 1:1 or 1:2 respectively, and their structures determined from their ¹¹B NMR spectra. A similar electrophilic substitution of *closo*-1-Me₃N-1-CB₁₁H₁₁ gave *closo*-12-I-1-Me₃N-1-CB₁₁H₁₀ 3. The

[†] E-Mail: j.h.morris@strath.ac.uk

 $[\]ddagger$ Non-SI units employed: cal = 4.184 J, hartree $\approx 4.36 \times 10^{-18}$ J.

corresponding electrophilic monobromination was less straightforward, and with catalytic quantities of either AlCl₃ or FeCl₃ a mixture of the mono- and di-bromo derivatives **4** and **5** and starting compound was usually obtained. Careful control of reactant ratios and temperature was required to achieve the pure monosubstituted product *nido*-4-Br-7-Me₃N-7-CB₁₀H₁₁ **4**. Using AlCl₃, with a reactant ratio of 1:2, the major substituted product was *nido*-4,6-Br₂-7-Me₃N-7-CB₁₀H₁₀ **5**.

In order to achieve substitution at a different boron site several different approaches were attempted. In earlier work⁴ electrophilically induced nucleophilic chlorination was attained with HCl in the presence of AlCl₃; a similar electrophilically induced nucleophilic iodination using HI in the presence of AlCl₃ resulting in substitution at B(9) was achieved in this work after carefully controlling reactant ratios, quantity of catalyst, and temperature and reaction time. The reaction of *nido*-7-Me₃N-7-CB₁₀H₁₂ with HI was much faster than that with HCl, yielding *nido*-9-I-7-Me₃N-7-CB₁₀H₁₁ **6**, and extensive further substitution or I–Cl exchange with the catalyst resulting in chlorinations occurred when stoichiometric quantities of AlCl₃ were used.

The electrophilic substitution of $[nido-7-Me_3N-7-CB_{10}H_{10}]^{2-7}$ 7 was also examined as a route to substitution at a different boron site. The anion, prepared by deprotonation of *nido-*7-Me_3N-7-CB_{10}H_{12} using $(Me_3N)_2C=NH$, equation (1), under-

$$\frac{\text{MeCN or CH}_{2}\text{CL}_{2}}{[(\text{Me}_{2}\text{N})_{2}\text{C}=\text{NH}_{2}]^{+}_{2} [nido-7-\text{Me}_{3}\text{N}-7-\text{CB}_{10}\text{H}_{10}]^{2-} \xrightarrow{\text{I}_{2}-\text{CH}_{2}\text{CL}_{2}}}{7}$$

$$\frac{7}{closo-2-\text{Me}_{3}\text{N}-2-\text{CB}_{10}\text{H}_{10}} (1)$$

went oxidation with I_2 in CH_2Cl_2 to yield *closo*-2-Me₃N-2-CB₁₀H₁₀ **8** rather than give the 9-substituted *nido* product expected on the basis of charge distribution in the dianion; this is similar to the reaction observed from deprotonation with sodium hydride.³

An alternative strategy for the preparation of other isomers may have resulted from rearrangement of the deprotonated dianions $[nido-4-I-7-Me_3N-7-CB_{10}H_9]^{2-}$ 9 and $[nido-4,6-I_2-7-Me_3N-7-CB_{10}H_8]^{2-}$ 10 obtained from reaction of $(Me_2N)_2C=$ NH with $nido-4-I-7-Me_3N-7-CB_{10}H_{11}$ 1 and $nido-4,6-I_2-7-Me_3-N-7-CB_{10}H_{10}$ 2. Such rearrangements occur readily in dicarbaundecaborates. The oxidation of the *nido* anions 9 and 10 with I_2 gave iodinated *closo* anions, a single isomer of *closo*-3-I-2-Me_3N-2-CB_{10}H_9 11, and a mixture of isomers of *closo*-I₂-2-Me₃N-2-CB₁₀H₈.

Although the direct electrophilic iodination of *closo*-1- $Me_3N-1-CB_{11}H_{11}$ resulted in substitution at B(12), the introduction of an iodine or bromine substituent at B(8) has been achieved by a low-temperature boron insertion reaction⁶ on a B(4)-substituted *nido* precursor, whereas previous attempts to prepare chlorine-substituted analogues using the high temperature insertion with $Et_3N\cdot BH_3$ resulted in removal of the substituent and isolation of the unsubstituted *closo*-1- $Me_3N-1-CB_{11}H_{11}$.⁴

The reaction (2) to produce 12 proceeded without removal

$$PhBCl_{2} + [nido-4-I-7-Me_{3}N-7-CB_{10}H_{9}]^{2-} \xrightarrow{-2Cl^{-}} closo-8-I-2-Ph-1-Me_{3}N-1-CB_{11}H_{9} \quad (2)$$
12

of the iodine substituent, and without rearrangement of the dianion prior to boron insertion. Attempts to carry out similar insertion reactions on the disubstituted derivative **10** have so far been unsuccessful. However the insertion reaction was success-

 $\label{eq:Scheme 2} \begin{array}{l} \mbox{Proposed mechanism for boron insertion reactions, illustrated by $nido-4-I-7-Me_3N-7-CB_{10}H_{11}$ and $PhBCl_2$ \\ \end{array}$

ful using PhBCl₂ and the anions derived from the 4-Br derivative 4. The iodine of the substituted *closo*-derivative 12 reacted with allylmagnesium bromide in the presence of $[Pd(PPh_3)_4]$ in thf to give the corresponding allyl-substituted carborane *closo*-8-CH₂=CHCH₂-2-Ph-1-Me₃N-1-CB₁₁H₉ 13, as had been obtained earlier in *closo*-C₂B₁₀H₁₂.⁷ A similar reaction on *nido*-4-I-7-Me₃N-7-CB₁₀H₁₁ 1 gave *nido*-4-CH₂=CHCH₂-7-Me₃N-7-CB₁₀H₁₁ 14.

Semiempirical methods for rationalising the mechanism of boron insertions

The experimental observations on the low-temperature boron insertion reactions involving compounds 7, 9 and 10 with PhBCl₂ indicate that the mechanism is probably complex. By analogy with known reactions of boron-boron bonds in B_6H_{10} and $[B_5H_8]^-$, the first step in this reaction is assumed to involve the formation of a Lewis base-Lewis acid complex between the dianion and the incoming boron reagent, as indicated in Scheme 2. The effect of iodine on the charge distribution in the anions may have influenced the electron density on the boron atoms of the open face of the dianions 9 and 10, *i.e.* B(8), B(9), B(10) and B(11), and thus their ability to co-ordinate to the vacant orbital of the boron in PhBCl₂ at the initial stage of the reaction. Alternatively, the approach of the incoming boron may be affected by the steric constraints induced on substitution. AM1 Calculations were made on the model reaction systems between the anions 7, 9 and 10 and MeBCl₂. This led to the total energies of selected molecules (Table 1), enthalpies of Lewis base-Lewis acid reactions, the optimised geometries of the base-acid complexes (which are the presumed first intermediates in the boron insertion reactions), and the natural charge distributions in the anions and complexes (Table 2). The calculations showed (a) that the geometry optimised so as to place the inserting reagent on a specific atom, rather than at an edge, and (b) that the inserting reagent attached at B(8) or B(11) in preference to B(9), B(10) or C(7); the effect of iodine substitution was to reduce the enthalpy of the reaction to form the complex in which the reagent attached at the site closest to the iodine substituent thus differentiating B(8) and B(11) in monosubstituted **9**. These enthalpy changes are indicated in Scheme 3.

