Preparation, characterisation and reactivity of a series of classical and non-classical rhenium hydride complexes \ddagger

Gabriele Albertin,,$^{*} 巾^{, a}$ Stefano Antoniutti, ${ }^{a}$ Soledad Garcia-Fontán, ${ }^{b}$ Rosa Carballo ${ }^{b}$ and Fabio Padoan ${ }^{a}$
${ }^{a}$ Dipartimento di Chimica, Università Ca' Foscari di Venezia, Dorsoduro 2137, 30123 Venezia, Italy
${ }^{\text {b }}$ Departamento de Quimica Inorganica, Universidade de Vigo, 36200 Vigo, Spain

Abstract

Hydride complexes $\left[\mathrm{ReH}(\mathrm{CO})_{4} \mathrm{~L}\right] \mathbf{1 ,}\left[\mathrm{ReH}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right] \mathbf{2 ,}\left[\mathrm{ReH}(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] \mathbf{3}$ and $\left[\mathrm{ReH}(\mathrm{CO}) \mathrm{L}_{4}\right] \mathbf{4}\left[\mathrm{L}=\mathrm{P}(\mathrm{OEt})_{3} \mathbf{a}\right.$, $\mathrm{PPh}(\mathrm{OEt})_{2} \mathbf{b}, \mathrm{PPh}_{2}(\mathrm{OEt}) \mathbf{c}$ or $\left.\mathrm{PPh}_{2}(\mathrm{OMe}) \mathbf{d}\right]$ were prepared by treating $\left[\mathrm{ReH}(\mathrm{CO})_{5}\right]$ with the appropriate phosphite under UV irradiation or reflux. The complexes were characterised by IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy and by crystal structure determinations of $\mathbf{1 d}$ and $\mathbf{2 d}$. Protonation of the monocarbonyls [$\left.\mathrm{ReH}(\mathrm{CO}) \mathrm{L}_{4}\right] 4$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ resulted in an equilibrium mixture of the classical dihydride complexes $\left[\mathrm{ReH}_{2}(\mathrm{CO}) \mathrm{L}_{4}\right]^{+} \mathrm{BF}_{4}{ }^{-}$and their non-classical tautomers $\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO}) \mathrm{L}_{4}{ }^{+} \mathrm{BF}_{4}{ }^{-}\right.$. The dihydride $\left[\mathrm{ReH}_{2}(\mathrm{CO})\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{4}\right] \mathrm{BPh}_{4}$ was also isolated as a solid by protonation of $\left[\mathrm{ReH}(\mathrm{CO})\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{4}\right]$ in ethanol. Thermally unstable $\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{4} \mathrm{~L}\right]^{+},\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]^{+}$and $\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{2} \mathrm{~L}_{3}\right]^{+} 7$ cations were also prepared by protonation of the corresponding monohydrides $\mathbf{1 , 2}$ and $\mathbf{3}$ and fully characterised in solution. The unsaturated complexes $\left[\operatorname{Re}(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] \mathrm{BPh}_{4}$ and $\left[\operatorname{Re}(\mathrm{CO}) \mathrm{L}_{4}\right] \mathrm{BPh}_{4} 11$ and the triflate $\left[\operatorname{Re}\left(\eta^{1}-\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$ were obtained from the $\eta^{2}-\mathrm{H}_{2}$ derivatives by evolution of H_{2}. The new complexes $\left[\mathrm{Re}(\mathrm{C} \equiv \mathrm{CPh})(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$, $\left[\operatorname{Re}(\mathrm{C} \equiv \mathrm{CPh})(\mathrm{CO}) \mathrm{L}_{4}\right] 13,\left[\operatorname{Re}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CN}\right)(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] \mathrm{BPh}_{4},\left[\operatorname{Re}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] \mathrm{BPh}_{4}$ and $[\operatorname{Re}(4-$ $\left.\left.\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)(\mathrm{CO}) \mathrm{L}_{4}\right] \mathrm{BPh}_{4}$ were prepared by treating the triflate compounds or the unsaturated compounds $\left[\operatorname{Re}(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] \mathrm{BPh}_{4}$ and $\left[\operatorname{Re}(\mathrm{CO}) \mathrm{L}_{4}\right] \mathrm{BPh}_{4}$ with $\mathrm{Li}^{+} \mathrm{C} \equiv \mathrm{CPh}^{-}$or with the appropriate ligand.

Since the initial discovery of the first transition metal dihydrogen complexes ${ }^{1}$ the chemistry of 'classical' and 'non-classical' metal hydrides has been systematically developed, with the support of several ancillary ligands such as tertiary phosphine, carbon monoxide and cyclopentadienyl ligands. ${ }^{2}$ As a result, a number of dihydrogen complexes have been synthesized and several studies on the stability and the reactivity of these complexes have been reported. ${ }^{2,3}$ These studies have addressed not only the structure, bonding and chemical properties of this important class of compounds, but also the catalytic and stoichiometric activation of H_{2} by transition metals, and now it seems certain that changes in the nature of the ancillary ligands may greatly change the properties of the $\eta^{2}-\mathrm{H}_{2}$ compounds.

We have previously reported ${ }^{4}$ the synthesis and some properties of molecular dihydrogen complexes of several metals containing phosphites as the supporting ligands, and recently have addressed our attention to rhenium complexes, ${ }^{5}$ describing the synthesis and the protonation reaction of new polyhydrides of the type $\mathrm{ReH}_{3} \mathrm{~L}_{4}, \mathrm{ReH}_{5} \mathrm{~L}_{3}$ and $\mathrm{Re}_{2} \mathrm{H}_{8} \mathrm{~L}_{4}$. Now we have extended these studies to rhenium monohydrides and in this paper report the synthesis and protonation reactions of a series of new hydrides of Re^{I} containing phosphites as ancillary ligands. The crystal structures of two hydrides and the characterisation of the new $\eta^{2}-\mathrm{H}_{2}$ complexes are also reported.

Experimental

All synthetic work was carried out under an appropriate atmosphere $\left(\mathrm{H}_{2}, \mathrm{Ar}\right)$ using standard Schlenk techniques or a Vacuum Atmosphere dry-box. Once isolated, the complexes were found to be relatively stable in air, but were stored under an inert atmosphere at $-25^{\circ} \mathrm{C}$. All solvents were dried over

[^0]appropriate drying agents, degassed on a vacuum line and distilled into vacuum-tight storage flasks. Triethyl phosphite was an Aldrich product, purified by distillation under nitrogen; the phosphines $\mathrm{PPh}(\mathrm{OEt})_{2}, \mathrm{PPh}_{2}(\mathrm{OEt})$ and $\mathrm{PPh}_{2}(\mathrm{OMe})$ were prepared by the method of Rabinowitz and Pellon. ${ }^{6}$ The complex [$\mathrm{Re}_{2}(\mathrm{CO})_{10}$] was from Pressure Chemical Co. (Pittsburgh) and used as received, $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(54 \%$ solution), triflic acid, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ and phenylacetylene were Aldrich products, used without further purification. Lithium phenylacetylide $\mathrm{Li}^{+}[\mathrm{PhC} \equiv \mathrm{C}]^{-}$was prepared by treating a slight excess of phenylacetylene ($40 \mathrm{mmol}, 4.4 \mathrm{~cm}^{3}$) with lithium ($35 \mathrm{mmol}, 0.24 \mathrm{~g}$) in tetrahydrofuran (thf) $\left(10 \mathrm{~cm}^{3}\right)$. p-Tolyl isocyanide was obtained by the phosgene method of Ugi et al. ${ }^{7}$ Other reagents were from commercial sources in the highest available purity and used as received. The photolysis was carried out under an argon atmosphere with a standard 400 W medium-pressure mercury arc lamp using a Pyrex Schlenk flask. Infrared spectra were recorded on a Digilab Bio-Rad FTS-40 or a Bruker Vector 22 FT spectrophotometer, NMR spectra $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}\right)$ on a Bruker AC200 or AMX400 spectrometer at temperatures varying between +30 and $-90^{\circ} \mathrm{C}$, unless otherwise noted. Proton and ${ }^{13} \mathrm{C}$ spectra are referred to internal tetramethylsilane, while ${ }^{31} \mathrm{P}-$ $\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts are reported with respect to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, with downfield shifts considered positive. Proton T_{1} values were measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 200 and at 400 MHz by the inversionrecovery method between +30 and $-90^{\circ} \mathrm{C}$ with a standard $180^{\circ}-\tau-90^{\circ}$ pulse sequence. The conductivity of $10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$ solutions of the complexes in MeNO_{2} at $25^{\circ} \mathrm{C}$ was measured with a Radiometer CDM 83 instrument.

Preparation of the complexes

The hydride $\left[\mathrm{ReH}(\mathrm{CO})_{5}\right]$ was prepared as previously reported. ${ }^{8}$

[^1]and the reaction mixture refluxed for about 10 h . The solvent was removed under reduced pressure giving an oil which was triturated with ethanol or methanol ($5 \mathrm{~cm}^{3}$) until a white solid separated. The product was filtered off and crystallised from dichloromethane ($2 \mathrm{~cm}^{3}$) and ethanol or methanol ($4 \mathrm{~cm}^{3}$); yield $\geqslant 60 \%$ (Found: C, 41.1; H, 3.1. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{PRe} 1 \mathrm{c}$ requires C, 40.8; H, 3.05. Found: C, 39.5; H, 2.8. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5}$ PRe 1d requires C, $39.6 ; \mathrm{H}, 2.9 \%$).
mer,trans- $\left[\mathrm{ReH}(\mathbf{C O})_{3} \mathbf{L}_{2}\right] \mathbf{2} \mathbf{[L}=\mathbf{P P h}_{\mathbf{2}}(\mathbf{O E t}) \mathbf{c}$ or $\mathbf{P P h}_{\mathbf{2}}(\mathbf{O M e})$ d]. An excess of the appropriate phosphine (12 mmol) was added to a solution of $\left[\mathrm{ReH}(\mathrm{CO})_{5}\right](5 \mathrm{mmol}, 1.64 \mathrm{~g})$ in thf (30 cm^{3}) and the reaction mixture refluxed for 5 h . The solvent was removed under reduced pressure giving an oil which was treated with ethanol or methanol $\left(15 \mathrm{~cm}^{3}\right)$. A white solid slowly separated which was filtered off and crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ and ethanol or methanol ($10 \mathrm{~cm}^{3}$); yield $\geqslant 90 \%$ for $\mathbf{2 c}, \geqslant 45 \%$ for 2d (Found: C, 51.0; H, 4.2. $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Re} 2 \mathrm{c}$ requires C , 50.9 ; $\mathrm{H}, 4.3$. Found: C, 49.0; H, 4.1. $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Re} 2 \mathrm{~d}$ requires C, 49.5; H, 3.9\%).
mer,trans- and fac, cis- $\left[\operatorname{ReH}(\mathbf{C O})_{3}\left\{\operatorname{PPh}(\mathrm{OEt})_{2}\right\}_{2}\right] 2 \mathrm{~b}$ and 2b$\boldsymbol{f a c}$. A slight excess of diethoxyphenylphosphine ($12 \mathrm{mmol}, 2.4$ $\left.\mathrm{cm}^{3}\right)$ was added to a solution of $\left[\operatorname{ReH}(\mathrm{CO})_{5}\right](5 \mathrm{mmol}, 1.64 \mathrm{~g})$ in toluene ($30 \mathrm{~cm}^{3}$) and the reaction mixture irradiated at room temperature for 40 min (in a Pyrex Schlenk flask using a standard 400 W medium-pressure mercury arc lamp). The solvent was then evaporated under reduced pressure to give an oil which was chromatographed on a silica gel column (length 70 cm , diameter 4 cm) using a mixture of light petroleum (b.p. $40-60^{\circ} \mathrm{C}$), benzene and diethyl ether $(10: 1: 1)$ as eluent. The first fraction eluted ($500 \mathrm{~cm}^{3}$) was evaporated to dryness leaving an oil which was treated with ethanol $\left(5 \mathrm{~cm}^{3}\right)$. By cooling the resulting solution to $-25^{\circ} \mathrm{C}$ white crystals of the mer, trans complex 2b were obtained; yield $\geqslant 60 \%$. From the second fraction eluted $\left(500 \mathrm{~cm}^{3}\right)$, after evaporation of the solvent and treatment with ethanol, the fac,cis isomer $\mathbf{2 b}$-fac was obtained; yield $\geqslant 10 \%$ (Found for the mer,trans isomer: C, 41.1; H, 4.8. Found for the fac,cis isomer: C, 41.5; H, 4.6. $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{7} \mathrm{P}_{2} \operatorname{Re} 2 b$ and 2b-fac requires C, 41.4; H, 4.7\%).
fac, cis-[$\left.\mathrm{ReH}(\mathbf{C O})_{3}\left\{\mathbf{P P h}_{\mathbf{2}}(\mathrm{OEt})\right\}_{2}\right] \quad \mathbf{2 c}$-fac. This complex was prepared exactly like $\mathbf{2 b}$ by irradiation at room temperature for 40 min of a solution of $\left[\operatorname{Re}(\mathrm{CO})_{5}\right]$ in toluene containing a slight excess of $\mathrm{PPh}_{2}(\mathrm{OEt})$. After evaporation of the solvent, the oil obtained was chromatographed on a silica gel column, obtaining exclusively the fac,cis isomer as a white crystalline solid; yield $\geqslant 60 \%$ (Found: C, 50.7 ; H, 4.15. $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{P}_{2}$ Re 2c requires $\mathrm{C}, 50.9 ; \mathrm{H}, 4.3 \%$).
mer,trans- $\left[\mathrm{ReH}(\mathrm{CO})_{3}\left\{\mathbf{P}(\mathrm{OEt})_{3}\right\}_{2}\right]$ 2a. This complex was prepared exactly like the related compound $\mathbf{2 b}$, obtaining exclusively the mer,trans isomer; yield $\geqslant 60 \%$ (Found: C, 30.0 ; $\mathrm{H}, 5.6 . \mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{9} \mathrm{P}_{2}$ Re requires $\left.\mathrm{C}, 29.85 ; \mathrm{H}, 5.2 \%\right)$.
cis,mer- $\left[\operatorname{ReH}(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] 3$ and cis,mer- $\left[\operatorname{ReH}(\mathrm{CO}) \mathrm{L}_{4}\right] 4[\mathrm{~L}=$ $\mathbf{P P h}(\mathbf{O E t})_{2}$ b or $\mathbf{P P h}_{2}(\mathbf{O E t})$ cl]. To a solution of $\left[\mathrm{ReH}(\mathrm{CO})_{5}\right]$ ($5 \mathrm{mmol}, 1.64 \mathrm{~g}$) in toluene ($30 \mathrm{~cm}^{3}$) was added an excess of the appropriate phosphine (35 mmol) and the reaction mixture was irradiated at room temperature for about 45 h . The solvent was removed under reduced pressure giving an oil which was chromatographed on a silica gel column ($70 \times 4 \mathrm{~cm}$) using a mixture of light petroleum (b.p. $40-60^{\circ} \mathrm{C}$), diethyl ether and benzene ($10: 1: 1$) as eluent. Evaporation to dryness of the first fraction eluted $\left(400 \mathrm{~cm}^{3}\right)$ and treatment of the resulting oil with ethanol $\left(3 \mathrm{~cm}^{3}\right)$ allowed us to obtain the monocarbonyls $\mathbf{4}$ in low yield ($\geqslant 5 \%$ for $\mathbf{4 b}$, traces for $\mathbf{4 c}$). From the second fraction eluted ($700 \mathrm{~cm}^{3}$), after removal of the solvent and treatment with ethanol, white microcrystals of the dicarbonyls 3 were obtained; yield $\geqslant 40 \%$ (Found: C, 45.75 ; H, 5.6. $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{8} \mathrm{P}_{3} \mathrm{Re}$