These calculations do not take into account any kinetic factors in the reactions. Although the natural charges on B(8,11)were marginally less negative than those on B(9,10) in the anions suggesting that these sites may be less favoured by the incoming reagent, the relative enthalpies of the Lewis base–

 $[nido-7-Me_{3}N-7-CB_{10}H_{10}]^{2^{-}} + MeBCl_{2} \longrightarrow$ $[nido-8-MeBCl_{2}-7-Me_{3}N-7-CB_{10}H_{10}]^{2^{-}}; \Delta H - 46.68 \text{ kcal mol}^{-1}$

 $\begin{array}{l} [nido-4(6)\text{-I-7-Me}_{3}\text{N-7-CB}_{10}\text{H}_{9}]^{2^{-}} + \text{MeBCl}_{2} \longrightarrow \\ [nido-8\text{-MeBCl}_{2}\text{-4-I-7-Me}_{3}\text{N-7-CB}_{10}\text{H}_{9}]^{2^{-}}; \Delta H - 37.90 \text{ kcal mol}^{-1} \end{array}$

 $\begin{array}{l} [nido-4(6)\text{-I-7-Me}_{3}\text{N-7-CB}_{10}\text{H}_{9}]^{2^{-}} + \text{MeBCl}_{2} \xrightarrow{} \\ [nido-8-\text{MeBCl}_{2}\text{-}6\text{-I-7-Me}_{3}\text{N-7-CB}_{10}\text{H}_{9}]^{2^{-}}; \Delta H - 41.42 \text{ kcal mol}^{-1} \end{array}$

 $\begin{array}{l} [nido-4,6-I_2-7-Me_3N-7-CB_{10}H_9]^{2-} + MeBCl_2 \longrightarrow \\ [nido-8-MeBCl_2-4,6-I_2-7-Me_3N-7-CB_{10}H_9]^{2-}; \Delta H - 33.39 \text{ kcal mol}^{-1} \end{array}$

Scheme 3

Table 1	The AM1	calculated	heats	of t	formation
---------	---------	------------	-------	------	-----------

Compound	Heat of formation/kcal mol ⁻¹
7	+126.06
9	+105.59
10	+86.88
MeBCl,	-75.82
7.8-MeBCl,	+3.56
7.9-MeBCl,	+8.79
9.8-MeBCl,	-8.13 (4-I)
9.8-MeBCl,	-11.65 (6-I)
9 •9-MeBCl,	-2.01 (4-I)
9 •9-MeBCl,	-8.13 (6-I)
10.8-MeBCl,	-22.33
$10.9-\text{MeBCl}_2$	-11.48
$7.8-\text{PhBCl}_2^2$	+35.51 (Ph over cage)
$7.8-\text{PhBCl}_{2}$	+33.53 (Ph exo to cage)
7.9-PhBCl	+39.12 (Ph over cage)
7.9-PhBCl	+36.75 (Ph exo to cage)
6*•8-MeBCl ₂	+1.56
6* •11-MeBCl,	-13.18
7·9,10-MeBCĨ	-8.04
closo-2-Me-1-Me ₃ N-1-CB ₁₁ H ₁₀	+53.08
Cl ⁻	-37.66

* Deprotonated compound 6 ([nido-9-1-/-Me	IN-/	-CR	10H9]*	-).
---	------	-----	--------	-----

Table 2 Semiempirical (AM1) natural charge distributions

Compound	B(1)	B(2)	B(3)	B(4)	B(6)	B(5)	B(8)	B (11)	B(9)	B (10)	C(7)
Me ₃ NCB ₁₀ H ₁₂	-0.07	0.01	0.01	-0.21	-0.21	0.07	-0.05	-0.05	-0.09	-0.09	-0.43
7	-0.17	-0.16	-0.16	-0.13	-0.13	-0.09	-0.07	-0.07	-0.08	-0.08	-0.32
9 (6-I)	-0.16	-0.15	-0.14	-0.12	-0.25	-0.06	-0.06	-0.04	-0.10	-0.06	-0.33
$10(4,6-I_2)$	-0.15	-0.13	-0.13	-0.25	-0.25	-0.03	-0.03	-0.03	-0.08	-0.08	-0.34
7.8-MeBCl ₂	-0.11	-0.17	-0.01	-0.19	-0.06	-0.09	-0.07	0.01	0.04	-0.16	-0.34
7.9-MeBCl ₂	-0.03	-0.09	-0.25	-0.11	-0.13	-0.09	0.05	-0.11	-0.16	-0.01	-0.25
9.8-MeBCl ₂	-0.10	-0.16	0.00	-0.18	-0.19	-0.06	-0.08	0.03	0.03	-0.14	-0.35
9.8-MeBCl ₂	-0.10	-0.16	-0.02	-0.32	-0.01	-0.06	-0.05	0.01	0.05	-0.17	-0.36
$9.9-MeBCl_2$	-0.04	-0.06	-0.24	-0.13	-0.28	-0.06	0.11	-0.06	-0.24	0.00	-0.26
9.9-MeBCl ₂ (4-I)	-0.02	-0.07	-0.23	-0.26	-0.13	-0.15	0.07	-0.11	-0.17	-0.01	-0.25
$10.8-MeBCl_2$ (4.6-I ₂)	-0.09	-0.15	-0.01	-0.32	-0.20	-0.03	-0.05	0.04	0.04	-0.15	-0.34
$10.9-MeBCl_2$ (4.6-L ₂)	-0.09	-0.07	-0.20	-0.20	-0.29	0.02	0.04	-0.04	-0.23	-0.02	-0.31
7*	-0.20	-0.10	-0.01	-0.16	-0.16	-0.15	-0.08	-0.08	-0.34	-0.34	-0.56
* <i>Ab initio</i> at the HF/6-31G* level.											

Lewis acid complexes indicated more stable complexes at these sites.

The substantial reduction in reaction enthalpy and the steric restrictions indicated in the space-filling model of compound **10** (Fig. 1) together suggest that the failure to achieve boron insertion with **10** primarily resulted from the steric effects of iodine substitution. Kinetic factors may play an important part here.

The validity of the AM1 data was supported by single point *ab initio* calculations at the HF/6-31G* level on adducts 7·8-MeBCl₂ and 7·9-MeBCl₂ giving total energies of $-1446.954\ 603\ 6$ and $-1446.933\ 545\ 5$ hartrees respectively; this indicated that the addition product at position 8 was more stable than that at position 9 by 13.12 kcal mol⁻¹. The second step in the insertion process is assumed to involve dissociation of Cl⁻ from the Lewis base–Lewis acid complex, and the product calculated to have the lowest heat of formation was the intermediate in which the inserting boron occupied a bridging site between B(9) and B(10). The third step involved elimination of a second Cl⁻ to give the final *closo* product. The enthalpy changes in these two steps are given in equations (3) and (4).

7·8-MeBCl₂
$$\longrightarrow$$
 7·9,10-MeBCl + Cl⁻;
 $\Delta H = -42.14 \text{ kcal mol}^{-1}$ (3)

Fig. 1 Space-filling model of $[nido-4, 6-I_2-7-Me_3N-7-CB_{10}H_8]^{2-1}$

Table 3 Voltammetric data (mV) for oxidations and reductions

	Me ₃ NCB ₁₀ -			
	H_{12}^{a}	1 ^{<i>a</i>}	2 <i>ª</i>	7 <i>^b</i>
A First oxidation ^c	>2200	2200	>2200	1800 ^d
B First reduction ^e	$< -1000^{f,g}$	-600 to	-600^{f}	Obsed
		-700^{h}		
Oxidation after B ⁱ	50	270	600-700	
Other oxidations ⁱ	400	450	900-950	
		750-800)	
	900–990	1050	1900–1960	

^{*a*} In NBu₄PF₆. ^{*b*} In [(Me₂N)₂CNH₂]BF₄. ^{*c*} SW potential scans from 300 to 2200 mV. ^{*d*} Scans from 500 to 2400 mV; broad peak commencing near 1100 mV. ^{*e*} SW. ^{*f*} SW scans from 900 to -1000 mV. ^{*g*} CV at -1100 mV in NBu₄BF₄. ^{*h*} SW scans from 0 to -1900 mV. ^{*i*} The current was determined by the extent to which the scan was carried into the first reduction B.

7.9,10-MeBCl
$$\longrightarrow closo-2$$
-Me-1-Me₃N-1-CB₁₁H₁₀;
 $\Delta H = 23.46 \text{ kcal mol}^{-1}$ (4)

These reaction enthalpies neglect the lattice energy of the formation of the LiCl by-product $(-203.6 \text{ kcal mol}^{-1})$ which will drive the reactions forward. Indeed, attempts to perform boron insertion reactions using tetramethylguanidinium salts of the dianons were unsuccessful.

Voltammetry and electrochemical oxidation/substitution

Voltammetry. In order to understand better the nature of the halogenation reactions, cyclic (CV) and square wave (SWV) voltammetry of *nido*-7-Me₃N-7-CB₁₀H₁₂, *nido*-4,6-I₂-7-Me₃N-7-CB₁₀H₁₀ **2**, *nido*-4-I-7-Me₃N-7-CB₁₀H₁₁ **1** and [*nido*-7-Me₃N-7-CB₁₀H₁₀]²⁻ **7** were examined in MeCN using platinum working and counter electrodes, a silver wire reference, and NBu₄-BF₄, [(Me₂N)₂CNH₂]BF₄, or NBu₄PF₆ as supporting electrolytes. The results are presented in Table 3.

All the electrochemical processes observed were irreversible, and the oxidation and reduction peaks in the CV and SWV often depended on the potential limits employed and the direction of the potential scan. No significant oxidation of the neutral compounds was observed below *ca.* +2.0 V (silver wire), provided the voltammetric scan did not commence at a (negative) potential sufficient to achieve reduction. Since the voltammetric currents have not been related to the number of electrons involved, their interpretation must be somewhat speculative. The primary oxidation of the *nido* compounds must have involved the formation of radical cations (or dications) which then rapidly eliminated hydrogen ions ultimately to lead to *closo*-2-Me₃N-2-CB₁₀H₁₀ **8** or its iodinated analogues, equation (5). The primary reduction also may have produced

$$nido-7-\text{Me}_{3}\text{N-7-CB}_{10}\text{H}_{12} \xrightarrow{+e^{-}} [\text{Me}_{3}\text{NCB}_{10}\text{H}_{12}]^{+} \xrightarrow{+e^{-}-2\text{H}^{+}} closo-2-\text{Me}_{3}\text{N-2-CB}_{10}\text{H}_{10} \quad (5)$$

radical anions which underwent loss of H^{\cdot} to give the monoanions, and disproportionation or further reduction and H₂ loss to give the dianions, equation (6). It is possible that the second-

$$nido-7-\text{Me}_{3}\text{N-7-CB}_{10}\text{H}_{12} \xrightarrow{+e^{-}} [\text{Me}_{3}\text{NCB}_{10}\text{H}_{12}]^{+} \xrightarrow{+e^{-}-\text{H}_{2}} [nido-7-\text{Me}_{3}\text{N-7-CB}_{10}\text{H}_{10}]^{2-}$$
(6)

ary oxidation peaks are due to oxidation of the mono- and dianions, the potentials of which were a function of their degree of substitution.

Bulk electrochemical reactions. The bulk electrochemical

Scheme 4 Vertex swing mechanism for generation of closo-2-Me₃N-2-CB₁₀H₁₀ from *nido*-7-Me₃N-7-CB₁₀H₁₂, with numbering schemes (The numbers in parentheses are those of the boron atoms in the *nido* precursor.)

oxidation of [*nido*-7-Me₃N-7-CB₁₀H₁₀]²⁻ 7 in acetonitrile with [(Me₂N)₂C=NH₂]BF₄ supporting electrolyte led to *closo*-2-Me₃N-2-CB₁₀H₁₀ **8** whereas a similar electrochemical reaction on *nido*-7-Me₃N-7-CB₁₀H₁₂ resulted only in the isolation of unchanged starting compound, although this may have been in part due to the instability of **8** on SiO₂ during chromatographic work-up. The corresponding electrochemical oxidation of [*nido*-4-I-7-Me₃N-7-CB₁₀H₉]²⁻ **9** yielded the monoiodine-substituted derivative *closo*-3(7 or 10)-I-2-Me₃N-2-CB₁₀H₉ **11** whose identity was inferred from its ¹¹B NMR data. This compound is almost certainly fluxional in the same way as other 11-vertex *closo*-polyhedra, including *closo*-2-Me₃N-2-CB₁₀H₁₀ **8**.

Structures from ¹¹B and ¹H NMR and mass spectra

NMR data. The ¹¹B NMR data for the compounds are presented in Table 4. Unambiguous assignments have been made on the basis of the observed couplings (singlets for substituted borons, and bridge hydrogen coupled broadening in neutral *nido* derivatives) and ¹¹B-¹¹B COSY correlations. The assignments of the spectra of **7** and **9** were ambiguous, even with COSY data, but clearly differed from those of the neutral compounds.