3b requires C, 45.9; H, 5.5. Found: C, 56.35; H, 5.1. $\mathrm{C}_{44} \mathrm{H}_{46} \mathrm{O}_{5}{ }^{-}$ P_{3} Re 3c requires C, 56.6; H, 5.0. Found: C, 49.00; H, 6.0. $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{O}_{9} \mathrm{P}_{4} \mathrm{Re} 4 \mathrm{~b}$ requires $\mathrm{C}, 48.85 ; \mathrm{H}, 6.1 \%$).
cis,mer-[ReH(CO) $\left.)_{2}\left\{\mathbf{P}(\mathbf{O E t})_{3}\right\}_{3}\right]$ 3a. This compound was prepared like the related 3 by treating $\left[\mathrm{ReH}(\mathrm{CO})_{5}\right](5 \mathrm{mmol}, 1.64 \mathrm{~g})$ in toluene $\left(30 \mathrm{~cm}^{3}\right)$ with an excess of $\mathrm{P}(\mathrm{OEt})_{3}\left(35 \mathrm{mmol}, 5.8 \mathrm{~cm}^{3}\right)$ and irradiating the resulting solution for about 12 h . Chromatographic separation on silica gel, using light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)-diethyl ether ($10: 1$), allowed the separation of 3a (first eluted, yield $\geqslant 60 \%$) as a white solid from the tricarbonyl $\left[\mathrm{ReH}(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{2}\right] \mathbf{2 a}$ (second eluted, yield $\geqslant 10 \%$) (Found: C, 32.6; H, 6.3. $\mathrm{C}_{20} \mathrm{H}_{46} \mathrm{O}_{11} \mathrm{P}_{3}$ Re requires $\mathrm{C}, 32.4 ; \mathrm{H}, 6.25 \%$).
trans- $\left[\mathrm{ReH}(\mathbf{C O})\left\{\mathbf{P}(\mathrm{OEt})_{3}\right\}_{4}\right] \mathbf{4 a}$. This compound was also prepared like the related $\mathbf{4 b}$ by irradiating a $\left[\mathrm{ReH}(\mathrm{CO})_{5}\right]$ solution ($5 \mathrm{mmol}, 1.64 \mathrm{~g}$ in $30 \mathrm{~cm}^{3}$ of toluene) containing an excess of $\mathrm{P}(\mathrm{OEt})_{3}\left(35 \mathrm{mmol}, 5.8 \mathrm{~cm}^{3}\right)$ for about 40 h . Removal of the solvent under reduced pressure gave an oil which was triturated with ethanol $\left(5 \mathrm{~cm}^{3}\right)$. By vigorous stirring of the resulting solution a white solid separated which was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \mathrm{~cm}^{3}$) and ethanol ($7 \mathrm{~cm}^{3}$); yield $\geqslant 65 \%$ (Found: C, $34.05 ; \mathrm{H}$, 7.3. $\mathrm{C}_{25} \mathrm{H}_{61} \mathrm{O}_{13} \mathrm{P}_{4}$ Re requires $\left.\mathrm{C}, 34.1 ; \mathrm{H}, 7.0 \%\right)$.
$\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{4} \mathrm{~L}^{+} \mathrm{BF}_{4}^{-} 5,\left[\operatorname{Re}\left(\boldsymbol{\eta}^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]^{+} \mathrm{BF}_{4}{ }^{-} 6\right.$ and $\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{2} \mathrm{~L}_{3}\right]^{+} \mathrm{BF}_{4}^{-} 7\left[\mathrm{~L}=\mathrm{P}(\mathrm{OEt})_{3} \mathrm{a}, \mathrm{PPh}(\mathrm{OEt})_{2} \mathrm{~b}\right.$, $\mathbf{P P h}_{2}(\mathbf{O E t}) \mathbf{c}$ or $\mathbf{P P h}_{2}(\mathbf{O M e})$ d]. These complexes were prepared in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution at low temperature $\left(-80^{\circ} \mathrm{C}\right)$ by protonation with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ of the corresponding hydride, but they were not isolated as solids owing to the easy loss of hydrogen above 220 K for 5 and above $250-280 \mathrm{~K}$ for $\mathbf{6}$ and 7. A typical preparation involved the addition by microsyringe of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ $(0.02 \mathrm{mmol}, 2.9 \mu \mathrm{l})$ to a solution of the appropriate hydride $(0.02 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(0.5 \mathrm{~cm}^{3}\right)$ placed into a 5 mm NMR tube and cooled to $-80^{\circ} \mathrm{C}$. The tube was shaken to complete the reaction and then the NMR spectra (${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$) were registered. $\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}\right]^{+}$5d: $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 193 \mathrm{~K}\right)$ $7.45(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.59\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3}\right)$ and $-3.75(2 \mathrm{H}, \mathrm{br}$, $\left.\eta^{2}-\mathrm{H}_{2}\right) ; \delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 198 \mathrm{~K}\right) 122.98$ (s). $\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{3}-\right.$ $\left.\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{2}\right]^{+} \mathbf{6 a}: \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right) 4.13\left(12 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2}\right), 1.41$ $\left(18 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$ and $-4.6\left(2 \mathrm{H}, \mathrm{br}, \eta^{2}-\mathrm{H}_{2}\right) ; \delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right)$ $105.5(\mathrm{~s}) .\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{3}\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{2}\right]^{+} \mathbf{6 b}: \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203\right.$ K) $7.64(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.98\left(8 \mathrm{H}, \mathrm{m}, \mathrm{br}, \mathrm{CH}_{2}\right), 1.42(12 \mathrm{H}, \mathrm{t}$, CH_{3}) and $-4.3\left(2 \mathrm{H}, \mathrm{br}, \eta^{2}-\mathrm{H}_{2}\right) ; \delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right) 119.19$ (s). $\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{3}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}_{2}\right]^{+}$6d: $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right) 7.52$ $(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.3\left(6 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$ and $-3.9\left(2 \mathrm{H}, \mathrm{br}, \eta^{2}-\mathrm{H}_{2}\right)$; $\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right) 123.1(\mathrm{~s}) .\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{3}\right]^{+} 7 \mathrm{a}:$ $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right) 4.02\left(18 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.36,1.21(27 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{CH}_{3}\right)$ and $-5.02\left(2 \mathrm{H}, \mathrm{br}, \eta^{2}-\mathrm{H}_{2}\right) ; \delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right) \mathrm{A}_{2} \mathrm{~B}$ spin system, $\delta_{\mathrm{A}} 112.2, \delta_{\mathrm{B}} 110.8, J_{\mathrm{AB}}=42.6 \mathrm{~Hz} .\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{2}-\right.$ $\left.\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{3}\right]^{+} 7 \mathbf{7 b}: \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right) 7.60-7.10(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 3.77, $3.50\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.30,1.15\left(18 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$ and -4.5 ($2 \mathrm{H}, \mathrm{br}, \eta^{2}-\mathrm{H}_{2}$); $\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right) \mathrm{AB}_{2}$ spin system, δ_{A} 131.4, $\delta_{\mathrm{B}} 129.5, J_{\mathrm{AB}}=27.5 \mathrm{~Hz} .\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{2}\left\{\mathrm{PPh}_{2}(\mathrm{OEt})\right\}_{3}\right]^{+} 7 \mathbf{c}$: $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right) 7.70-7.20(30 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.60-3.10(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.22,1.02\left(9 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$ and $-3.55\left(2 \mathrm{H}, \mathrm{br}, \eta^{2}-\mathrm{H}_{2}\right)$; $\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right) \mathrm{AB}_{2}$ spin system, $\delta_{\mathrm{A}} 106.2, \delta_{\mathrm{B}} 103.5$, $J_{\mathrm{AB}}=27.5 \mathrm{~Hz}$.
$\left[\operatorname{Re}\left(\boldsymbol{\eta}^{2}-\mathrm{HD}\right)(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OEt})_{3\}_{2}}\right]^{+} \mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-} \mathrm{aa}_{1}\right.$ and $\left[\mathrm{Re}\left(\boldsymbol{\eta}^{2}-\mathrm{HD}\right)-\right.$ $(\mathrm{CO})_{3}\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{2}{ }^{+} \mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-} \mathbf{6} \mathrm{b}_{1},\left[\operatorname{Re}\left(\boldsymbol{\eta}^{2}-\mathrm{HD}\right)(\mathrm{CO})_{2} \mathrm{~L}_{3}\right]^{+} \mathrm{CF}_{3}{ }^{-}$ $\mathrm{CO}_{2}{ }^{-}\left[\mathrm{L}=\mathrm{P}(\mathrm{OEt})_{3} 7 \mathrm{a}_{1}, \mathrm{PPh}(\mathrm{OEt})_{2} 7 \mathrm{~b}_{1}\right.$ or $\left.\mathrm{PPh}_{2} \mathbf{O E t} 7 \mathrm{c}_{1}\right]$. These isotopomers were prepared in a NMR tube exactly like 6 and 7 using $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ as the protonating agent.
$\left[\operatorname{ReH}_{2}(\mathrm{CO})\left\{\mathrm{P}\left(\mathrm{OEt}_{3}\right\}_{4}\right]^{+} \mathrm{BF}_{4}{ }^{-} \quad \mathbf{8}\right.$ *a and $\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})-\right.$ $\left\{\mathbf{P}(\mathbf{O E t})_{\}_{4}}{ }^{+} \mathbf{B F}_{4}^{-} \mathbf{8 a}\right.$. These derivatives were also prepared only in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution by protonation at low temperature $\left(-80^{\circ} \mathrm{C}\right)$ with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ of the hydride $\left[\operatorname{ReH}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]$. A mixture of $\mathbf{8}^{*} \mathbf{a}$ and $\mathbf{8 a}$ was always obtained, the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$

NMR spectra being as follows: $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right) 3.97$ (qnt), 3.54 (qnt), $24 \mathrm{H}, \mathrm{CH}_{2}$), 1.34, 1.31, 1.27, $1.22\left(36 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right)$, $-5.60(\mathrm{br})$ and $-6.17(\mathrm{qnt})\left(2 \mathrm{H}, \mathrm{H}_{2}\right) ; \delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 203 \mathrm{~K}\right) 117.5$ (s, br).
$\left[\operatorname{ReH}(\mathrm{D})(\mathrm{CO})\left\{\mathrm{P}\left(\mathrm{OEt}_{3}\right\}_{4}\right]^{+} \mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-} \mathbf{8}^{*} \mathrm{a}_{1}\right.$ and $\left[\operatorname{Re}\left(\eta^{2}-\mathrm{HD}\right)\right.$ $\left.(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+} \mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-} \mathbf{8 a} \mathrm{a}_{1}$. These isotopomers were prepared exactly like the related complexes $\mathbf{8}^{*} \mathbf{a}$ and $\mathbf{8 a}$ using $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ as the protonating agent.
$\left[\mathrm{ReH}_{2}(\mathrm{CO})\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{4}\right]^{+} \mathbf{B F}_{4}{ }^{-} \quad \mathbf{8 *} \mathbf{b}$ and $\left[\operatorname{Re}\left(\boldsymbol{\eta}^{2}-\mathrm{H}_{2}\right)(\mathbf{C O})-\right.$ $\left.\left\{\mathbf{P P h}(\mathbf{O E t})_{2}\right\}_{4}\right]^{+} \mathbf{B F}_{4}{ }^{-} \mathbf{8 b}$. These compounds were prepared only in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution at low temperature $\left(-80^{\circ} \mathrm{C}\right)$ by protonation with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ of the hydride $\left[\mathrm{ReH}(\mathrm{CO}) \mathrm{L}_{4}\right]$. The method was exactly the same as that used for the related derivatives $\mathbf{8 *}$ a and $\mathbf{8 a}$ and, also in this case, a mixture of $\mathbf{8 *} \mathbf{b}$ and $\mathbf{8 b}$ was always obtained, with ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data as follows: $\delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $273 \mathrm{~K}) 7.60-7.20(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 3.60\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.24,1.21$ $\left(24 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right),-4.75(\mathrm{br})$ and -5.18 (qnt) $\left(2 \mathrm{H}, \mathrm{H}_{2}\right)$; $\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 273 \mathrm{~K}\right) 133.5(\mathrm{~s})$ and $142.0(\mathrm{~s})$.
$\left[\operatorname{ReH}(\mathrm{D})(\mathrm{CO})\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{4}\right]^{+} \mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-} \mathbf{8 b}^{*}{ }_{1}$ and $\left[\operatorname{Re}\left(\eta^{2}-\mathrm{HD}\right)-\right.$ (CO) $\left.\left\{\mathbf{P P h}(\mathbf{O E t})_{2}\right\}_{4}\right]^{+} \mathbf{C F}_{3} \mathbf{C O}_{2}{ }^{-} \mathbf{8 b}_{1}$. These isotopomers were prepared exactly like the related complexes $\mathbf{8 *} \mathbf{b}$ and $\mathbf{8 b}$ using $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$ as the protonating agent.
 amount of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 14 \mu \mathrm{l})$ was added to a suspension of $\left[\mathrm{ReH}(\mathrm{CO})\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{4}\right](0.1 \mathrm{mmol}, 0.100 \mathrm{~g})$ in ethanol $\left(3 \mathrm{~cm}^{3}\right)$ cooled to $-80^{\circ} \mathrm{C}$. The reaction mixture was brought to $0^{\circ} \mathrm{C}$ and stirred for about 2 h . An excess of NaBPh_{4} $(0.2 \mathrm{mmol}, 0.068 \mathrm{~g})$ in ethanol $\left(2 \mathrm{~cm}^{3}\right)$ was added giving a white solid which was filtered off and crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 cm^{3}) and ethanol ($3 \mathrm{~cm}^{3}$); yield $\geqslant 65 \% ; \Lambda_{\mathrm{M}}=51.9 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (Found: C, 58.7; H, 6.3. $\mathrm{C}_{65} \mathrm{H}_{82} \mathrm{BO}_{9} \mathrm{P}_{4}$ Re requires $\mathrm{C}, 58.8 ; \mathrm{H}$, $6.2 \%)$.
$\left[\operatorname{Re}\left(\boldsymbol{\eta}^{1}-\mathbf{O S O}_{2} \mathbf{C F}_{3}\right)(\mathbf{C O})_{3}\left\{\mathbf{P P h}_{2}(\mathbf{O E t})\right\}_{2}\right] 9 \mathrm{c}$. To a suspension of $\left[\mathrm{ReH}(\mathrm{CO})_{3}\left\{\mathrm{PPh}_{2}(\mathrm{OEt})\right\}_{2}\right](0.2 \mathrm{mmol}, 0.146 \mathrm{~g})$ in ethanol (5 cm^{3}) cooled to $-80^{\circ} \mathrm{C}$ an equimolar amount of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ was added and the reaction mixture, brought to room temperature, was stirred for 2 h . The white solid obtained was filtered off and crystallised from ethanol; yield $\geqslant 60 \%$ (Found: C, 43.95; H, 3.6. $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{ReS}$ requires $\mathrm{C}, 43.7 ; \mathrm{H}, 3.4 \%$).
$\left[\operatorname{Re}(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] \mathrm{BPh}_{4} \mathbf{1 0}\left[\mathrm{P}=\mathbf{P}(\mathrm{OEt})_{3}\right.$ a or $\left.\mathrm{PPh}_{2}(\mathrm{OEt}) \mathrm{c}\right]$. To a solution of the hydride $\left[\operatorname{ReH}(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] \mathbf{3}(0.2 \mathrm{mmol})$ in ethanol (ca. $5 \mathrm{~cm}^{3}$) cooled to $-80^{\circ} \mathrm{C}$ an equimolar amount of HBF_{4}. $\mathrm{Et}_{2} \mathrm{O}(0.2 \mathrm{mmol}, 29 \mu \mathrm{l})$ was added and the reaction mixture, brought to room temperature, stirred for 2 h . An excess of $\mathrm{NaBPh}_{4}(0.3 \mathrm{mmol}, 0.10 \mathrm{~g})$ in ethanol $\left(3 \mathrm{~cm}^{3}\right)$ was added and the white solid obtained was filtered off and crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ and ethanol ($7 \mathrm{~cm}^{3}$); yield $\geqslant 85 \% ; \Lambda_{\mathrm{M}}=55.1$ for 10a, $53.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ for 10c (Found: C, $50.1 ; \mathrm{H}, 6.3$. $\mathrm{C}_{44} \mathrm{H}_{65} \mathrm{BO}_{11} \mathrm{P}_{3} \mathrm{Re}$ 10a requires C, 49.9; H, 6.2. Found: C, 65.0 ; $\mathrm{H}, 5.3 . \mathrm{C}_{68} \mathrm{H}_{65} \mathrm{BO}_{5} \mathrm{P}_{3} \mathrm{Re} 10 \mathrm{c}$ requires $\mathrm{C}, 65.2 ; \mathrm{H}, 5.2 \%$).
$\left[\operatorname{Re}(\mathbf{C O})\left\{\mathbf{P}(\mathbf{O E t})_{3}\right\}_{4}\right] \mathbf{B P h}_{4} \mathbf{1 1 a}$. This compound was prepared exactly like the related complex 10a by protonation with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ of $\left[\operatorname{ReH}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]$; yield $\geqslant 80 \% ; \Lambda_{\mathrm{M}}=54.0 \mathrm{~S}$ $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$ (Found: C, $49.25 ; \mathrm{H}, 6.6 . \mathrm{C}_{49} \mathrm{H}_{80} \mathrm{BO}_{13} \mathrm{P}_{4}$ Re requires C, 49.1; H, 6.7\%).
mer, trans- $\left[\operatorname{Re}(\mathrm{C} \equiv \mathrm{CPh})(\mathrm{CO})_{3} \mathrm{~L}_{2}\right] \quad 12\left[\mathrm{~L}=\mathrm{P}(\mathrm{OEt})_{3}\right.$ a, $\mathrm{PPh}-$ $(\mathrm{OEt})_{\mathbf{2}} \mathbf{b}$ or $\left.\mathrm{PPh}_{2}(\mathbf{O E t}) \mathbf{c}\right]$. To a solution of the appropriate hydride $\left[\mathrm{ReH}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right](0.60 \mathrm{mmol})$ in toluene $\left(10 \mathrm{~cm}^{3}\right)$ cooled to $-80^{\circ} \mathrm{C}$ a slight excess of triffic acid $(0.66 \mathrm{mmol}, 58.4 \mu \mathrm{l})$ was added and the reaction mixture, brought to room temperature, was stirred for 1 h . An excess of $\mathrm{Li}^{+}\left[\mathrm{PhC} \equiv \mathrm{C}^{-}(2.4 \mathrm{mmol}, 1.28\right.$ cm^{3} of a $1.88 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in thf) was added to the resulting solution and, after 2 h of stirring, the solvent was removed
under reduced pressure. The oil obtained was triturated with ethanol $\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ until a pale yellow solid separated (2-3 h), which was filtered off and dried under vacuum; yield $\geqslant 70 \%$ (Found: C, 48.4; H, 4.5. $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{O}_{7} \mathrm{P}_{2}$ Re 12b requires $\mathrm{C}, 48.5 ; \mathrm{H}$, 4.6. Found: $\mathrm{C}, 56.1 ; \mathrm{H}, 4.3 . \mathrm{C}_{39} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Re}$ 12c requires C , 56.3; H, 4.2\%).
trans- $\left[\operatorname{Re}(\mathbf{C} \equiv \mathbf{C P h})(\mathbf{C O})\left\{\mathbf{P}(\mathbf{O E t})_{3}\right\}_{4}\right] \mathbf{1 3 a}$. An excess of Li^{+}-$[\mathrm{PhC}=\mathrm{C}]^{-}\left(1.6 \mathrm{mmol}, 0.85 \mathrm{~cm}^{3}\right.$ of a $1.88 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in thf) was added to a solution of $\left[\operatorname{Re}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right] \mathrm{BPh}_{4}$ 11a ($0.4 \mathrm{mmol}, 0.48 \mathrm{~g}$) in thf $\left(15 \mathrm{~cm}^{3}\right)$ and the reaction mixture stirred for 2 h . The solvent was evaporated to dryness leaving an oil which was triturated with ethanol $\left(2 \mathrm{~cm}^{3}\right)$ until a pale yellow solid separated, which was filtered off and dried under vacuum; yield $\geqslant 65 \%$ (Found: C, 40.6; H, 6.9. $\mathrm{C}_{33} \mathrm{H}_{65} \mathrm{O}_{13} \mathrm{P}_{4}$ Re requires C, 40.45; H, 6.7\%).
cis,mer-[Re(4-MeC $\left.\left.\mathbf{C H}_{6} \mathrm{CN}\right)(\mathrm{CO})_{2}\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{3}\right] \mathrm{BPh}_{4} \mathbf{1 4 b}$ and cis,mer- $\left[\operatorname{Re}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)(\mathrm{CO})_{2}\left\{\mathrm{PPh}\left(\mathrm{OEt}_{2}\right\}_{3}\right] \mathrm{BPh}_{4} \mathbf{1 5 b}\right.$. An equivalent amount of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(0.2 \mathrm{mmol}, 29 \mu \mathrm{l}$ of a 54% solution) was added to a suspension of $\left[\mathrm{ReH}(\mathrm{CO})_{2}\{\mathrm{PPh}-\right.$ $\left.\left.(\mathrm{OEt})_{2}\right\}_{3}\right](0.2 \mathrm{mmol}, 0.167 \mathrm{~g})$ in ethanol $\left(4 \mathrm{~cm}^{3}\right)$ cooled to $-80^{\circ} \mathrm{C}$. The reaction mixture was slowly brought to room temperature and stirred for 30 min . An excess of p-toluonitrile in one case and p-tolyl isocyanide in the other (0.3 mmol) was added to the resulting solution, which was stirred for 1 h and then an excess of $\mathrm{NaBPh}_{4}(0.4 \mathrm{mmol}, 0.137 \mathrm{~g})$ in ethanol $\left(2 \mathrm{~cm}^{3}\right)$ was added. A white solid slowly separated, which was filtered off and crystallised from ethanol; yield $\geqslant 60 \% ; \Lambda_{M}=49.5$ for $\mathbf{1 4 b}, 52.8 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ for $\mathbf{1 5 b}$ (Found: C, $60.2 ; \mathrm{H}, 5.8 ; \mathrm{N}, 1.0$. $\mathrm{C}_{64} \mathrm{H}_{72} \mathrm{BO}_{8} \mathrm{P}_{3} \mathrm{Re}$ 14b requires C, 60.4; H, 5.7; N, 1.1. Found: C, 60.5; H, 5.7; N, 1.2. $\mathrm{C}_{64} \mathrm{H}_{72} \mathrm{BO}_{8} \mathrm{P}_{3}$ Re 15b requires C, $60.4 ; \mathrm{H}$, 5.7; N, 1.1\%).
trans-[Re(4-MeC $\mathbf{H}_{4} \mathbf{N C) (C O)}\left\{\mathbf{P}\left(\mathrm{OEt}_{3}\right\}_{4}\right] \mathrm{BPh}_{4} \quad \mathbf{1 6 a}$. This complex can be prepared exactly like the related compound 15 or by treating the unsaturated compound $[\operatorname{Re}(\mathrm{CO})$ $\left.\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right] \mathrm{BPh}_{4}$ 11a with isocyanide. A typical preparation involved the addition of an excess of $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}(1 \mathrm{mmol}$, $117 \mu \mathrm{l})$ to a solution of $\left[\mathrm{Re}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right] \mathrm{BPh}_{4}(0.4 \mathrm{mmol}$, $0.48 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. After 2 h of stirring, the solvent was removed under reduced pressure giving an oil which was treated with ethanol $\left(3 \mathrm{~cm}^{3}\right)$. By cooling the resulting solution to $-25^{\circ} \mathrm{C}$, white microcrystals of the compound were obtained, which were filtered off and dried under vacuum; yield $\geqslant 80 \%$; $\Lambda_{\mathrm{M}}=52.6 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (Found: C, $52.2 ; \mathrm{H}, 6.8 ; \mathrm{N}, 1.1$. $\mathrm{C}_{57} \mathrm{H}_{87} \mathrm{BO}_{13} \mathrm{P}_{4}$ Re requires C, $\left.52.05 ; \mathrm{H}, 6.7 ; \mathrm{N}, 1.1 \%\right)$.

Crystallography

$\left[\operatorname{ReH}(\mathbf{C O})_{4}\left\{\mathbf{P P h}_{2}(\mathbf{O M e})\right\}\right]$ 1d. Crystallographic measurements were performed at 203 K on an Enraf-Nonius CAD4 diffractometer with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda 0.71073 \AA$) using a colourless prismatic crystal of approximate dimensions $0.60 \times 0.50 \times 0.40 \mathrm{~mm}$. Cell constants were determined from the setting angles of 25 reflections (θ range $7-15^{\circ}$) by the ω scan technique. Of 4321 reflections collected in the θ range $3-26^{\circ}, 3563$ independent reflections, after ψ-scan absorption correction (maximum, minimum $0.9920,0.5656$), 3235 with $I>2 \sigma(I)$ were observed. No correction for crystal decomposition was required. The structure was solved by Patterson and Fourier-difference techniques. Refinement of F^{2}, by full-matrix least-squares techniques, was made with 273 independent parameters. All non-hydrogen atoms were anisotropically refined. All hydrogen atoms were isotropically refined at positions obtained from Fourierdifference techniques.
$\left[\operatorname{ReH}(\mathbf{C O})_{3}\left\{\mathbf{P P h}_{2}(\mathbf{O M e})\right\}_{2}\right]$ 2d. A colourless prismatic crystal $(0.50 \times 0.30 \times 0.10 \mathrm{~mm})$ was analysed at 203 K as above. Cell parameters were obtained from setting angles of 25 reflections
$\left(\theta\right.$ range $\left.9-13^{\circ}\right)$. A total of 7309 reflections were collected in the θ range $3-27^{\circ}$. Of 6085 independent reflections, after ψ-scan absorption correction (maximum, minimum 0.999, 0.892) 4531 with $I>2 \sigma(I)$ were considered observed. No correction for crystal decomposition was required. The structure was solved by direct methods and Fourier-difference techniques as above.

Scattering factors and anomalous dispersion corrections were taken from ref. 9. Most calculations were performed with SHELXS $86{ }^{10}$ and SHELXL $93 .{ }^{11}$ Figures were plotted with ZORTEP. ${ }^{12}$

CCDC reference number 186/962.
See http://www.rsc.org/suppdata/dt/1998/2071/ for crystallographic files in .cif format.

Results and Discussion

Preparation and characterisation of classical hydride complexes

A series of mixed phosphite-carbonyl complexes of the type $\left[\operatorname{ReH}(\mathrm{CO})_{5-n} \mathrm{~L}_{n}\right] \mathbf{1}-\mathbf{4}(n=1,2,3,4)$ were prepared by thermal or photochemical substitution of the carbonyl ligands in the $\left[\mathrm{ReH}(\mathrm{CO})_{5}\right]$ species with the appropriate phosphite, as shown in Scheme 1. The reaction of $\left[\mathrm{ReH}(\mathrm{CO})_{5}\right]$ with an equimolar

$$
\begin{gathered}
{\left[\operatorname{ReH}(\mathrm{CO})_{5}\right]+\mathrm{L} \xrightarrow[\text { heat }]{\mathrm{L} \text { thf }}\left[\operatorname{ReH}(\mathrm{CO})_{4} \mathrm{~L}\right]+\mathrm{CO}} \\
{\left[\operatorname{ReH}(\mathrm{CO})_{5}\right] \xrightarrow[\text { heat }]{\text { excess } \mathrm{L}} \underset{\mathbf{1}}{\mathbf{1}}\left[\mathrm{ReH}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]} \\
{\left[\operatorname{ReH}(\mathrm{CO})_{5}\right] \xrightarrow[h v]{\mathrm{L}}\left[\operatorname{ReH}(\mathrm{CO})_{4} \mathrm{~L}\right] \xrightarrow[h v]{\mathrm{L}}\left[\operatorname{ReH}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]} \\
\mathbf{1} \\
\xrightarrow[h v]{\mathrm{L}}\left[\operatorname{ReH}(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] \xrightarrow[h v]{\mathrm{L}}\left[\operatorname{ReH}(\mathrm{CO}) \mathrm{L}_{4}\right] \\
\mathbf{3}
\end{gathered}
$$

Scheme $1 \mathrm{~L}=\mathrm{P}(\mathrm{OEt})_{3} \mathbf{a}, \mathrm{PPh}(\mathrm{OEt})_{2} \mathbf{b}, \mathrm{PPh}_{2}(\mathrm{OEt}) \mathbf{c}$ or $\mathrm{PPh}_{2}(\mathrm{OMe}) \mathbf{d}$
amount of phosphite proceeds to give the tetracarbonyls $\left[\mathrm{ReH}(\mathrm{CO})_{4} \mathrm{~L}\right] \mathbf{1}$ which can be isolated as solids only in the case of $\mathrm{PPh}_{2}(\mathrm{OR})(\mathrm{R}=\mathrm{Et} \mathbf{c}$ and Me d) ligands. With an excess of phosphite, instead, the reaction afforded exclusively the tricarbonyl compounds $\left[\operatorname{ReH}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right] 2$ which were isolated as white solids in high yields. Irradiation of $\left[\mathrm{ReH}(\mathrm{CO})_{5}\right]$ solutions containing an excess of the appropriate phosphite caused the sequential substitution of the carbonyl ligands, allowing the synthesis of all the hydride complexes 1-4 which, after chromatographic separation, were obtained as solids and characterised. However, the monocarbonyls $\left[\operatorname{ReH}(\mathrm{CO}) \mathrm{L}_{4}\right] \mathbf{4 c}$ and $\mathbf{4 d}$ were formed only in very small amounts and were not isolated. Good analytical data were obtained for all the hydride complexes, which are white or pale yellow solids, diamagnetic and nonelectrolyte. The IR and NMR spectra (Table 1) confirm the proposed formulation and suggest for the compounds $\mathbf{1 - 4}$ the presence in solution of the geometries $\mathbf{I}-\mathbf{V}$ which are similar to those found, in some cases, in the solid state (see below).

II

III

IV

V

The IR spectra of the tetracarbonyls 1 show two strong bands and one of medium intensity, in agreement with a cis geometry I, confirmed in the solid state for 1d. Both the fac, cis
and mer,trans isomers were obtained for the tricarbonyls $\left[\mathrm{ReH}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]$ containing the $\mathrm{PPh}(\mathrm{OEt})_{2} \mathbf{2 b}$ and the $\mathrm{PPh}_{2}(\mathrm{OEt})$ 2c ligands, while the mer,trans complex was exclusively obtained in the cases of 2a and of 2d. Diagnostic for the differentiation of the two isomers are the IR spectra, which show three bands with weak, strong and strong intensities, as the frequency decreases, for the cis,mer isomers, while three bands of strong and of comparable intensity are observed in the spectra of the fac, cis derivatives. In the temperature range between -80 and $+30{ }^{\circ} \mathrm{C}$ the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of both the isomers of the tricarbonyl $\left[\mathrm{ReH}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right] 2$ compounds appear as only one sharp singlet, suggesting the magnetic equivalence of the two phosphite ligands. The hydride pattern also confirms the equivalence of the two phosphites showing, for both the isomers, a sharp triplet consistent with the two geometries II and III. The only isomer obtained for the compounds $\mathbf{2 a}$ and $\mathbf{2 d}$ contains a meridional arrangement of the three carbonyl ligands, with the two phosphites in trans position (mer, trans geometry II), as confirmed by the IR and NMR spectra of the two derivatives and by the crystal structure determination of $\mathbf{2 d}$.