The structures of the nido compounds, determined from their NMR spectra, established that iodine and bromine substitution occurred at B(4) and B(4,6) in 1, 2, 4 and 5, and B(9) in 6, and these substituted positions were retained on deprotonation to the dianions. Furthermore, the boron with the substituent does not undergo rearrangement during the oxidation from nido- to closo-CB₁₀ either chemically or electrochemically. A substituent in position B(4) of the nido-carboranes is expected to appear at position B(7) or B(10) of the closo-carboranes in conjunction with a vertex swing of B(8) or B(11) in the parent to B(1) of the product. If the substituted closo-carborane is fluxional, positions B(7) and B(10) in the product are indistinguishable and equivalent to B(3), B(6) and B(11), but should appear in the NMR spectrum at three chemical shift positions with relative intensities of 1:2:2, due to B(3) (substituted), B(6,7) and B(10,11); furthermore, B(1), B(4), B(8) and B(5) form a separate equivalent set of boron sites of relative intensity 4. In the unsubstituted closo compound which is known to be fluxional, B(3), B(7), B(10), B(11) and B(6) are also equivalent and give one chemical shift of relative intensity 5. See Scheme 4 for the generation of *closo*- from nido-CB₁₀ carborane.

The structure of the *closo*-CB₁₁ compound **3** is unambiguously determined to be B(12) substituted in view of the resonances with relative intensities 1:5:5 (singlet at δ -16.5,

Table 4Boron-11 NMR data in CD3CN

Compound 1	δ 2.88 -8.57 -9.14 -11.76 -14.46 -19.20 -21.67 -23.68 -31.96 -40.61 (s)	<i>J</i> _{вн} /Hz 143.8 155.3 ? 138.6 130 110 120.7 150.2 150.2 	Intensity 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B	Assignment B(5) B(3) B(2) B(8) B(11) B(9) B(10) B(1) B(6) B(4)	¹¹ B_ ¹¹ B COSY correlations B(1; 4; 6; 9; 10) B(1; 4) B(1; 6) B(4) B(6) B(4; 5; 10) B(5; 6; 9) B(2; 3; 4; 5; 6) B(1; 2; 5; 10; 11) B(1; 3; 5; 8; 9)
2	4.53 -8.00 -12.23 -18.53 -21.35 -40.34 (s)	156.6 161.8 132.2 127.1 150.2	1B 2B 2B 2B 1B 2B	B(5) B(2,3) B(8,11) B(9,10) B(1) B(4,6)	B(9,10) B(1; 4,6) B(4,6) B(4,6; 5) B(2,3; 4,6) B(1; 5; 2,3; 8,11; 9,10)
4	2.82 -8.85 -9.95 -12.60 -15.99 -20.12 -22.26 -23.90 (s) -24.44 -32.65	138.6 148.9 147.6 139.9 137.4 152.8 141.2 	1B 1B 1B 1B 1B 1B 1B 1B 1B 1B	B(5) B(3) B(2) B(8) B(11) B(9) B(10) B(4) B(1) B(6)	
6	$\begin{array}{c} 2.44 \\ -9.62 \\ -10.89 \\ -12.53 \\ -13.97 \\ -14.95 \\ -16.91 \ (s) \\ -20.43 \\ -27.94 \\ -30.17 \\ -33.07 \end{array}$	154 ? 150.2 ? 155 ~100 <u>-</u> 152 143.8 147.7 154.0	1B ? 1B 1B 1B 1B 1B 1B 1B 1B 1B	B(5) impurity B(3) B(8) B(2) B(11) B(10) B(9) B(1) B(4) B(6)	
5	4.20 -9.30 -14.87 -20.16 -23.81 (s + d)	155.3 157.9 137.4 147.6	1B 2B 2B 2B 3B	B(5) B(2,3) B(8,11) B(9,10) B(1,4,6)	
7	-18.05 -19.52 -21.35 -26.78 -40.59	154.0 161.7 145.8 123.2 129.7	2B 2B 2B 3B 1B	B(9,10) B(4,6) B(2,3) B(8,11;5) B(1)	B(5; 4,6; 8,11) B(1; 5; 2,3; 8,11; 9,10) B(4,6) B(4,6; 9,10) B(2,3; 4,6)
9	-16.38 -19.48 -19.81 -21.22 -22.58 -23.98 -27.22 (s) -28.05 -38.96	116.8 119.4 114.3 133.5 133.5 142.5 	1B 1B 2B 1B 1B 1B 1B 1B 1B	B(8) B(11) B(3) B(2,6) B(9) B(5) B(4) B(10) B(1)	B(9) B(6; 10) B(1; 4) B(1; 5; 10; 11) B(8) B(1; 4; 6; 10) B(1; 3; 5) B(5; 6; 11) B(2; 3; 4; 5; 6)
10	-17.47 -20.08 -21.99 -23.55 -28.11 (s) -37.04	130.9 150.2 156 ≈ 160 143.8	2B 2B 1B 2B 2B 1B	B(8,11) B(2,3) B(5) B(9,10) B(4,6) B(1)	B(5; 4,6; 9,10) B(1; 4,6; 8,11) B(1; 4,6; 9,10) B(5; 4,6; 8,11) B(1; 5; 2,3; 8,11; 9,10) B(5; 2,3; 4,6)
8	-4.28 -10.88 -14.03	138.6 146.3 155.3	1B 5B 4B	B(9) B(3,6,7,10,11) B(1,4,5,8)	

Comment	\$	7 /11-	T	A	¹¹ B– ¹¹ B COSY
Compound	0	J _{BH} /HZ	Intensity	Assignment	correlations
11	8.08 (s)		1B 4D	B(3)	
	-11.01	141.2	4B 2D	B(1,4,5,8)	
	-13.82 -18.46	150.0	2B 2D		
	-18.40 -22.15	150.2	2D 1B	$\mathbf{R}(0)$	
	22.15	139.2	ID	D (9)	
3	-11.76	147.6	5B	B(7,8,9,10,11)	
	-14.39	160.5	5B	B(2,3,4,5,6)	
	-16.50	—	1B	B(12)	
12	-4.00 (s)		1 B	B(2)	B(3: 7: 11)
12	-4.00(s)	2	1B 1B	B(12)	B(7, 8, 10)
	-9.14	159.2	1B 1B	B(7)	B(2:3:8:11)
	-10.66	161.7	1B	B(11)	B(2,12: 6.7.10)
	-12.95	152.7?	2B	B(3,4)	B(2,12; 7; 8)
	-14.76	148.9	3B	B(5,9,10)	B(11)
	-15.81	?	1B	B(6)	B (11)
	-26.19 (s)	_	1B	B(8)	B(3,4,7,12)
13	-517	unresolved	3B	B(2.8.12)	
15	-10.20	≈ 170	1B	B(2,0,12) B(7)	
	-1146	~ 170	1B	B(11)	
	-13.96	?	2B	B(3.4)	
	-14.2 (sh)	?	1B	B(5)	
	-15.57	≈150	2B	B(9,10)	
	-17.47	≈160	1B	B (6)	
14	2 43	134.8	1 B	B(5)	
	-8.94	140	1B	B(3)	
	-10.03	145.1	1B	$\mathbf{B}(2)$	
	-13.35	127.1	1B	B(8)	
	-15.74	161	1B	B(11)	
	-21.14	130	1B	B(9)	
	-22.58	≈200	1 B	B(10)	
	-23.66 (s)		1B	B(4)	
	-25.02	135	1B	B(1)	
	-32.67	144	1B	B(6)	
15	-4.40	Unresolved	1B	B(12)	
	-5.05(s)	_	1B	B(2)	
	-9.98		1 B	B(7)	
	-10.90		2B	B(3,4)	
	-11.60		1 B	B(11)	
	-14.06		3B	B(5,9,10)	
	-14.86 (s)		1 B	B(8)	
	-17.94		1 B	B(6)	