However, a cis,mer geometry IV seems to be suggested instead by the spectroscopic data of the dicarbonyl [ReH$\left.(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] 3$ complexes. Two $v(\mathrm{CO})$ bands are observed in the IR spectra at 1958-1882 cm^{-1}, consistent with two CO ligands in a mutually cis position. These two CO groups, however, are not magnetically equivalent, as shown by the ${ }^{13} \mathrm{C}$ NMR spectra of the derivative $\left[\operatorname{ReH}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{3}\right]$ 3a, which show two multiplets at $\delta 198.3$ and 197.1 attributed to the carbonyl carbon atoms of two inequivalent CO ligands. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show an $A_{2} B$ or $A B_{2}$ multiplet, while the hydride signal appears, in the proton spectra, as a multiplet easily simulable as the X part of an $A_{2} B X$ or $\mathrm{AB}_{2} \mathrm{X}$ spectrum $(\mathrm{X}=\mathrm{H})$, consistent with two phosphines being magnetically equivalent and different from the third. A type IV geometry for compounds 3 seems therefore to be consistent with the reported data.

Finally, a trans geometry \mathbf{V} can be assigned to the monocarbonyl compounds $\left[\operatorname{ReH}(\mathrm{CO}) \mathrm{L}_{4}\right] 4$ on the basis of the presence, between -80 and $+30^{\circ} \mathrm{C}$, of a sharp singlet in the ${ }^{31} \mathrm{P}$ NMR spectra.

Mixed carbonyl-phosphine complexes of rhenium have often been obtained by substituting CO ligands in $\left[\operatorname{ReX}(\mathrm{CO})_{5}\right]$ ($\mathrm{X}=$ halide or H) precursors, but include mainly a halogen derivative. ${ }^{13}$ Only recently $\left[\mathrm{ReH}(\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right)_{2}\right]\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}\right.$ or $\mathrm{PPh}_{2} \mathrm{Pr}^{\mathrm{i}}$) derivatives were prepared from $\left[\mathrm{ReH}(\mathrm{CO})_{5}\right]$ species. ${ }^{14}$ The related hydrides can be obtained, in some cases, from the halide by treatment with LiAlH_{4} or sodium. However, they generally contain phosphine or phosphine-carbonyl as ligands, ${ }^{13-15}$ with the rhenium(I) hydrides with phosphite as coligands being rather scarce. The thermal and the photochemical decarbonylation of $\left[\mathrm{ReH}(\mathrm{CO})_{5}\right]$ in the presence of 'phosphite' allows the synthesis of a series of mono-, di-, tri- and tetra-substituted $\left[\mathrm{ReH}(\mathrm{CO})_{5-n} \mathrm{P}_{n}\right]$ complexes together with a systematic investigation using $\mathrm{P}(\mathrm{OEt})_{3}, \mathrm{PPh}(\mathrm{OEt})_{2}, \mathrm{PPh}_{2}(\mathrm{OEt})$ and $\mathrm{PPh}_{2}(\mathrm{OMe})$ as a ligand.

Crystal structures of $\left[\mathrm{ReH}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}\right] 1 \mathrm{~d}$ and $[\mathrm{ReH}-$ $\left.(\mathrm{CO})_{3}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}_{2}\right] \mathbf{2 d}$

Crystals suitable for X-ray analysis were obtained for both complexes by recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ solution. The crystallographic data and the final R indices for the two compounds $\mathbf{1 d}$ and $\mathbf{2 d}$ are summarised in Table 2, selected bond distances and angles in Table 3. The ORTEP drawings of the compounds, along with the numbering schemes adopted, are shown in Figs. 1 and 2.

In both structures the terminal hydride ligand was located from an analysis of the Fourier-difference map. The two hydride compounds have a distorted octahedral disposition of

Table 1 Infrared and NMR data for the rhenium complexes

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} \& \multicolumn{2}{|l|}{IR^{a}} \& \multicolumn{2}{|l|}{${ }^{1} \mathrm{H}$ NMR ${ }^{\text {b,c }}$} \& \multirow[b]{2}{*}{Spin system} \& $$
\begin{aligned}
& { }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \\
& \mathrm{NMR}^{b, d}
\end{aligned}
$$ \& \multicolumn{2}{|l|}{${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{\text {b,c }}$}

\hline \& $\tilde{\mathrm{v}} / \mathrm{cm}^{-1}$ \& Assignment \& $\delta(\mathrm{J} / \mathrm{Hz})$ \& Assignment \& \& $\delta(J / \mathrm{Hz})$ \& $\delta(\mathrm{J} / \mathrm{Hz})$ \& Assignment

\hline 1c $c i s-\left[\mathrm{ReH}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2}(\mathrm{OEt})\right\}\right]$ \& $$
\begin{aligned}
& \text { 2080m } \\
& \text { 1985s } \\
& 1959 \mathrm{~s}
\end{aligned}
$$ \& $v(\mathrm{CO})$ \& $$
\begin{gathered}
3.57(\mathrm{qnt})^{e} \\
0.99(\mathrm{t}) \\
-4.95(\mathrm{~d}) \\
J_{\mathrm{PH}}=20
\end{gathered}
$$ \& $$
\begin{aligned}
& \mathrm{CH}_{2} \\
& \mathrm{CH}_{3} \\
& \mathrm{ReH}
\end{aligned}
$$ \& \& $111.5(\mathrm{~s})^{e}$ \& \&

\hline 1d cis $-\left[\mathrm{ReH}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}\right]$ \& $$
\begin{aligned}
& \text { 2083s } \\
& \text { 1967s (br) }
\end{aligned}
$$ \& $v(\mathrm{CO})$ \& $$
\begin{array}{r}
3.43(\mathrm{~d}) \\
-5.59(\mathrm{~d}) \\
J_{\mathrm{PH}}=24
\end{array}
$$ \& $$
\begin{aligned}
& \mathrm{CH}_{3} \\
& \mathrm{ReH}
\end{aligned}
$$ \& \& 133.0 (s) \& $$
\begin{aligned}
& 189.21(\mathrm{~d}) \\
& J_{\mathrm{CP}}=7.3 \\
& 189.16(\mathrm{~d}) \\
& J_{\mathrm{CP}}=11.4 \\
& 189.12(\mathrm{~d}) \\
& J_{\mathrm{CP}}=47 \\
& 54.5(\mathrm{~d})
\end{aligned}
$$ \& CO

\hline 2a mer, trans-[$\left.\mathrm{ReH}(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{2}\right]$ \& $$
\begin{aligned}
& \text { 2020w } \\
& \text { 1945s } \\
& \text { 1927s }
\end{aligned}
$$ \& $v(\mathrm{CO})$ \& $$
\begin{gathered}
3.97(\mathrm{~m})^{f} \\
1.50(\mathrm{t}) \\
-6.25(\mathrm{t}) \\
J_{\mathrm{PH}}=24
\end{gathered}
$$ \& $$
\begin{aligned}
& \mathrm{CH}_{2} \\
& \mathrm{CH}_{3} \\
& \mathrm{ReH}
\end{aligned}
$$ \& \& $130.5(\mathrm{~s})^{f}$ \& \&

\hline 2b mer, trans- $\left[\mathrm{ReH}(\mathrm{CO})_{3}\{\mathrm{PPh}-\right.$ $\left.(\mathrm{OEt})_{2}\right\}_{2}$] \& $$
\begin{aligned}
& \text { 2020w } \\
& \text { 1951s } \\
& \text { 1926s }
\end{aligned}
$$ \& $v(\mathrm{CO})$ \& $$
\begin{gathered}
3.95(\mathrm{~m})^{e} \\
3.69(\mathrm{~m}) \\
1.07(\mathrm{t}) \\
-5.54(\mathrm{t}) \\
J_{\mathrm{PH}}=22
\end{gathered}
$$ \& $$
\begin{aligned}
& \mathrm{CH}_{2} \\
& \\
& \mathrm{CH}_{3} \\
& \mathrm{ReH}
\end{aligned}
$$ \& \& 143.0 (s) ${ }^{e}$ \& \&

\hline $$
\begin{aligned}
& \text { 2b-fac fac, cis-[} \mathrm{ReH}(\mathrm{CO})_{3}\{\mathrm{PPh}- \\
& \left.\left.(\mathrm{OEt})_{2}\right\}_{2}\right]
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { 2026s } \\
& \text { 1961s } \\
& \text { 1913s }
\end{aligned}
$$ \& $v(\mathrm{CO})$ \& $$
\begin{gathered}
3.80(\mathrm{~m})^{e} \\
3.50(\mathrm{~m}) \\
1.00(\mathrm{t}) \\
-5.00(\mathrm{t})
\end{gathered}
$$ \& $$
\begin{aligned}
& \mathrm{CH}_{2} \\
& \mathrm{CH}_{3} \\
& \mathrm{ReH}
\end{aligned}
$$ \& \& $141.3(\mathrm{~s})^{e}$ \& \&

\hline $$
\begin{aligned}
& \text { 2c mer, trans- }\left[\mathrm { ReH } (\mathrm { CO }) _ { 3 } \left\{\mathrm{PPh}_{2}-\right.\right. \\
& \left.(\mathrm{OEt})\}_{2}\right]
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { 2040w } \\
& \text { 1946s } \\
& \text { 1926s }
\end{aligned}
$$ \& $v(\mathrm{CO})$ \& $$
\begin{gathered}
J_{\mathrm{PH}}=18 \\
3.83(\mathrm{~m}) \\
1.31(\mathrm{t}) \\
-5.80(\mathrm{t}) \\
J_{\mathrm{PH}}=20
\end{gathered}
$$ \& $$
\begin{aligned}
& \mathrm{CH}_{2} \\
& \mathrm{CH}_{3} \\
& \mathrm{ReH}
\end{aligned}
$$ \& \& 130.9 (s) \& $$
\begin{aligned}
& 196.2(\mathrm{t}) \\
& J_{\mathrm{CP}}<1 \\
& 194.9(\mathrm{t}) \\
& J_{\mathrm{CP}}=10.2 \\
& 63.4(\mathrm{br}) \\
& 16.2(\mathrm{br})
\end{aligned}
$$ \& CO

CH
CH_{3}

\hline $$
\begin{aligned}
& \text { 2c-fac fac, cis-[ReH(CO) })_{3}\left\{\mathrm{PPh}_{2}-\right. \\
& \left.\quad(\mathrm{OEt})\}_{2}\right]
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1943 \mathrm{~s} \\
& 1928 \mathrm{~s} \\
& 1915 \mathrm{~s}
\end{aligned}
$$

\] \& $v(\mathrm{CO})$ \& \[

$$
\begin{gathered}
3.91(\mathrm{~m})^{f} \\
1.17(\mathrm{t}) \\
-5.27(\mathrm{t}) \\
J_{\mathrm{PH}}=20
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{CH}_{2} \\
& \mathrm{CH}_{3} \\
& \mathrm{ReH}
\end{aligned}
$$
\] \& \& $115.5(\mathrm{~s})^{f}$ \& \&

\hline 2d mer, trans $-\left[\mathrm{ReH}(\mathrm{CO})_{3}\left\{\mathrm{PPh}_{2}-\right.\right.$ (OMe) $\}_{2}$] \& \[
$$
\begin{aligned}
& \text { 2034w } \\
& \text { 1931s (br) }
\end{aligned}
$$

\] \& $v(\mathrm{CO})$ \& \[

$$
\begin{gathered}
3.51(\mathrm{t})^{\mathrm{g}} \\
-5.85(\mathrm{t})^{2} \\
J_{\mathrm{PH}}=20
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{CH}_{3} \\
& \mathrm{ReH}
\end{aligned}
$$

\] \& \& $137.1(\mathrm{~s})^{g}$ \& \[

$$
\begin{aligned}
& 195.8(\mathrm{t})^{g} \\
& J_{\mathrm{CP}}=5.9 \\
& 194.4(\mathrm{t}) \\
& J_{\mathrm{CP}}=10.4 \\
& 77.6(\mathrm{~d})
\end{aligned}
$$
\] \& CO

CH

\hline 3a cis, mer- $\left[\mathrm{ReH}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{3}\right]$ \& \[
$$
\begin{aligned}
& 1958 \mathrm{~s} \\
& 1893 \mathrm{~s}
\end{aligned}
$$

\] \& $v(\mathrm{CO})$ \& \[

$$
\begin{aligned}
& 4.07(\mathrm{~m})^{f} \\
& 1.22(\mathrm{t}) \\
& \delta_{\mathrm{X}}-6.39 \\
& \mathrm{~A}_{2} \mathrm{BX} \\
& J_{\mathrm{AX}}=32.5 \\
& J_{\mathrm{BX}}=25.6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{CH}_{2} \\
& \mathrm{CH}_{3} \\
& \mathrm{ReH}
\end{aligned}
$$

\] \& $\mathrm{A}_{2} \mathrm{~B}$ \& \[

$$
\begin{aligned}
& \delta_{\mathrm{A}} 135.6^{f} \\
& \delta_{\mathrm{B}} 133.9 \\
& J_{\mathrm{AB}}=46.0
\end{aligned}
$$

\] \& | 198.3 |
| :--- |
| $\left(\mathrm{t}\right.$ of d) ${ }^{f}$ |
| $J_{\mathrm{CP}}=10$ |
| 197.1 |
| (t of d) |
| $J_{\text {CP }}=8$ |
| 60.9 (t), |
| 60.8 (t) |
| 16.2 (t), |
| 16.1 (t) | \& \[

\mathrm{CO}
\]

$$
\mathrm{CH}_{2}
$$

$$
\mathrm{CH}_{3}
$$

\hline 3b cis, mer $-\left[\operatorname{ReH}(\mathrm{CO})_{2}\{\mathrm{PPh}-\right.$ $\left.(\mathrm{OEt})_{2}\right\}_{3}$] \& \[
$$
\begin{aligned}
& 1953 \mathrm{~s} \\
& 1894 \mathrm{~s}
\end{aligned}
$$

\] \& $v(\mathrm{CO})$ \& \[

$$
\begin{aligned}
& 3.95(\mathrm{~m})^{e} \\
& 3.70(\mathrm{~m}) \\
& 3.40(\mathrm{~m}) \\
& 1.11(\mathrm{t}) \\
& 1.02(\mathrm{t}) \\
& \delta_{\mathrm{X}}-5.36 \\
& \mathrm{AB}_{2} \mathrm{X} \\
& J_{\mathrm{AX}}=30.0 \\
& J_{\mathrm{BX}}=23.0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{CH}_{2} \\
& \mathrm{CH}_{3} \\
& \mathrm{ReH}
\end{aligned}
$$

\] \& AB_{2} \& \[

$$
\begin{aligned}
& \delta_{\mathrm{A}} 146.2^{e} \\
& \delta_{\mathrm{B}} 145.8 \\
& J_{\mathrm{AB}}=33.0
\end{aligned}
$$
\] \& \&

\hline ```
3c cis,mer $-\left[\mathrm{ReH}(\mathrm{CO})_{2}\left\{\mathrm{PPh}_{2}-\right.\right.$
(OEt) $\}_{3}$]

``` & \[
\begin{aligned}
& \text { 1937s } \\
& 1882 \mathrm{~s}
\end{aligned}
\] & \(v(\mathrm{CO})\) & \[
\begin{aligned}
& 4.00(\mathrm{~m})^{f} \\
& 3.74(\mathrm{~m}) \\
& 3.45(\mathrm{qnt}) \\
& 1.09(\mathrm{t}) \\
& 0.98(\mathrm{t}) \\
& \delta_{\mathrm{x}}-4.50 \\
& \mathrm{AB}_{2} \mathrm{X} \\
& J_{\mathrm{Ax}}=32.6 \\
& J_{\mathrm{BX}}=20.2
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CH}_{2} \\
& \mathrm{CH}_{3} \\
& \mathrm{ReH}
\end{aligned}
\] & \(\mathrm{AB}_{2}\) & \[
\begin{aligned}
& \delta_{\mathrm{A}} 116.1^{f} \\
& \delta_{\mathrm{B}} 113.5 \\
& J_{\mathrm{AB}}=30.8
\end{aligned}
\] & & \\
\hline 4a trans-[ \(\left.\mathrm{ReH}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]\) & 1876s & \(v(\mathrm{CO})\) & \[
\begin{gathered}
4.11(\mathrm{~m})^{f} \\
1.27(\mathrm{t}) \\
-7.08 \text { (qnt) } \\
J_{\mathrm{PH}}=25
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{CH}_{2} \\
& \mathrm{CH}_{3} \\
& \mathrm{ReH}
\end{aligned}
\] & & 136.6 (s) \({ }^{f}\) & & \\
\hline
\end{tabular}

Table 1 (Contd.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|l|}{\(\mathrm{IR}^{a}\)} & \multicolumn{2}{|l|}{\({ }^{1} \mathrm{H} \mathrm{NMR}{ }^{\text {b,c }}\)} & \multirow[b]{2}{*}{Spin system} & \[
\begin{aligned}
& { }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \\
& \mathrm{NMR}{ }^{b, d}
\end{aligned}
\] & \multicolumn{2}{|l|}{\({ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}\) NMR \({ }^{\text {b,c }}\)} \\
\hline & \(\tilde{\mathrm{v}} / \mathrm{cm}^{-1}\) & Assignment & \(\delta(\mathrm{J} / \mathrm{Hz})\) & Assignment & & \(\delta(\mathrm{J} / \mathrm{Hz})\) & \(\delta(J / \mathrm{Hz})\) & Assignment \\
\hline \multirow[t]{3}{*}{4b cis, mer \(-[\operatorname{ReH}(\mathrm{CO})\{\mathrm{PPh}-\) \(\left.\left.(\mathrm{OEt})_{2}\right\}_{4}\right]\)} & \multirow[t]{3}{*}{1862s} & \multirow[t]{3}{*}{\(v(\mathrm{CO})\)} & \[
\begin{aligned}
& 3.80(\mathrm{~m})^{e} \\
& 3.40(\mathrm{~m})
\end{aligned}
\] & \(\mathrm{CH}_{2}\) & & \multirow[t]{3}{*}{147.2 (s) \({ }^{e}\)} & & \\
\hline & & & 1.08 (t) & \(\mathrm{CH}_{3}\) & & & & \\
\hline & & & \[
-5.68 \text { (qnt) }
\] & ReH & & & & \\
\hline \multirow[t]{3}{*}{\(\mathbf{8}^{*} \mathbf{b}-\) BPh \(_{4}\left[\mathrm{ReH}_{2}(\mathrm{CO})\{\mathrm{PPh}-\right.\) \(\left.\left.(\mathrm{OEt})_{2}\right\}_{4}\right]\) \(\mathrm{BPh}_{4}\)} & \multirow[t]{3}{*}{1959s} & \multirow[t]{3}{*}{\(v(\mathrm{CO})\)} & \[
\begin{aligned}
& J_{\mathrm{PH}}=24 \\
& 3.62(\mathrm{~m}) \\
& 0.99(\mathrm{t})
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{CH}_{2} \\
& \mathrm{CH}_{3}
\end{aligned}
\] & \(\mathrm{A}_{4}\) & 147.0 (s) & & \\
\hline & & & -6.05 (qnt) & ReH & \(\mathrm{A}_{2} \mathrm{~B}_{2}\) & \(\delta_{\mathrm{A}} 152.7^{\text {h }}\) & & \\
\hline & & & \(J_{\text {PH }}=25\) & & & \(\delta_{\mathrm{B}} 146.6\)
\(J_{\text {AB }}=40.3\) & & \\
\hline 8*b \(\left[\mathrm{ReH}_{2}(\mathrm{CO})\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{4}\right]^{+}\) & & & -5.18 (qnt) & ReH & & 141.0 (s) & & \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 9 \mathrm{c}\left[\operatorname { R e } ( \eta ^ { 1 } - \mathrm { OSO } _ { 2 } \mathrm { CF } _ { 3 } ) ( \mathrm { CO } ) _ { 3 } \left\{\mathrm{PPh}_{2}-\right.\right. \\
& \left.\quad(\mathrm{OEt})\}_{2}\right]
\end{aligned}
\]} & 2070w & \multirow[t]{3}{*}{\(v(\mathrm{CO})\)} & 3.69 (qnt) & \(\mathrm{CH}_{2}\) & & 108.3 (s) & & \\
\hline & 1962s & & 1.23 (t) & \(\mathrm{CH}_{3}\) & & & & \\
\hline & 1930s & & & & & & & \\
\hline & 1326 m & \(v\left(\mathrm{tf}^{-}\right)^{i}\) & & & & & & \\
\hline \multirow[t]{3}{*}{10a \(\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{3}\right] \mathrm{BPh}_{4}\)} & 1991s & \multirow[t]{3}{*}{\(v(\mathrm{CO})\)} & 4.07 (m) & \(\mathrm{CH}_{2}\) & & 118.9 (s, br) & & \\
\hline & 1895s & & 1.33 (t) & \(\mathrm{CH}_{3}\) & & & & \\
\hline & & & 1.30 (t) & & & & & \\
\hline \multirow[t]{4}{*}{10c \(\left[\operatorname{Re}(\mathrm{CO})_{2}\left\{\mathrm{PPh}_{2}(\mathrm{OEt})\right\}_{3}\right] \mathrm{BPh}_{4}\)} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 1966 \mathrm{~s} \\
& 1885 \mathrm{~s}
\end{aligned}
\]} & \multirow[t]{4}{*}{\(v(\mathrm{CO})\)} & 3.45 (m) & \(\mathrm{CH}_{2}\) & \(\mathrm{AB}_{2}\) & \(\delta_{\text {A }} 115.1\) & & \\
\hline & & & 3.24 (qnt) & & & \(\delta_{\text {B }} 113.1\) & & \\
\hline & & & 1.04 (t) & \(\mathrm{CH}_{3}\) & & \(J_{\text {AB }}=31.6\) & & \\
\hline & & & 0.82 (t) & & & & & \\
\hline \multirow[t]{2}{*}{11a \(\left[\operatorname{Re}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right] \mathrm{BPh}_{4}\right.\)} & \multirow[t]{2}{*}{1868s} & \multirow[t]{2}{*}{\(v(\mathrm{CO})\)} & 3.98 (m) & \(\mathrm{CH}_{2}\) & & 123.7 (s), & & \\
\hline & & & 1.22 (t) & \(\mathrm{CH}_{3}\) & & 122.9 (s, br) & & \\
\hline \multirow[t]{8}{*}{\[
\begin{aligned}
& \text { 12b mer, trans- }-\mathrm{Re}(\mathrm{C} \equiv \mathrm{CPh})(\mathrm{CO})_{3}- \\
& \left.\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{2}\right]
\end{aligned}
\]} & 2101 m & \(v(\mathrm{C} \equiv \mathrm{C})\) & 4.20 (m) & \(\mathrm{CH}_{2}\) & & 129.5 (s) & 190.5 (t) & CO \\
\hline & 2042w & \multirow[t]{7}{*}{\(v(\mathrm{CO})\)} & 3.95 (m) & & & & \(J_{\text {CP }}=8\) & \\
\hline & 1950s & & \multirow[t]{6}{*}{1.33 (t)} & \multirow[t]{6}{*}{\(\mathrm{CH}_{3}\)} & & & 190.2 (t) & \\
\hline & \multirow[t]{5}{*}{1933s} & & & & & & \(J_{\text {CP }}=11\) & \\
\hline & & & & & & & 113.1 (t) & \(\mathrm{C}_{\beta}\) \\
\hline & & & & & & & \(99.4(\mathrm{t})\)
\(J_{\text {cP }}=16\) & \(\mathrm{C}_{a}\) \\
\hline & & & & & & & \[
\begin{aligned}
& J_{\mathrm{CP}}=16 \\
& 63.3(\mathrm{t})
\end{aligned}
\] & \(\mathrm{CH}_{2}\) \\
\hline & & & & & & & 16.4 (t) & \(\mathrm{CH}_{3}\) \\
\hline \multirow[t]{10}{*}{12c mer, trans \(-\left[\operatorname{Re}(\mathrm{C}=\mathrm{CPh})(\mathrm{CO})_{3}{ }^{-}\right.\) \(\left\{\mathrm{PPh}_{2}(\mathrm{OEt}\}_{2}\right]\)} & 2098m & \(v(\mathrm{C} \equiv \mathrm{C})\) & 3.91 (m) & \(\mathrm{CH}_{2}\) & & 100.0 (s) & 191.07 (t) & CO \\
\hline & 2036w & \(v(\mathrm{CO})\) & 1.28 (t) & \(\mathrm{CH}_{3}\) & & & \(J_{\text {CP }}=10\) & \\
\hline & 1947s & & & & & & 190.91 (t) & \\
\hline & \multirow[t]{7}{*}{1927s} & & & & & & \(J_{\text {CP }}=6\) & \\
\hline & & & & & & & 116.9 (t) & \(\mathrm{C}_{\beta}\) \\
\hline & & & & & & & \(J_{\text {CP }}=2.5\) & \\
\hline & & & & & & & 101.8 (t) & \(\mathrm{C}_{\alpha}\) \\
\hline & & & & & & & \(J_{\text {CP }}=15\) & \\
\hline & & & & & & & 63.0 (t) & \(\mathrm{CH}_{2}\) \\
\hline & & & & & & & 16.3 (t) & \(\mathrm{CH}_{3}\) \\
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { 13a trans- }[\mathrm{Re}(\mathrm{C} \equiv \mathrm{CPh})(\mathrm{CO})- \\
& \left.\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right] \\
& \text { 14b } \text { cis,mer }-\left[\mathrm{Re}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CN}\right)-\right. \\
& \left.\left(\mathrm{CO}_{2}\right)\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{3}\right] \mathrm{BPh}_{4}
\end{aligned}
\]} & 2084m & \(v(\mathrm{C} \equiv \mathrm{C})\) & 4.15 (m) & \(\mathrm{CH}_{2}\) & & 119.0 (s) & & \\
\hline & 1845 m & \(v(\mathrm{CO})\) & 1.23 (t) & \(\mathrm{CH}_{3}\) & & & & \\
\hline & 2259 m & \(v(\mathrm{CN})\) & 3.95 (m) & \(\mathrm{CH}_{2}\) & \(\mathrm{A}_{2} \mathrm{~B}\) & \(\delta_{\text {A }} 136.3\) & & \\
\hline & 1987s & \multirow[t]{3}{*}{\(v(\mathrm{CO})\)} & 2.38 (s) & \(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\) & & \(\delta_{\text {B }} 135.2\) & & \\
\hline & \multirow[t]{2}{*}{1908s} & & 1.36 (t) & \(\mathrm{POCH}_{2} \mathrm{CH}_{3}\) & & \(J_{\text {AB }}=31.5\) & & \\
\hline & & & 1.35 (t) & & & & & \\
\hline \multirow[t]{8}{*}{\[
\begin{aligned}
& \mathbf{1 5 b} \text { cis,mer- }\left[\mathrm{Re}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)-\right. \\
& \left.(\mathrm{CO})_{2}\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{3}\right] \mathrm{BPh}_{4}
\end{aligned}
\]} & 2149s & \(v(\mathrm{CN})\) & 3.99 (m) \({ }^{\text {j }}\) & \(\mathrm{CH}_{2}\) & \(\mathrm{A}_{2} \mathrm{~B}\) & \(\delta_{\text {A }} 130.7^{j}\) & 193.5 (q) & CO \\
\hline & 1996s & \multirow[t]{7}{*}{\(v(\mathrm{CO})\)} & 2.35 (s) & \(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\) & & \(\delta_{\text {B }} 129.9\) & 189.3 (m) & \\
\hline & \multirow[t]{6}{*}{1940s} & & \[
1.38(\mathrm{t})
\] & \(\mathrm{POCH}_{2} \mathrm{CH}_{3}\) & & \(J_{\text {AB }}=30.4\) & 148.0 (m) & CN \\
\hline & & & 1.37 (t) & & & & 63.5 (t) & \(\mathrm{CH}_{2}\) \\
\hline & & & & & & & 63.4 (t) & \\
\hline & & & & & & & 21.5 (s) & \(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\) \\
\hline & & & & & & & 16.3 (t) & \(\mathrm{POCH}_{2} \mathrm{CH}_{3}\) \\
\hline & & & & & & & 16.2 (t) & \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { 16a } \begin{array}{l}
\text { trans- }\left[\operatorname{Re}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)(\mathrm{CO})-\right. \\
\left.\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right] \mathrm{BPh}_{4}
\end{array}
\end{aligned}
\]} & 2131s & \(v(\mathrm{CN})\) & \(4.15(\mathrm{qnt})^{j}\) & \(\mathrm{CH}_{2}\) & & \(114.4(\mathrm{~s})^{j}\) & & \\
\hline & 1942s & \(v(\mathrm{CO})\) & 2.36 (s) & \(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\) & & & & \\
\hline & & & 1.32 (t) & \(\mathrm{POCH}_{2} \mathrm{CH}_{3}\) & & & & \\
\hline
\end{tabular}
\({ }^{a}\) In KBr pellets. \({ }^{b}\) In \(\mathrm{CD}_{2} \mathrm{Cl}_{2}\), at \(25{ }^{\circ} \mathrm{C}\). \({ }^{c}\) Phenyl proton and carbon resonances are omitted. \({ }^{d}\) Positive shift downfield from \(85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\). \({ }^{e}\) In \(\mathrm{C}_{6} \mathrm{D}_{6}\). \({ }^{f}\) In \(\mathrm{CD}_{3} \mathrm{C}_{6} \mathrm{D}_{5} .{ }^{g}\) In \(\mathrm{CDCl}_{3} .{ }^{h} \mathrm{At}-80^{\circ} \mathrm{C} .{ }^{i} \mathrm{tf}^{-}=\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-} \cdot{ }^{j} \mathrm{In}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\).
the ligands, with a mer,trans geometry in the compound 2d. The hydride ligands are always trans to a carbonyl ligand with \(\mathrm{H}-\mathrm{Re}-\mathrm{C}\) angles of \(171(3)^{\circ}\) for \(\mathbf{1 d}\) and \(173(2)^{\circ}\) for \(\mathbf{2 d}\) showing the deviation from the idealised geometry. The \(\mathrm{Re}-\mathrm{H}\) distances of 1.60(8) \(\AA\) in 1d and 1.70(6) \(\AA\) in 2d agree, within experimental error, with those obtained for terminal \(\mathrm{H}-\mathrm{Re}\) bonds and may be compared to \(\mathrm{M}-\mathrm{H}\) terminal distances for other third-row metals. \({ }^{16}\) The \(\mathrm{Re}-\mathrm{P}\) distance in \(1 \mathrm{~d}[\operatorname{Re}-\mathrm{P}(1) 2.405(2) \AA]\) is
slightly longer than those 2d \([\operatorname{Re}-\mathrm{P}(1) 2.3775(14), \operatorname{Re}-\mathrm{P}(2)\) \(2.3804(14) \AA\) A]. The \(\mathrm{Re}-\mathrm{C}\) bond distances lie within the range 1.94-2.00 Å, showing no significant difference from the other known rhenium(I) compounds. The extent of the octahedral distortion can be clearly estimated for \(\mathbf{1 d}\) and \(\mathbf{2 d}\) from the analysis of bond angles, particularly \(\mathrm{C}(1)-\mathrm{Re}-\mathrm{P}(1)\) in 1d and \(\mathrm{P}(2)-\operatorname{Re}-\mathrm{P}(1), \mathrm{C}(2)-\operatorname{Re}-\mathrm{P}(1)\) and \(\mathrm{C}(2)-\operatorname{Re}-\mathrm{P}(2)\) in 2 d (Table 3).


Fig. 1 An ORTEP plot with the atom-numbering scheme used for \(\left[\mathrm{ReH}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}\right]\) 1d. Thermal ellipsoids at \(40 \%\) probability


Fig. 2 An ORTEP plot with the atom-numbering scheme used for \(\left[\mathrm{ReH}(\mathrm{CO})_{3}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}_{2}\right]\) 2d. Thermal ellipsoids at \(40 \%\) probability

\section*{Preparation and characterisation of \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO}) \mathrm{L}_{4}\right]^{+}\)and \(\left[\mathrm{ReH}_{\mathbf{2}}(\mathrm{CO}) \mathrm{L}_{4}\right]^{+}\)cations}