doublets at δ -14.39 and -11.76). The structure of **12** was established by the complexity, indicating the lack of a plane of symmetry, and COSY correlations which are best interpreted by the substituents at B(8)–I and B(2)–Ph. The structures of **13** and **15** were then assigned by analogy with **12**.

The ¹H NMR spectra of compounds **12**, **13** and **15** showed two groups of resonances near δ 7.36 and 7.76 (relative intensity 2:3) due to phenyl hydrogens, and singlets (relative intensity 9) near δ 3.05 due to the NMe₃ group. Additionally **13** and **14** showed multiplets of relative intensities 1:2:2 near δ 5.9 (=CH), 4.74 (=CH₂) and 1.65 (broad) (BCH₂) from the allyl group, consistent with observations on *B*-allyl-1,2-dicarba*closo*-dodecaborane.⁷ The effects of halogen substitution on the ¹¹B chemical shifts are best illustrated by schematic correlation diagrams, Fig. 2.

Mass spectra. The mass spectra of the *nido* derivatives further supported the structures, with the observation in **2** of molecular ions M^+ and fragment ions near m/z 431 due to $[M - BH]^+$, with more extensive cluster degradation/ rearrangement giving ions near m/z 327 (due to species containing CB₁₁I), 200 (CB₁₁), 190 (CB₁₀) and 178 (CB₉). The mass spectrum of **11** gave no molecular ion, but instead a mixture of the molecular ions of species containing CB₁₁I (m/z 328–326), CB₉I (304–302), and fragment ions due to iodine loss from

all the molecular ions, *e.g.* m/z 200 (CB₁₁), 190 (CB₁₀) and 178 (CB₉). The mass spectrum of **3** showed the expected ions due to M^+ (m/z 327) and [M - 1]⁺ (m/z 200).

Experimental

Electrophilic iodination (1:1 and 1:2) of nido-7-Me₃N-7-CB₁₀H₁₂

Preparation of *nido*-4-I-7-Me₃N-7-CB₁₀H₁₁ **1.** A mixture of *nido*-7-Me₃N-7-CB₁₀H₁₂ (1.91 g, 10 mmol), I₂ (2.54 g, 10 mmol) and AlCl₃ (1.33 g, 10 mmol) in dry CH₂Cl₂ (20 cm³) was refluxed for 15–20 min. After the reaction was complete (when the condensate became colourless) the mixture was poured into water (30 cm³), the organic layer separated, and the aqueous layer extracted with CH₂Cl₂ (15 cm³). The extracts were combined, washed with water, and dried over MgSO₄. The solvent was removed *in vacuo* and crystallisation of the residue from MeCN–EtOH yielded *compound* **1** (2.92 g, 92%), m.p. 275 °C (with decomposition) (Found: C, 16.13; H, 6.72; N, 4.66. C₄H₂₀B₁₀IN requires C, 15.14; H, 6.31; N, 4.42%).

Preparation of *nido*-4,6-I₂-7-Me₃N-7-CB₁₀H₁₀ **2.** A mixture of *nido*-7-Me₃N-7-CB₁₀H₁₂ (1.91 g, 10 mmol), I₂ (5.0 g, 20 mmol) and AlCl₃ (1.33 g, 10 mmol) in dry CH₂Cl₂ (30 cm³) was refluxed for 30 min. After the reaction was complete the mixture

Fig. 2 Schematic ¹¹B NMR correlation diagrams: (*a*) monosubstituted derivatives of *nido*-7-Me₃N-7-CB₁₀H₁₂ **1** and **4** (including data from ref. 4); (*b*) *nido* dianions **7**, **9** and **10**; (*c*) *closo* compounds **12** and 8-Br-2-Ph-1-Me₃N-1-CB₁₁H₉ **15**; (*d*) *nido*-disubstituted compounds **2** and **5**

was worked up as for compound **1**. Crystallisation of the residue from MeCN–EtOH yielded *compound* **2** (3.99 g, 90%), m.p. 258–260 °C (with decomposition) (Found: C, 11.10; H, 4.29; N, 3.09. $C_4H_{19}B_{10}I_2N$ requires C, 10.84; H, 4.29; N, 3.16%).

Electrophilic iodination of *closo*-1-Me₃N-1-CB₁₁H₁₁

Preparation of *closo*-12-I-1-Me₃N-1-CB₁₁H₁₀ **3.** *Compound* **3** was synthesized in a manner similar to that for **1** from 1-Me₃N-1-CB₁₁H₁₁ (0.4 g, 2 mmol), I₂ (0.51 g, 2 mmol) and AlCl₃ (0.27 g, 2 mmol), except that the reaction mixture was boiled for 1 h. After column chromatography on SiO₂ (eluent CH₂Cl₂–MeCN 1:1) compound **3** was obtained (0.53 g, 81%), m.p. 330 °C (decomp.) (Found: C, 15.18; H, 5.66; N, 4.36. C₄H₁₉B₁₁IN requires C, 14.69; H, 5.81; N, 4.28%). *m/z* 328 (60), 327 (72), 326 (57), 325 (26, *M*⁺), 202 (42), 201 (94), 200 (100), 199 (73) and 198 (46%, *M* – I).