The reaction of the monohydride \(\left[\mathrm{ReH}(\mathrm{CO}) \mathrm{L}_{4}\right] 4\) with \(\mathrm{HBF}_{4}\) \(\mathrm{Et}_{2} \mathrm{O}\) or \(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\) in \(\mathrm{CD}_{2} \mathrm{Cl}_{2}\) at \(-80{ }^{\circ} \mathrm{C}\) proceeds to give a mixture of the molecular hydrogen complex \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO}) \mathrm{L}_{4}\right]^{+} \mathbf{8}\) and the dihydride \(\left[\mathrm{ReH}_{2}(\mathrm{CO}) \mathrm{L}_{4}\right]^{+} \mathbf{8}^{*}\), as shown in Scheme 2.


Scheme \(2 \mathrm{~L}=\mathrm{P}(\mathrm{OEt})_{3} \mathbf{a}\) or \(\mathrm{PPh}(\mathrm{OEt})_{2} \mathbf{b}\)

Table 2 Crystal data and structure refinement for \(\left[\mathrm{ReH}(\mathrm{CO})_{4}\right.\) \(\left.\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}\right] \mathbf{1 d}\) and \(\left[\operatorname{ReH}(\mathrm{CO})_{3}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}_{2}\right] \mathbf{2 d}\)
\begin{tabular}{lll} 
& \(\mathbf{1 d}\) & \(\mathbf{2 d}\) \\
Empirical formula & \(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{PRe}\) & \(\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Re}\) \\
\(M\) & 515.45 & 703.65 \\
Crystal system & Triclinic & Monoclinic \\
Space group & \(P \overline{1}\) & \(P 2{ }_{1} / c(\) no. 14\()\) \\
\(a / \AA\) & \(8.498(7)\) & \(8.629(2)\) \\
\(/ \AA\) & \(9.706(8)\) & \(30.720(11)\) \\
\(c / \AA\) & \(11.5359(10)\) & \(10.617(2)\) \\
\(\alpha /{ }^{\circ}\) & \(83.84(6)\) & \\
\(\beta /{ }^{\circ}\) & \(88.46(6)\) & \(91.290(10)\) \\
\(\gamma /{ }^{\circ}\) & \(74.28(8)\) & \\
\(U / \AA^{3}\) & \(910.7(11)\) & \(2813.7(13)\) \\
\(Z\) & 2 & 4 \\
\(D_{\mathrm{c}} / \mathrm{Mg}^{\circ} \mathrm{m}^{-3}\) & 1.880 & 1.661 \\
\(\mu / \mathrm{mm}^{-1}\) & 6.781 & 4.469 \\
\(F(000)\) & 492 & 1384 \\
\(\theta\) Range for data collection \({ }^{\circ}\) & 3.05 to 25.94 & 3.08 to 26.94 \\
Index ranges & \(-1 \leqslant h \leqslant 10\), & \(-1 \leqslant h \leqslant 10\), \\
& \(-11 \leqslant k \leqslant 11\), & \(0 \leqslant k \leqslant 39\) \\
& \(-14 \leqslant l \leqslant 14\) & \(-13 \leqslant l \leqslant 13\) \\
Reflections collected & 4321 & 7309 \\
Independent reflections & 3563 & 6085 \\
\(R_{\text {int }}\) & 0.0349 & 0.0238 \\
Data, restraints, parameters & \(3562,0,273\) & \(6081,0,442\) \\
Goodness of fit on \(F^{2}\) & 1.063 & 1.075 \\
Final \(R 1, w R 2[I>2 \sigma(I)]\) & \(0.0334,0.0828\) & \(0.0329,0.0597\) \\
(all data) & \(0.0392,0.0862\) & \(0.0656,0.0754\) \\
Largest \(\Delta F\) peak and hole/e \(\AA \AA^{-3}\) & \(2.048,-1.492\) & \(0.588,-0.527\) \\
& &
\end{tabular}

Table 3 Selected bond distances \((\AA)\) and angles \(\left({ }^{\circ}\right)\) with estimated standard deviations in parentheses
\begin{tabular}{lclc}
{\(\left[\mathrm{ReH}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}\right] \mathbf{1 d}\)} & & \\
\(\mathrm{Re}-\mathrm{H}(1)\) & \(1.60(8)\) & \(\mathrm{P}(1)-\mathrm{C}(11)\) & \(1.815(5)\) \\
\(\mathrm{Re}-\mathrm{C}(2)\) & \(1.962(6)\) & \(\mathrm{P}(1)-\mathrm{C}(21)\) & \(1.820(6)\) \\
\(\mathrm{Re}-\mathrm{C}(1)\) & \(1.970(8)\) & \(\mathrm{O}(1)-\mathrm{C}(1)\) & \(1.137(9)\) \\
\(\mathrm{Re}-\mathrm{C}(4)\) & \(1.972(7)\) & \(\mathrm{O}(2)-\mathrm{C}(2)\) & \(1.125(8)\) \\
\(\mathrm{Re}-\mathrm{C}(3)\) & \(2.004(7)\) & \(\mathrm{O}(3)-\mathrm{C}(3)\) & \(1.122(9)\) \\
\(\mathrm{Re}-\mathrm{P}(1)\) & \(2.405(2)\) & \(\mathrm{O}(4)-\mathrm{C}(4)\) & \(1.139(8)\) \\
\(\mathrm{P}(1)-\mathrm{O}(11)\) & \(1.614(4)\) & \(\mathrm{O}(11)-\mathrm{C}(111)\) & \(1.440(7)\) \\
& & & \\
\(\mathrm{H}(1)-\mathrm{Re}-\mathrm{C}(2)\) & \(83(3)\) & \(\mathrm{C}(1)-\mathrm{Re}-\mathrm{C}(3)\) & \(94.2(3)\) \\
\(\mathrm{H}(1)-\mathrm{Re}-\mathrm{C}(1)\) & \(171(3)\) & \(\mathrm{C}(4)-\mathrm{Re}-\mathrm{C}(3)\) & \(168.1(3)\) \\
\(\mathrm{C}(2)-\mathrm{Re}-\mathrm{C}(1)\) & \(95.5(3)\) & \(\mathrm{H}(1)-\mathrm{Re}-\mathrm{P}(1)\) & \(88(3)\) \\
\(\mathrm{H}(1)-\mathrm{Re}-\mathrm{C}(4)\) & \(74(3)\) & \(\mathrm{C}(2)-\mathrm{Re}-\mathrm{P}(1)\) & \(170.2(2)\) \\
\(\mathrm{C}(2)-\mathrm{Re}-\mathrm{C}(4)\) & \(90.6(3)\) & \(\mathrm{C}(1)-\mathrm{Re}-\mathrm{P}(1)\) & \(94.3(2)\) \\
\(\mathrm{C}(1)-\mathrm{Re}-\mathrm{C}(4)\) & \(97.5(3)\) & \(\mathrm{C}(4)-\mathrm{Re}-\mathrm{P}(1)\) & \(89.0(2)\) \\
\(\mathrm{H}(1)-\mathrm{Re}-\mathrm{C}(3)\) & \(95(3)\) & \(\mathrm{C}(3)-\mathrm{Re}-\mathrm{P}(1)\) & \(88.0(2)\) \\
\(\mathrm{C}(2)-\mathrm{Re}-\mathrm{C}(3)\) & \(90.4(3)\) & & \\
\(\mathrm{Re}-\mathrm{CO}(\mathrm{CO})_{3}\{\mathrm{PPh}\) & \\
\(\left.\mathrm{Re}(\mathrm{OMe})\}_{2}\right] \mathbf{2 d}\) & & \\
\(\mathrm{Re}-\mathrm{H}(1)\) & \(1.70(6)\) & \(\mathrm{P}(1)-\mathrm{O}(10)\) & \(1.620(4)\) \\
\(\mathrm{Re}-\mathrm{C}(2)\) & \(1.943(6)\) & \(\mathrm{P}(1)-\mathrm{C}(21)\) & \(1.818(5)\) \\
\(\mathrm{Re}-\mathrm{C}(3)\) & \(1.966(6)\) & \(\mathrm{P}(1)-\mathrm{C}(11)\) & \(1.828(6)\) \\
\(\mathrm{Re}-\mathrm{C}(1)\) & \(1.977(6)\) & \(\mathrm{O}(10)-\mathrm{C}(10)\) & \(1.422(8)\) \\
\(\mathrm{Re}-\mathrm{P}(1)\) & \(2.3775(14)\) & \(\mathrm{P}(2)-\mathrm{O}(20)\) & \(1.622(4)\) \\
\(\mathrm{Re}-\mathrm{P}(2)\) & \(2.3804(14)\) & \(\mathrm{P}(2)-\mathrm{C}(41)\) & \(1.820(5)\) \\
\(\mathrm{C}(1)-\mathrm{O}(1)\) & \(1.131(6)\) & \(\mathrm{P}(2)-\mathrm{C}(31)\) & \(1.837(6)\) \\
\(\mathrm{C}(2)-\mathrm{O}(2)\) & \(1.152(6)\) & \(\mathrm{O}(20)-\mathrm{C}(20)\) & \(1.438(8)\) \\
\(\mathrm{C}(3)-\mathrm{O}(3)\) & \(1.131(7)\) & & \\
\(\mathrm{H}(1)-\mathrm{Re}-\mathrm{C}(2)\) & \(173(2)\) & \(\mathrm{C}(3)-\mathrm{Re}-\mathrm{P}(1)\) & \(91.6(2)\) \\
\(\mathrm{H}(1)-\mathrm{Re}-\mathrm{C}(3)\) & \(83(2)\) & \(\mathrm{C}(1)-\mathrm{Re}-\mathrm{P}(1)\) & \(88.3(2)\) \\
\(\mathrm{C}(2)-\mathrm{Re}-\mathrm{C}(3)\) & \(91.03(3)\) & \(\mathrm{H}(1)-\mathrm{Re}-\mathrm{P}(2)\) & \(84(2)\) \\
\(\mathrm{H}(1)-\mathrm{Re}-\mathrm{C}(1)\) & \(93(2)\) & \(\mathrm{C}(2)-\mathrm{Re}-\mathrm{P}(2)\) & \(98.8(2)\) \\
\(\mathrm{C}(2)-\mathrm{Re}-\mathrm{C}(1)\) & \(93.3(2)\) & \(\mathrm{C}(3)-\mathrm{Re}-\mathrm{P}(2)\) & \(88.6(2)\) \\
\(\mathrm{C}(3)-\mathrm{Re}-\mathrm{C}(1)\) & \(175.6(3)\) & \(\mathrm{C}(1)-\mathrm{Re}-\mathrm{P}(2)\) & \(90.4(2)\) \\
\(\mathrm{H}(1)-\mathrm{Re}-\mathrm{P}(1)\) & \(83(2)\) & \(\mathrm{P}(1)-\mathrm{Re}-\mathrm{P}(2)\) & \(166.27(5)\) \\
\(\mathrm{C}(2)-\mathrm{Re}-\mathrm{P}(1)\) & \(94.9(2)\) & & \\
& & &
\end{tabular}

The \({ }^{1} \mathrm{H}\) NMR spectra of the reaction mixture show, in the hydride region, a broad signal at \(\delta-5.6\) (8a) and at -4.85 ( \(\mathbf{8 b}\) ) and a sharp quintet at \(\delta-6.16\left(\mathbf{8}^{*} \mathbf{a}\right)\) and at \(-5.18\left(\mathbf{8}^{*} \mathbf{b}\right)\), as shown in Fig. 3 for complexes \(\mathbf{8 a}\) and \(\mathbf{8}^{*}\) a. Variable-temperature

Table 4 Proton NMR data in the hydride region for selected rhenium complexes
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Compound & T/K & \(\delta\left(\mathrm{M}-\mathrm{H}_{2}\right)^{a}\) & \(T_{1(\text { min })} / \mathrm{ms}\) & \(\delta(\mathrm{M}-\mathrm{H})^{a}\) & \(T_{1 \text { (min) }} / \mathrm{ms}\) & \(J_{\mathrm{HD}} / \mathrm{Hz}\) & \(T^{b} / \mathrm{K}\) \\
\hline 1d \(\left[\mathrm{ReH}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}\right]\) & 203 & & & -5.72 (d) \({ }^{\text {c }}\) & 334 & & \\
\hline 2c \(\left[\mathrm{ReH}(\mathrm{CO})_{3}\left\{\mathrm{PPh}_{2}(\mathrm{OEt})\right\}_{2}\right]\) & 200 & & & \(-6.03(\mathrm{t})^{\text {c }}\) & 250 & & \\
\hline 2d \(\left[\mathrm{ReH}(\mathrm{CO})_{3}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}_{2}\right]\) & 211 & & & \(-6.05(\mathrm{t})^{\text {c }}\) & 223 & & \\
\hline 3b \(\left[\mathrm{ReH}(\mathrm{CO})_{2}\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{3}\right]\) & 196 & & & -5.86 (m) & 140 & & \\
\hline 5d \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}\right]^{+}\) & 211 & \(-3.7(\mathrm{br})^{\text {c }}\) & 9.0 & & & & 220 \\
\hline 6a \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{2}\right]^{+}\) & 186 & -4.6 (br) & 3.0 & & & & 245 \\
\hline \(\mathbf{6 a}_{1}\left[\operatorname{Re}\left(\eta^{2}-\mathrm{HD}\right)(\mathrm{CO})_{3}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{2}\right]^{+}\) & 193 & -4.95 (t) & & & & 30 & \\
\hline 6b \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{3}\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{2}\right]^{+}\) & 198 & -4.3 (br) & 3.5 & & & & 245 \\
\hline \(\mathbf{6 b}_{1}\left[\operatorname{Re}\left(\eta^{2}-\mathrm{HD}\right)(\mathrm{CO})_{3}\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{2}\right]^{+}\) & 203 & -4.65 (t) & & & & 31 & \\
\hline 6c \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{3}\left\{\mathrm{PPh}_{2}(\mathrm{OEt})\right\}_{2}\right]^{+}\) & 230 & -4.0 (br) \({ }^{\text {c }}\) & 7.0 & & & & 253 \\
\hline 6d \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{3}\left\{\mathrm{PPh}_{2}(\mathrm{OMe})\right\}_{2}\right]^{+}\) & 215 & \(-3.9(\mathrm{br})^{c}\) & 7.0 & & & & 243 \\
\hline \(7 \mathrm{a}\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{3}\right]^{+}\) & 190 & -5.0 (br) & 5.0 & & & & 273 \\
\hline \(7 \mathrm{a}_{1}\left[\operatorname{Re}\left(\eta^{2}-\mathrm{HD}\right)(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{3}\right]^{+}\) & 193 & -5.21 (t) & & & & 33 & \\
\hline 7b \(\left[\mathrm{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{2}\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{3}\right]^{+}\) & 203 & -4.5 (br) & 5.5 & & & & 279 \\
\hline 7 \(\mathbf{b}_{1}\left[\operatorname{Re}\left(\eta^{2}-\mathrm{HD}\right)(\mathrm{CO})_{2}\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{3}\right]^{+}\) & 203 & -4.65 (t) & & & & 33 & \\
\hline 7c \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{2}\left\{\mathrm{PPh}_{2}(\mathrm{OEt})\right\}_{3}\right]^{+}\) & 208 & -3.6 (br) & 4.0 & & & & 258 \\
\hline \(7 \mathrm{c}_{1}\left[\operatorname{Re}\left(\eta^{2}-\mathrm{HD}\right)(\mathrm{CO})_{2}\left\{\mathrm{PPh}_{2}(\mathrm{OEt})\right\}_{3}\right]^{+}\) & 223 & -3.80 (t) & & & & 33 & \\
\hline 8a \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+}\) & 198 & -5.6 (br) & 10 & & & & 270 \\
\hline 8 \(\mathbf{a}_{1}\left[\operatorname{Re}\left(\eta^{2}-\mathrm{HD}\right)(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+}\) & 256 & -5.66 (t) & & & & 33 & \\
\hline 8*a \(\left[\mathrm{ReH}_{2}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+}\) & 193 & & & -6.16 (qnt) & 98 & & 270 \\
\hline 8* \(\mathbf{a}_{1}\left[\mathrm{ReH}(\mathrm{D})(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+}\) & 256 & -6.12 (qnt of d) & & & & 2.1 & \\
\hline 8b \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{4}\right]^{+}\) & 207 & -4.85 (br) & 7.5 & & & & 276 \\
\hline 85 \(\mathbf{b}_{1}\left[\operatorname{Re}\left(\eta^{2}-\mathrm{HD}\right)(\mathrm{CO})\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{4}\right]^{+}\) & 203 & -5.05 (t) & & & & 32.5 & \\
\hline 8*b \(\left[\mathrm{ReH}_{2}(\mathrm{CO})\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{4}\right]^{+}\) & 193 & & & -5.18 (qnt) & 120 & & \\
\hline \(\mathbf{8} \mathbf{*}_{\mathbf{b}} \mathbf{- B P h}{ }_{4}\left[\mathrm{ReH}_{2}(\mathrm{CO})\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{4}\right] \mathrm{BPh}_{4}\) & 208 & & & -6.24 (m) & 124 & & >298 \\
\hline
\end{tabular}
\({ }^{a}\) In \(\mathrm{CD}_{2} \mathrm{Cl}_{2}\) at \(200 \mathrm{MHz} .{ }^{b}\) Limit for thermal stability. \({ }^{c}\) At 400 MHz .


Fig. 3 Proton NMR spectra in the high-field region at 243 K in \(\mathrm{CD}_{2} \mathrm{Cl}_{2}\) of an equilibrium mixture of \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+}\) 8a and \(\left[\mathrm{ReH}_{2}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+} \mathbf{8 *}\) (top), and their isotopomers \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{HD}\right)(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+} \mathbf{8} \mathbf{a}_{1}\) and \(\left[\operatorname{ReH}(\mathrm{D})(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+} \mathbf{8 *} \mathbf{a}_{\mathbf{1}}\). The signal indicated by the asterisk \(\left({ }^{*}\right)\) is due to an impurity of \(\mathbf{8 a}\)
\(T_{1}\) measurements in \(\mathrm{CD}_{2} \mathrm{Cl}_{2}\) (Table 4) give a short \(T_{1(\min )}\) value \((10 \mathrm{~ms}\) at 198 K for \(\mathbf{8 a}\) and 7.5 ms at 207 K for \(\mathbf{8 b}\), at 200 MHz ) for the broad signal characteristic of a \(\eta^{2}-\mathrm{H}_{2}\) complex, \({ }^{17}\) while a \(T_{1 \text { (min) }}\) of 98 ms at \(193 \mathrm{~K}\left(\mathbf{8}^{*} \mathbf{a}\right)\) and 120 ms at \(193 \mathrm{~K}\left(\mathbf{8}^{*} \mathbf{b}\right)\), at 200 MHz , measured on the quintet is consistent with a classical dihydride \(\left[\mathrm{ReH}_{2}(\mathrm{CO}) \mathrm{L}_{4}\right]^{+}\)cation. Support for this attribution comes from the spectra of the isotopomers \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{HD}\right)\right.\) \(\left.(\mathrm{CO}) \mathrm{L}_{4}\right]^{+} \mathbf{8} \mathbf{a}_{1}, \mathbf{8} \mathbf{b}_{1}\) and \(\left[\operatorname{ReH}(\mathrm{D})(\mathrm{CO}) \mathrm{L}_{4}\right]^{+} \mathbf{8} * \mathbf{a}_{1}\) obtained by protonation with \(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\) of \(\left[\mathrm{ReH}(\mathrm{CO}) \mathrm{L}_{4}\right]\) and shown in Fig. 3. The broad signal attributed to the \(\eta^{2}-\mathrm{H}_{2}\) ligand is replaced by a triplet in the isotopomer spectra, with large \(J_{\mathrm{HD}}\) values of 32.5 Hz , unequivocally consistent with the non-classical structure. A quintet of doublets replaces, instead, the signal of the dihydride, whose \(J_{\mathrm{HD}}\) value of 2.1 Hz strongly confirms the classical structure of the \(\left[\mathrm{ReH}(\mathrm{D})(\mathrm{CO}) \mathrm{L}_{4}\right]^{+}\)cation.

The two complexes \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO}) \mathrm{L}_{4}\right]^{+} \mathbf{8}\) and \(\left[\mathrm{ReH}_{2}(\mathrm{CO})-\right.\) \(\left.\mathrm{L}_{4}\right]^{+} \mathbf{8}^{*}\) are in tautomeric equilibrium, which is temperature dependent and, at higher temperatures, is shifted towards the classical \(\mathbf{8}^{*}\) compound. The temperature dependence of the equilibrium constant was studied by integration of the \({ }^{1} \mathrm{H}\) NMR hydride resonances of the two tautomers in the temper-


Fig. 4 Plot of \(\ln \left(K_{\text {eq }}\right) v s .1 / T\) for the equilibrium between \(\left[\mathrm{ReH}_{2}(\mathrm{CO})\right.\) \(\left.\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+} \mathbf{8}^{*}\) a and \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+} \mathbf{8 a}\) in \(\mathrm{CD}_{2} \mathrm{Cl}_{2}\). See Table 5 and text for explanations
ature range \(203-283 \mathrm{~K}\). Only in the case of the \(\mathrm{P}(\mathrm{OEt})_{3}\) complexes \(\mathbf{8 a}\) and \(\mathbf{8}^{*}\) a, however, does the separation of the signals allow the determination of the \(K_{\text {eq }}\) whose values are reported in Table 5. A plot of \(\ln \left(K_{\text {eq }}\right) v s .1 / T\) is linear (Fig. 4) and gives the thermodynamic parameters \(\Delta H=1.71 \pm 0.10 \mathrm{kcal} \mathrm{mol}^{-1}\) and \(\Delta S=-6.0 \pm 0.4 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\) for the conversion of the dihydride into the dihydrogen complex. These values are slightly different from those previously reported for the equilibrium between classical and non-classical rhenium hydrides of the type \({ }^{18}\left[\operatorname{ReH}_{2}(\mathrm{CO})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}\)and \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{2}{ }^{-}\right.\) \(\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}\)and for the equilibrium \({ }^{19}\) between \(\left[\mathrm{ReH}_{4}(\mathrm{CO})\right.\) \(\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}\)and \(\left[\mathrm{ReH}_{2}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}\)and probably reflect the influence of the phosphite ligands on the stability of the classical and non-classical hydride complexes.
The \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO}) \mathrm{L}_{4}\right]^{+}\)derivatives are thermally unstable and the loss of \(\mathrm{H}_{2}\) takes place therefore at -5 to \(0^{\circ} \mathrm{C}\), preventing the separation of the products in the solid state. However, when the protonation reaction of the \(\mathrm{PPh}(\mathrm{OEt})_{2}\) derivative \(\mathbf{4 b}\) was carried out in ethanol instead of \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) a white solid was obtained after precipitation with the \(\mathrm{BPh}_{4}^{-}\)anion, the IR and NMR spectra of which and analytical data support its formulation as the dihydride species \(\left[\mathrm{ReH}_{2}(\mathrm{CO})\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{4}\right] \mathrm{BPh}_{4}\)

Table 5 Thermodynamic parameters for the equilibrium between \(\left[\mathrm{ReH}_{2}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+} \mathbf{8}^{*} \mathbf{a}\) and \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+} \mathbf{8 a}\) in \(\mathrm{CD}_{2} \mathrm{Cl}_{2}{ }^{a}\)
\begin{tabular}{ll}
\(T / \mathrm{K}\) & \(K_{\mathrm{eq}}{ }^{b}\) \\
203 & 3.49 \\
213 & 2.59 \\
223 & 2.40 \\
243 & 1.83 \\
263 & 1.32 \\
283 & 0.99 \\
\(\Delta H-1.71 \pm 0.10 \mathrm{kcal} \mathrm{mol}^{-1 c}\) & \(\Delta S-6.0 \pm 0.4 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1 d}\)
\end{tabular}
\({ }^{a}\) Determined by \({ }^{1} \mathrm{H}\) NMR integration of the hydride resonances of complexes \(\mathbf{8 *} \mathbf{a}\) and \(\mathbf{8 a} .{ }^{b}\) Defined as \([\mathbf{8 a}] /\left[\mathbf{8}^{*} \mathbf{a}\right]\). \({ }^{c}\) Calculated from the slope of the plot of \(\ln \left(K_{\text {eq }}\right)\) vs. \(1 / T .{ }^{d}\) Calculated from the intercept of the plot in \(c\).
\(\mathbf{8 *} \mathbf{b}-\mathbf{B P h}_{4}\). The \({ }^{1} \mathrm{H}\) NMR spectra show, in fact, a well resolved quintet in the hydride region at \(\delta-6.05\left(25^{\circ} \mathrm{C}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right)\) with a \(T_{1 \text { (min) }}\) value ( 200 MHz ) of 124 ms at 208 K , suggesting the classical nature of the species. The infrared spectrum shows only one \(v(\mathrm{CO})\) band at \(1959 \mathrm{~cm}^{-1}\), while the \({ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum shows a slightly broad singlet near \(\delta 147\) at room temperature. The values of the chemical shift for both the protons and the \({ }^{31} \mathrm{P}\) nuclei of \(\mathbf{8 *} \mathbf{b}-\mathbf{B P h}_{4}\) compound are, however, different from those observed for the corresponding \(\left[\mathrm{ReH}_{2}-\right.\) \(\left.(\mathrm{CO}) \mathrm{L}_{4}\right]^{+} \mathbf{8} * \mathbf{b}\) cations prepared in \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) solution (see Table 1). Furthermore, this complex is stable in solution and no evidence of formation of the tautomer \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO}) \mathrm{L}_{4}\right]^{+}\)was observed. These different properties shown by the two hydrides obtained by protonation of \(\left[\mathrm{ReH}(\mathrm{CO})\left\{\mathrm{PPh}(\mathrm{OEt})_{2}\right\}_{4}\right] \mathbf{4 b}\) with \(\mathrm{HBF}_{4}\) in two different solvents (dichloromethane and ethanol) may be explained on the basis of the existence of two isomers with different geometries, only one of which is in tautomeric equilibrium with the \(\eta^{2}-\mathrm{H}_{2}\) derivatives. Support for this hypothesis comes from variable-temperature \({ }^{1} \mathrm{H}\) and \({ }^{31} \mathrm{P}\) NMR data of the two \(\left[\mathrm{ReH}_{2}(\mathrm{CO}) \mathrm{L}_{4}\right]^{+}\)species: while the proton and \({ }^{31} \mathrm{P}\) spectra of the cation \(\mathbf{8 *} \mathbf{b}\) prepared in \(\mathrm{CD}_{2} \mathrm{Cl}_{2}\) remain unchanged between 0 and \(-90^{\circ} \mathrm{C}\), the spectra of the solid sample \(\left[\mathrm{ReH}_{2}(\mathrm{CO}) \mathrm{L}_{4}\right] \mathrm{BPh}_{4} \mathbf{8} * \mathbf{b}-\mathbf{B P h}_{4}\) are temperature dependent and the slightly broad singlet at \(\delta 147.0\) which appears at room temperature in the \({ }^{31} \mathrm{P}\) spectrum becomes a well resolved \(\mathrm{A}_{2} \mathrm{~B}_{2}\) multiplet at \(-70^{\circ} \mathrm{C}\), consistent with the presence of two by two magnetically equivalent phosphite ligands. Also the \({ }^{1} \mathrm{H}\) spectrum changes as the temperature is lowered and the quintet observed at room temperature turns into a complicated multiplet at \(-80^{\circ} \mathrm{C}\) due to the coupling with the non-equivalent phosphine ligands.

The structure of seven-co-ordinate complexes can be discussed in terms of a pentagonal bipyramid, a monocapped octahedron or a capped trigonal prismatic geometry. \({ }^{19,20}\) Our \({ }^{1} \mathrm{H}\) and \({ }^{31} \mathrm{P}\) NMR spectra of both 'isomers' do not allow us to assign a geometry in solution. However, previous X-ray data on seven-co-ordinate rhenium complexes \({ }^{21}\) and the magnetic inequivalence of the phosphorus, nuclei allow us to propose the geometry VI for the solid derivative \(\left[\mathrm{ReH}_{2}(\mathrm{CO})\{\mathrm{P}\right.\) \(\left.\left.\mathrm{Ph}(\mathrm{OEt})_{2}\right\}_{4}\right] \mathrm{BPh}_{4} \mathbf{8} \mathbf{*} \mathbf{b}-\mathbf{B P h}_{4}\), while no hypothesis may be made for the species \(\mathbf{8}^{*} \mathbf{b}\) prepared in \(\mathrm{CD}_{2} \mathrm{Cl}_{2}\).


VI

\section*{Preparation of other \(\boldsymbol{\eta}^{\mathbf{2}}-\mathbf{H}_{\mathbf{2}}\) complexes}

Protonation reactions of the other carbonyl compounds \(\left[\operatorname{ReH}(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] 3\), \(\left[\operatorname{ReH}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right] 2\) and \(\left[\operatorname{ReH}(\mathrm{CO})_{4} \mathrm{~L}\right] 1\) with \(\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}\) also proceed easily at \(-80^{\circ} \mathrm{C}\) but give, in contrast to the monocarbonyls \(\left[\operatorname{ReH}(\mathrm{CO}) \mathrm{L}_{4}\right] 4\), only the dihydrogen
\begin{tabular}{|c|c|}
\hline \(\left[\mathrm{ReH}(\mathrm{CO})_{4} \mathrm{~L}\right] \frac{\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}}{-80{ }^{\circ} \mathrm{C}}\) & \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{4} \mathrm{~L}\right]^{+}\) \\
\hline 1 & 5 \\
\hline \(\left[\mathrm{ReH}(\mathrm{CO})_{3} \mathrm{~L}_{2}\right] \frac{\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}}{-80{ }^{\circ} \mathrm{C}}\) & \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]^{+}\) \\
\hline 2 & 6 \\
\hline \[
\left[\operatorname{ReH}(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] \frac{\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}}{-80^{\circ} \mathrm{C}}
\] & \[
\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{2} \mathrm{~L}_{3}\right]^{+}
\] \\
\hline 3 & 7 \\
\hline
\end{tabular}

Scheme \(3 \mathrm{~L}=\mathrm{P}(\mathrm{OEt})_{3} \mathbf{a}, \mathrm{PPh}(\mathrm{OEt})_{2} \mathbf{b}, \mathrm{PPh}_{2}(\mathrm{OEt}) \mathbf{c}\) or \(\mathrm{PPh}_{2}(\mathrm{OMe}) \mathbf{d}\)
cations \(\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{2} \mathrm{~L}_{3}\right]^{+} 7,\left[\operatorname{Re}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO})_{3} \mathrm{~L}_{2}\right]^{+} 6\) and \([\mathrm{Re}-\) \(\left.\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO}) \mathrm{L}_{4}\right]^{+} \mathbf{5}\), as shown in Scheme 3. The \(\eta^{2}-\mathrm{H}_{2}\) complexes were fairly stable in solution at low temperature, but were not isolated as solids owing to the easy loss of dihydrogen. Loss of dihydrogen, in the case of the tetracarbonyls 5 and of the tricarbonyls 6, begins at temperatures lower than -30 to \(-50^{\circ} \mathrm{C}\), while the dicarbonyls are stable until \(0^{\circ} \mathrm{C}\). In every case the \({ }^{1} \mathrm{H}\) NMR spectra of solutions in \(\mathrm{CD}_{2} \mathrm{Cl}_{2}\) containing 5, 6 or 7 exhibit a single broad resonance in the hydride region, between \(\delta-3.6\) and -5.21 , with \(T_{1(\min )}\) values of \(3-9 \mathrm{~ms}\) (200 and 400 MHz , Table 4), consistent \({ }^{17}\) with the proposed formulation. This assignment is further supported by the \({ }^{1} J_{\mathrm{HD}}\) values of \(30-\) 33 Hz found for the isotopomers \(\mathbf{6} \mathbf{a}_{\mathbf{1}}, \mathbf{6} \mathbf{b}_{\mathbf{1}}, \mathbf{7} \mathbf{a}_{1}, \mathbf{7} \mathbf{b}_{1}, \mathbf{7} \mathbf{c}_{\mathbf{1}}, \mathbf{8} \mathbf{a}_{\mathbf{1}}\) and \(\mathbf{8} \mathbf{b}_{1}\) which confirm the presence of an authentic \(\eta^{2}-\mathrm{H}_{2}\) ligand in the rhenium complex.