Electrophilic bromination (1:1 and 1:2) of *nido*-7-Me₃N-7-CB₁₀H₁₂

Preparation of *nido*-**4-Br-7-Me**₃**N-7-CB**₁₀**H**₁₁ **4.** A mixture of *nido*-7-Me₃N-7-CB₁₀H₁₂ (1 g, 5.5 mmol), Br₂ (0.93 g, 5.8 mmol) and AlCl₃ (0.025 g, 0.19 mmol) in dry CH₂Cl₂ (20 cm³) was stirred for 1 h until the solution became colourless. The mixture was poured into water, the organic layer separated, washed with water, and dried over MgSO₄. The solvent was removed *in vacuo*

and crystallisation of the residue from MeCN–EtOH yielded compound 4 (1.38 g, 93%), m.p. 300–302 °C. In other reactions using AlCl₃ or FeCl₃ at reflux for 10–15 min, a three-component mixture was obtained as indicated by TLC analysis on Silufol plates (eluent CH₂Cl₂): R_f 0.5, 0.4 and 0.3 corresponding to starting compound, mono- and di-bromo-derivatives. These were separated by suspending the product in EtOH (15 cm³), refluxing for 30 min, and filtering the hot suspension to remove undissolved *nido*-7-Me₃N-7-CB₁₀H₁₂. Ethanol was distilled off *in vacuo* to give a mixture of 4-bromo- and 4,6dibromo-substituted monocarboranes which were separated by column chromatography on SiO₂ (eluent CH₂Cl₂–Et₂O, 1:1) to yield compound 4 (Found: C, 18.07; H, 7.31; Br, 28.97; N, 5.04. Calc. for C₄H₂₀B₁₀BrN: C, 17.78; H, 7.41; Br, 29.65; N, 5.18%).

Preparation of *nido*-4,6-Br₂-7-Me₃N-7-CB₁₀H₁₀ **5**. A mixture of *nido*-7-Me₃N-7-CB₁₀H₁₂ (0.45 g, 2.4 nmol), Br₂ (0.77 g, 4.8 mmol) and AlCl₃ (0.08 g, 0.6 mmol) in dry CH₂Cl₂ (20 cm³) was refluxed for 15 min. The mixture was poured into water, the organic layer separated and dried over MgSO₄. Thin-layer chromatographic analysis on a Silufol plate indicated only one major product with only traces of monobromo-substituted compound. The solvent was distilled off *in vacuo*, and crystallisation of the residue yielded *compound* **5** (0.66 g, 79%), m.p. °C (Found: C, 14.44; H, 5.81; Br, 32.74; N, 4.09. C₄H₁₉B₁₀Br₂N requires C, 13.75; H, 5.45; Br, 45.84; N, 4.01%).

Electrophilically induced nucleophilic iodination

Preparation of *nido*-9-I-7-Me₃N-7-CB₁₀H₁₁ **6.** A mixture of *nido*-7-Me₃N-7-CB₁₀H₁₂ (0.955 g, 5 mmol) and AlCl₃ (0.07 g, 0.5 mmol) in dry CH₂Cl₂ (20 cm³) was cooled to -40 °C. Gaseous HI (0.852 g, 6.5 mmol) was condensed in, the mixture warmed to 20 °C, and stirred for 4 h until the starting *nido*-7-Me₃N-7-CB₁₀H₁₂ had reacted (TLC analysis). The mixture was poured into water, the organic layer separated, washed with water, and dried over MgSO₄. The solvent was removed *in vacuo* and the residue purified by column chromatography on SiO₂ (eluted with CH₂Cl₂) to yield the *product* **6** (1.41 g, 89%) as a white powder, m.p. 305–307 °C, identified by its ¹¹B NMR spectrum.

Similar reactions with stoichiometric quantities of AlCl₃ gave products whose NMR spectra indicated polysubstitution with iodine and/or chlorine.

Deprotonation and anion oxidation

Deprotonation of *nido*-7-Me₃N-7-CB₁₀H₁₂ by (Me₂N)₂C=NH. A suspension of *nido*-7-Me₃N-7-CB₁₀H₁₂ (0.573 g, 3 mmol) in CH₂Cl₂ or MeCN (20 cm³) was treated under nitrogen with (Me₂N)₂C=NH (0.69 g, 6 mmol). The reaction mixture was stirred for 20 min to give a clear solution of the tetramethyl-guanidinium salt of the dianion [*nido*-7-Me₃N-7-CB₁₀H₁₀]²⁻ 7, identified by its NMR spectrum.

Reaction of [*nido*-7-Me₃N-7-CB₁₀H₁₀]²⁻ with I₂. The compound *nido*-7-Me₃N-7-CB₁₀H₁₂ (0.573 g, 3 mmol) in CH₂Cl₂ (20 cm³) was deprotonated with (Me₂N)₂C=NH (0.69 g, 6 mmol) as before, and then treated with I₂ (0.762 g, 3 mmol) at 20 °C. The solution was stirred for 1 h (until the iodine colour disappeared), then poured into water. The aqueous layer was separated and extracted with CH₂Cl₂-MeCN (1:1). The extract, combined with the organic layer, was washed with 5% aqueous Na₂SO₃ solution, then water, and dried over MgSO₄. Solvent was removed *in vacuo*, the residue chromatographed on SiO₂ (eluent CH₂Cl₂), to give *closo*-2-Me₃N-2-CB₁₀H₁₀ **8** (0.45 g, 79%) identified by its ¹¹B NMR spectrum.

Deprotonation of *nido*-4-I-7-Me₃N-7-CB₁₀H₁₁ 1 and *nido*-4,6-I₂-7-Me₃N-7-CB₁₀H₁₀ 2 by (Me₂N)₂C=NH, and subsequent reactions with I₂. A suspension of *nido*-4-I-7-Me₃N-7-CB₁₀H₁₁ 1 (0.317 g, 1 mmol) in CH₂Cl₂ or MeCN (20 cm³) was treated under nitrogen with (Me₂N)₂C=NH (0.23 g, 2 mmol). The reaction mixture was stirred for 20 min at 20 °C to give a clear solution of the *salt* [(Me₂N)₂C=NH₂]⁺₂[*nido*-4-I-7-Me₃N-7-CB₁₀H₉]²⁻ 9. Iodine (0.254 g, 1 mmol) was added under nitrogen and the solution stirred for 2 h then poured into water. The organic layer was separated, dried over MgSO₄, and solvent distilled off *in vacuo*. Crystallisation of the residue yielded *closo*-3-I-2-Me₃N-2-CB₁₀H₉ 11 (0.26 g, 81%), identified from its ¹¹B NMR spectrum.

A similar reaction using nido-4,6-I₂-7-Me₃N-7-CB₁₀H₁₀ **2** gave the anion [nido-4,6-I₂-7-Me₃N-7-CB₁₀H₈]²⁻ **10** which on further reaction with I₂ gave a poor yield of an isomer mixture of closo-I₂-2-Me₃N-2-CB₁₀H₈.

Low temperature boron insertions

Preparation of 8-I-2-Ph-1-Me₃N-1-CB₁₁H₉ 12. To a solution of 4-I-7-Me₃N-7-CB₁₀H₁₁ 1 (1.08 g, 3.4 mmol) in dry thf (25 cm³) was added LiBuⁿ (2.5 cm³, 7.1 mmol) in hexane at 15–20 °C with stirring under a nitrogen atmosphere, and Li₂[4-I-7-Me₃N-7-CB₁₀H₉] separated as an oil on stirring for 30 min at 20 °C. It was then treated with PhBCl₂ (0.6 g, 3.7 mmol) at 15 °C, and boiled for 30 min to give a clear solution. Volatiles were removed *in vacuo* and the residue purified by column chromatography on SiO₂ (eluted with CH₂Cl₂) to yield the *product* **12** (0.8 g, 57%) as a white powder, m.p. 250–252 °C

(ethanol) (Found: C, 23.16; H, 6.18; N, 3.75. $C_{10}H_{23}B_{11}IN$ requires C, 23.79; H, 5.71; N, 3.48%). Similar reactions on *nido*-4,6-I₂-7-Me₃N-7-CB₁₀H₁₀ **2** yielded only the deprotonated anion **10** and on 4-Br-7-Me₃N-7-CB₁₀H₁₁ **4** gave a mixture of **15** and unchanged starting compound, characterised by their ¹¹B and ¹H NMR spectra.

Palladium-catalysed allyl substitution

Preparation of *closo*-8-CH₂=CHCH₂-2-Ph-1-Me₃N-1-CB₁₁H₉ **13.** A mixture of 8-I-2-Ph-1-Me₃N-1-CB₁₁H₉ **12** (0.39 g, 0.96 mmol), allylmagnesium bromide (2.9 mmol) and [Pd(PPh₃)₄] (0.06 g, 0.052 mmol) in thf (15 cm³) was refluxed for 12 h in a N₂ atmosphere until all the starting compound had dissolved. The mixture was treated with water, washed with 5% hydrochloric acid, dried over MgSO₄, and solvent distilled off *in vacuo*. The residue was purified by column chromatography on SiO₂ (eluent CH₂Cl₂-Et₂O 1:1) to yield the *product* **13** (0.25 g, 82%) as a white powder, m.p. 182–184 °C (EtOH) (Found: C, 47.87; H, 9.23; N, 3.78. C₁₃H₂₈B₁₁N requires C, 49.24; H, 8.84; N, 4.42%).

Preparation of *nido*-4-CH₂=CHCH₂-7-Me₃N-7-CB₁₀H₁₁ 14. In a reaction similar to that of compound 13, 4-I-7-Me₃N-7-CB₁₀H₁₁ 1 (1.08 g, 3.4 mmol) was treated with allylmagnesium bromide (2.9 mmol) and $[Pd(PPh_3)_4]$ (0.06 g, 0.052 mmol) in thf (15 cm³). The *product* 14 was purified similarly, and characterised by its ¹¹B and ¹H NMR spectra.

NMR spectroscopy

The ¹¹B (128.38 MHz) and ¹H (400.14 MHz) NMR spectra were obtained on a Bruker AMX400 spectrometer. Lock was maintained with deuteriated solvents (mainly CD_3CN) and shifts were referenced to external standards (SiMe₄ for ¹H and BF₃·OEt₂ for ¹¹B).

Cyclic and square wave voltammetry of nido-7-Me₃N-7-CB₁₀H₁₂, nido-4-I-7-Me₂N-7-CB₁₀H₁₁ 1, nido-4,6-I₂-7-Me₃N-7-CB₁₀H₁₀ 2 and [nido-7-Me₃N-7-CB₁₀H₁₀]²⁻ 7

Voltammetry was performed on an E.G. & G. Ltd. model 273 potentiostat, under the control of an Apple IIe computer with demonstration software supplied by E.G. & G. Ltd. using platinum working and secondary electrodes and a silver wire reference electrode. The solvent was MeCN dried and distilled from CaH. Supporting electrolytes (0.1 M) were NBu₄BF₄, NBu₄PF₆ (Fluka) and [(Me₂N)₂C=NH₂]BF₄ (prepared from NH₄BF₄ and tetramethylguanidine in MeCN). The CV scan rate was normally 200 mV s⁻¹; SW voltammetry was at 100 Hz and scan increment 5 mV.

Two-phase electrochemical oxidation/substitution in CH_2Cl_2 -water

nido-7-Me₃N-7-CB₁₀H₁₂. NBu₄I *electrolyte*. A simple onecompartment cell was charged with a solution of *nido*-7-Me₃N-7-CB₁₀H₁₂ (0.8 g, 3.98 mmol), and NBu₄I (3 g, 8.17 mmol) in CH₂Cl₂ (50 cm³) above which was placed a solution of NaI (1 g, 6.7 mmol) in water (30 cm³). The electrodes were platinum foil and were inserted in the two phase solution such that the anode was exposed only to the CH₂Cl₂ phase, and the cathode only to the aqueous phase. A current of 0.2 A was applied from a constant current/constant voltage power supply until a total of 384 C (4 mmol) of charge had passed. The CH₂Cl₂ layer was separated, and evaporated *in vacuo*, and the residue extracted three times with hot water (15 cm³) to remove NBu₄I. The solid was redissolved in CH₂Cl₂, dried over MgSO₄, evaporated to dryness, and recrystallised from EtOH to yield *closo*-2-Me₃N-2-CB₁₀H₁₀ **8** (0.78 g, 95%) identified by its ¹¹B NMR spectrum.

 NBu_4BF_4 *electrolyte.* In a similar reaction, solutions of *nido*-7-Me₃N-7-CB₁₀H₁₂ (0.2 g, 1 mmol) and NBu₄BF₄ (0.329 g, 1 mmol) in CH₂Cl₂ (10 cm³) and NaBF₄ (1 g) in water (10 cm³) were electrolysed at 0.063 A until 193 C (2 mmol) of charge had passed. Gas evolution was observed at both anode and cathode. The organic layer, worked up as before, yielded only starting compound.

nido-4-1-7-Me₃N-7-CB₁₀H₁₁. NBu₄BF₄ *electrolyte.* A similar reaction to the above using *nido*-4-I-7-Me₃N-7-CB₁₀H₁₁ (0.2 g, 0.63 mmol), and passing 122 C at 0.062 A, also gave gas evolution at both electrodes, and some iodine was liberated in the anode compartment. The product, worked up similarly, showed the main component to be starting compound with a smaller proportion of *nido*-7-Me₃N-7-CB₁₀H₁₂ from deiodination.

Divided cell electrochemical oxidation/substitution

Controlled potential electrochemical reactions were carried out in a cell which comprised two compartments each of *ca.* 25 cm³ capacity connected by flanged joints. A Nafion 390 membrane, sealed by lightly coating around its edge for about 1 mm on each side with Dow silicone rubber sealant, was inserted between the flanges. The anode was a platinum foil *ca.* 2 cm² area, the cathode was 2 cm platinum wire, and the reference was silver wire. Acetonitrile was distilled from CaH₂ before use. The electrolytes were those employed for CV and SWV.

nido-7-Me₃N-7-CB₁₀H₁₂. [(Me₂N)₂CNH₂]BF₄ *electrolyte*. The anode compartment of the divided cell was charged with [(Me₂N)₂CNH₂]BF₄ (0.203 g, 1 mmol) and *nido*-7-Me₃N-7-CB₁₀H₁₂ (0.19 g, 1 mmol) dissolved in MeCN (10 cm³). The cathode compartment was charged with a solution (10 cm³) of NH₄BF₄ (0.208 g, 2 mmol) in MeCN. The potential of the platinum anode was adjusted to 2.2 V, and electrolysis continued until the current fell to 1 mA resulting in the passage of 160 C of charge (83% of that required for 2 mmol electrons). The ¹¹B NMR spectrum of the resulting solution showed only starting compound and [BF₄]⁻ with no other detectable boron-containing product.

 NBu_4PF_6 electrolyte. In a similar reaction the anode compartment contained NBu_4PF_6 (0.387 g, 1 mmol) and *nido*-7- Me_3N -7- $CB_{10}H_{12}$ (0.19 g, 1 mmol) dissolved in MeCN (10 cm³), and cathode compartment contained NH_4PF_6 (1 g) dissolved in MeCN (10 cm³). The applied potential was initially 2.30 V to enable 38 mA current to flow. The anode contents became yellow after 177 C had passed. After 193 C, at which the current had fallen to 17 mA, the potential was reduced to 2.1 V and the current to 2.5 mA. The only isolable boron-containing product was starting compound.

nido-4-I-7-Me₃N-7-CB₁₀H₁₁. NBu₄PF₆ *electrolyte.* The anode compartment contained NBu₄PF₆ (0.387 g, 1 mmol) and *nido*-4-I-7-Me₃N-7-CB₁₀H₁₁ (0.2 g, 0.63 mmol) dissolved in MeCN (10 cm³), and cathode compartment contained NH₄PF₆ (1 g) dissolved in MeCN (10 cm³). A potential of 2.21 V was applied and gave an initial current of \approx 30 mA. An initial yellow colour in the anode compartment rapidly dissipated. After about 2/3 of the expected charge (\approx 80 C) significant iodine colour was apparent in the anode compartment, but rapidly dispersed as through a solution reaction. The electrolysis was stopped after 126 C had passed. Work-up of the product gave starting compound as the only identifiable species.

[*nido*-7-Me₃N-7-CB₁₀H₁₀]²⁻. [(Me₂N)₂CNH₂]BF₄ electrolyte. In the anode compartment of the two-compartment cell was placed [(Me₂N)₂CNH₂]BF₄ (0.203 g, 1 mmol), (Me₂N)₂CNH (0.23 g, 2 mmol) and *nido*-7-Me₃N-7-CB₁₀H₁₂ (0.19 g, 1 mmol) in MeCN (10 cm³). The cathode compartment was charged with NH₄BF₄ (1.0 g, 10 mmol) in MeCN (10 cm³) and a solution (5 cm³) of [(Me₂N)₂CNH₂]BF₄ (0.1 M) in MeCN. The two compartments were separated by a Nafion cation exchange membrane. The potential of the platinum foil anode was adjusted between 1.0 and 1.3 V (with respect to a silver wire reference) as the electrolysis proceeded. The current decayed to less than 3 mA and a total of 173 C of charge was passed. The ¹¹B NMR spectra of the anode solution, before and after solvent evaporation, indicated the product to be *closo*-2-Me₃-N-2-CB₁₀H₁₀ with only a trace of starting compound or other degradation products. Attempts to purify the product by column chromatography resulted in compound degradation and isolation only of starting material and degraded CB₉ species.

[*nido*-4-I-7-Me₃N-7-CB₁₀H₉]²⁻. [(Me₂N)₂CNH₂]BF₄ electrolyte. The anode compartment of the cell was charged with a solution (10 cm³) of *nido*-4-I-7-Me₃N-7-CB₁₀H₁₁ (0.317 g, 1 mmol), [(Me₂N)₂CNH₂]BF₄ (0.203 g, 1 mmol) and (Me₂N)₂-CNH (0.23 g, 2 mmol) in MeCN. The cathode compartment was loaded with NH₄BF₄ (0.208 g, 2 mmol) in MeCN (10 cm³). A potential of 1.1 V was applied initially, and this was reduced after 57 C had passed to 0.9 V. After 165 C had passed and the current had fallen to 52 mA the solution began to turn yellow (I₂). The electrolysis was discontinued after 179 C (93% of that required for two-electron oxidation). The ¹¹B NMR spectrum of the anode solution showed only a small quantity of starting compound together with a complex mixture of degraded products which appeared to include substituted CB₉ derivatives.

Computational studies

The AM1 calculations were performed using the SPARTAN molecular modelling package on a Silicon Graphics Indigo 2 computer; GAUSSIAN 94 ready files⁸ were prepared on the optimised geometries within the SPARTAN program and single point *ab initio* calculations were run at the HF/6-31G* level on a Silicon Graphics Origin 200 computer. Optimised structures were obtained after starting from several different starting geometries.

Acknowledgements

We thank The Royal Society for an ex-quota fellowship (to V. A. O.) and International Association for the promotion of cooperation with scientists from the New Independent States of the Former Soviet Union (INTAS) for financial support.

References

- T. Jelínek, J. Plešek, S. Hermánek and B. Štíbr, *Collect. Czech. Chem. Commun.*, 1986, **51**, 819; T. Jelínek, P. Baldwin, W. R. Scheidt and C. A. Reed, *Inorg. Chem.*, 1993, **32**, 1982.
- 2 L. I. Zakharkin, V. A. Ol'shevskaya, T. Yu. Poroshina and E. V. Balagurova, J. Gen. Chem. USSR, 1987, 57, 2012.
- 3 D. E. Hyatt, F. R. Scholer, L. J. Todd and J. L. Warner, *Inorg. Chem.*, 1967, **6**, 2229; F. R. Scholer and L. J. Todd, *J. Organomet. Chem.*, 1968, **14**, 261.
- 4 S. A. Khan, J. H. Morris and S. Siddiqui, J. Chem. Soc., Dalton Trans., 1990, 2053.
- 5 Nomenclature of Inorganic Chemistry, Blackwell Scientific Publications, Oxford, 1990, p. 207.
- 6 J. H. Morris, G. S. Peters, F. E. Rayment, M. D. Spicer, F. S. Mair and A. Martin, *Advances in Neutron Capture Therapy*, eds. R. F. Barth and A. H. Soloway, Plenum Press, New York, 1993, p. 329; F. S. Mair, J. H. Morris, D. F. Gaines and D. Powell, *J. Chem. Soc., Dalton Trans.*, 1993, 135; J. H. Morris, S. Majeed, G. S. Peters, M. D. Spicer, C. Walker and F. S. Mair, *Current Topics in the Chemistry of Boron*, ed. G. W. Kabalka, Royal Society of Chemistry, 1994, pp. 169–172.
- 7 L. I. Zakharkin, A. I. Kovredov, V. A. Ol'shevskaya and Zh. S. Shangumbekova, *J. Organomet. Chem.*, 1982, **226**, 217.
- 8 GAUSSIAN 94, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 1995.

Received 19th January, 1998; Paper 8/00489G