Protonation of our rhenium hydrides 1-4 allowed us to obtain a series of cationic dihydrogen and/or dihydride complexes with different phosphite: carbonyl ratios, which enables a comparison between them and also to related rhenium \(\eta^{2}-\mathrm{H}_{2}\) derivatives previously reported. \({ }^{3 f, 14,15 c, e, 18,22}\) First our \(\eta^{2}-\mathrm{H}_{2}\) cationic complexes are all thermally unstable and their easy loss of hydrogen does not seem to be influenced by the nature of the anion and the use of \(\mathrm{HBF}_{4}, \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}\) or \(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\) as the protonating agent does not influence the stability of the derivatives. Furthermore, only dihydrogen complexes were obtained with the carbonyl:phosphite ratio \(4: 1,3: 2\) and \(2: 3\), while a tautomeric equilibrium between \(\eta^{2}-\mathrm{H}_{2}\) and dihydride was observed in the protonation of \(\left[\mathrm{ReH}(\mathrm{CO}) \mathrm{L}_{4}\right]\) with a \(\mathrm{CO}: \mathrm{P}\) ratio \(1: 4\). This result is not surprising taking into account the lesser \(\pi\)-acceptor properties of the phosphites as compared to the carbonyl ligand, which make the rhenium a more electron-rich metal centre in \(\left[\operatorname{ReH}(\mathrm{CO}) \mathrm{L}_{4}\right]\) than in the other \(\left[\operatorname{ReH}(\mathrm{CO})_{5-n} \mathrm{~L}_{n}\right]\) ( \(n=2,3,4\) ) complexes, therefore favouring the homolytic cleavage of \(\mathrm{H}_{2}\) resulting in the dihydride species. In addition, also other factors probably affect the homolytic cleavage of a \(\mathrm{H}_{2}\) ligand, but the related \(\pi\)-acceptor properties of the ancillary ligands seem to play an important role, as shown by the existence of dihydrides or an equilibrium between dihydride and dihydrogen species in other monocarbonyl complexes. \({ }^{18,22 b}\)

A comparison among our \(\eta^{2}-\mathrm{H}_{2}\) complexes 5, 6, 7,8 shows that, although the spectroscopic properties \(\left(T_{1(\min )}\right.\) and \(\left.{ }^{1} J_{\mathrm{HD}}\right)\) are rather similar, the stability to the loss of \(\mathrm{H}_{2}\) varies greatly, according to the carbonyl:phosphite ratio and the nature of the phosphite ligands. As shown in Table 4, the temperature limit of stability increases with the number of 'phosphines' in the complexes, with the monocarbonyls \(\mathbf{8}\) being the most stable. The nature of the phosphite also influences the stability of the complexes and the results show that the phosphonite \(\mathrm{PPh}(\mathrm{OEt})_{2}\) is that which most stabilises the \(\eta^{2}-\mathrm{H}_{2}\) derivatives among the phosphites used. However, despite the known properties \({ }^{4}\) of the \(\mathrm{PPh}(\mathrm{OEt})_{2}\) ligand in stabilising dihydrogen complexes, no rhenium \(\eta^{2}-\mathrm{H}_{2}\) complexes can be isolated in the solid state, owing to the easy loss of \(\mathrm{H}_{2}\). This instability of the \(\eta^{2}-\mathrm{H}_{2}\) complexes of rhenium is rather unexpected, when taking into account that the strictly comparable manganese complexes \({ }^{4 e}\) \(\left[\mathrm{Mn}\left(\eta^{2}-\mathrm{H}_{2}\right)(\mathrm{CO}) \mathrm{L}_{4}\right] \mathrm{BPh}_{4}\) are stable at room temperature and can be isolated as solids. Generally, the dihydrogen complexes of the third-row transition metals are more stable than those corresponding to the first row and our results, therefore, show
how the stability of the dihydrogen complexes depends on a balance of factors which are not yet completely established.

The evolution of \(\mathrm{H}_{2}\) from complexes 5-8 results in the disappearance of the \(\eta^{2}-\mathrm{H}_{2}\) resonance at \(\delta-3.6\) to -5.21 and the formation of formally 16 -electron complexes which, in the case of the compounds \(\left[\operatorname{Re}(\mathrm{CO})_{2} \mathrm{~L}_{3}\right] \mathrm{BPh}_{4} 10\) and \(\left[\operatorname{Re}(\mathrm{CO}) \mathrm{L}_{4}\right] \mathrm{BPh}_{4}\) 11, can be isolated as white solids and characterised (Scheme 4).


\section*{Scheme 4}

Evolution of \(\mathrm{H}_{2}\) from complexes containing the \(\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}\)anion affords the \(\eta^{1}\)-triflate complex which, in the case of \(\left[\operatorname{Re}\left(\eta^{1}\right.\right.\) \(\left.\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)(\mathrm{CO})_{3}\left\{\mathrm{PPh}_{2}(\mathrm{OEt})_{2}\right] \mathbf{9} \mathbf{c}\), was obtained as a solid with a mer,trans geometry VII, as was established in solution by IR and NMR data (Table 1).


The unsaturated complexes \(\mathbf{1 0}\) and \(\mathbf{1 1}\) are white solids, stable in the air, diamagnetic, 1:1 electrolytes and probably are stabilised by an agostic interaction \({ }^{23}\) between the electron-deficient rhenium centre and a \(\mathrm{C}-\mathrm{H}\) bond of the ethyl (or phenyl) group of one phosphite ligand. Unfortunately, in the temperature range between +20 and \(-90^{\circ} \mathrm{C}\), the \({ }^{1} \mathrm{H}\) and \({ }^{31} \mathrm{P}\) NMR data do not give any information to support this hypothesis and no suitable crystals for a X-ray determination were obtained. Therefore, the presence of an agostic bond must remain as a hypothesis supported by the numerous precedents. \({ }^{38,15 e, 24-26}\)

\section*{Reactivity}

Some studies on the properties of the unsaturated complexes are reported in Scheme 5. Both the unsaturated complexes 10


Scheme \(5 \mathbf{L}=\mathrm{P}(\mathrm{OEt})_{3} \mathbf{a}, \mathrm{PPh}(\mathrm{OEt})_{2} \mathbf{b}\) or \(\mathrm{PPh}_{2}(\mathrm{OEt}) \mathbf{c} ; \mathrm{R}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}\)
and \(\mathbf{1 1}\) and the triflate compound \(\mathbf{9}\) react with a variety of small donor molecules to give a series of neutral or cationic rhenium complexes the spectroscopic data for which are reported in Table 1. The acetylide complexes \(\mathbf{1 2 , 1 3}\) were obtained as white or pale yellow solids soluble in polar and non-polar solvents, where they behave as non-electrolytes. The infrared and NMR spectra confirm the presence of the acetylide ligand and suggest the geometries VIII and IX for the complexes in solution. The characteristic \(v(\mathrm{C} \equiv \mathrm{C})\) of the acetylide ligand is, in fact, present as a medium-intensity band at \(2084-2101 \mathrm{~cm}^{-1}\) in the infrared spectra of complexes \(\mathbf{1 2}\) and 13 , while in the \({ }^{13} \mathrm{C}\) NMR spectra the \(\mathrm{C}_{\alpha}\) and \(\mathrm{C}_{\beta}\) signals are clearly assigned (between \(\delta 99\) and 177) on the basis of the multiplicity of the signals and by the
\(J_{\mathrm{CP}}\) values (Table 1). Furthermore, in the temperature range between +30 and \(-90^{\circ} \mathrm{C}\) the \({ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectra of the \(\left[\operatorname{Re}(\mathrm{C} \equiv \mathrm{CPh})(\mathrm{CO})_{3} \mathrm{~L}_{2}\right] \mathbf{1 2}\) compounds show only one sharp singlet, while the \(v(\mathrm{CO})\) bands are two strong and one of weak intensity, consistent with a mer,trans geometry VIII. A trans

geometry IX can be proposed, instead, for the monocarbonyl \(\left[\operatorname{Re}(\mathrm{C} \equiv \mathrm{CPh})(\mathrm{CO}) \mathrm{L}_{4}\right] \mathbf{1 3}\) derivative, on the basis of the presence of only one \(v(\mathrm{CO})\) band and only one singlet in the \({ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectra.

By treating the unsaturated complexes 10, \(\mathbf{1 1}\) with the appropriate ligand the new monoisocyanide 15, 16 and the mononitrile complexes \(\mathbf{1 4}\) can be prepared; these were isolated as pale yellow solids, stable in the air, diamagnetic and 1:1 electrolytes. The infrared spectra show only one \(v(\mathrm{CN})\) band at \(2259 \mathrm{~cm}^{-1}\) for the nitrile 14 and at 2131 or \(2149 \mathrm{~cm}^{-1}\) for the isocyanide complexes. Furthermore, only one \(v(\mathrm{CO})\) band at \(1942 \mathrm{~cm}^{-1}\) was observed for the complex \(\left[\operatorname{Re}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)\right.\) (CO) \(\left.\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right] \mathrm{BPh}_{4} \mathbf{1 6 a}\), the \({ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum of which shows a sharp singlet suggesting magnetic equivalence of the four phosphite ligands, as in the trans geometry \(\mathbf{X}\).


X


XI

The infrared spectra of both the dicarbonyl complexes \(\mathbf{1 4 b}\) and 15b show two strong \(v(\mathrm{CO})\) bands suggesting a cis arrangement of the two carbonyl ligands. These two CO groups, however, are not magnetically equivalent, as indicated by the \({ }^{13} \mathrm{C}\) NMR spectrum of \(\left[\operatorname{Re}\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NC}\right)(\mathrm{CO})_{2}\{\mathrm{PPh}-\right.\) \(\left.\left.(\mathrm{OEt})_{2}\right\}_{3}\right] \mathrm{BPh}_{4} \mathbf{1 5 b}\), which shows at \(\delta 193.5\) and at 189.3 two multiplets due to two non-equivalent carbonyl carbon atoms. Furthermore, the \({ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\) NMR spectrum shows an \(\mathrm{A}_{2} \mathrm{~B}\) multiplet (Table 1) indicating that two phosphites are magnetically equivalent and different from the third. On this basis a cis,mer geometry of type XI can reasonably be proposed for the dicarbonyl \(\mathbf{1 4 b}\) and \(\mathbf{1 5 b}\) compounds.

\section*{Acknowledgements}

This work was supported by the Ministero della Ricerca Scientifica e Tecnologica, Rome. We thank Daniela Baldan for technical assistance. R. C. and S. G.-F. thank Professor J. Strähle and Dr. Cäcilia Maichle-Mössmer, University of Tübingen (Germany) for providing facilities for the crystal structure determinations.

\section*{References}

1 G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini and H. J. Wasserman, J. Am. Chem. Soc., 1984, 106, 451.
2 G. J. Kubas, Acc. Chem. Res., 1988, 21, 120; P. G. Jessop and R. H. Morris, Coord. Chem. Rev., 1992, 121, 155; R. H. Crabtree, Angew. Chem., Int. Ed. Engl., 1993, 92, 789; D. M. Heinekey and W. J., Jr. Oldman, Chem. Rev., 1993, 93, 913.
3 (a) B. R. Bender, G. J. Kubas, L. H. Jones, B. I. Swanson, J. Eckert, K. B. Capps and C. D. Hoff, J. Am. Chem. Soc., 1997, 119, 9179 ; (b) A. Antiñolo, F. Carrillo-Hermosilla, M. Fajardo, S. GarciaYuste, A. Otero, S. Camanyes, F. Maseras, M. Moreno, A. Lledos and J. M. Lluch, J. Am. Chem. Soc., 1997, 119, 6107; (c) D. G. Gusev, R. Hübener, P. Burger, O. Orama and H. Berke, J. Am.

Chem. Soc., 1997, 119, 3716; (d) C. E. Forde, S. E. Landau and R. H. Morris, J. Chem. Soc., Dalton Trans., 1987, 1663; (e) M. Bardaji, A.-M. Caminade, J.-P. Majoral and B. Chaudret, Organometallics, 1997, 16, 3489; (f) D. M. Heinekey, M. H. Voges and D. M. Barnhart, J. Am. Chem. Soc., 1996, 118, 10 792; (g) W. A. King, X.-L. Luo, B. L. Scott, G. J. Kubas and K. W. Zilm, J. Am. Chem. Soc., 1996, 118, 6782; (h) P. A. Maltby, M. Schlaf, M. Steinbeck, A. J. Lough, R. H. Morris, W. T. Klooster, T. F. Koetzle and R. C. Srivastava, J. Am. Chem. Soc., 1996, 118, 5396; (i) Y. Kim, H. Deng, J. C. Gallucci and A. Wojcicki, Inorg. Chem., 1996, 35, 7166; ( \(j\) ) D. G. Gusev, R. L. Kuhlman, K. B. Renkema, O. Eisenstein and K. G. Caulton, Inorg. Chem., 1996, 35, 6775; (k) G. B. Bacskay, I. Bytheway and N. S. Hush, J. Am. Chem. Soc., 1996, 118, 3753; ( \(l\) ) R. M. Bullock, J.-S. Song and D. J. Szalda, Organometallics, 1996, 15, 2504; (m) J. Eckert, A. Albinati, U. E Bucher and L. M. Venanzi, Inorg. Chem., 1996, 35, 1292; (n) J. C., Jr. Lee, W. Yao, R. H. Crabtree and H. Rüegger, Inorg. Chem., 1996, 35, 695; (o) B. Ma, C. L. Collins and H. F. Schaefer III, J. Am. Chem. Soc., 1996, 118, 870; ( \(p\) ) J. Li, R. M. Dickson and T. Ziegler, J. Am. Chem. Soc., 1995, 117, 11 482; (q) B. Moreno, S. Sabo-Etienne, B. Chaudret, A. Rodriguez, F. Jalon and S. Trofimenko, J. Am. Chem. Soc., 1995, 117, 7441; (r) X. L. R. Fontaine, T. P. Layzell and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1994, 917; (s) J. A. Banister, P. D. Lee and P. D. Poliakoff, Organometallics, 1995, 14, 3876.

4 (a) G. Albertin, S. Antoniutti and E. Bordignon, J. Am. Chem. Soc., 1989, 111, 2072; (b) P. Amendola, S. Antoniutti, G. Albertin and E. Bordignon, Inorg. Chem., 1990, 29, 318; (c) G. Albertin, P. Amendola, S. Antoniutti, S. Ianelli, G. Pelizzi and E. Bordignon, Organometallics, 1991, 10, 2876; (d) G. Albertin, S. Antoniutti, D. Baldan and E. Bordignon, Inorg. Chem., 1995, 34, 6205; (e) G. Albertin, S. Antoniutti, M. Bettiol, E. Bordignon and F. Busatto, Organometallics, 1997, 16, 4959.
5 S. Garcia-Fontán, A. Marchi, L. Marvelli, R. Rossi, S. Antoniutti and G. Albertin, J. Chem. Soc., Dalton Trans., 1996, 2779.
6 R. Rabinowitz and J. Pellon, J. Org. Chem., 1961, 26, 4623.
7 I. Ugi, U. Fetzer, W. Eholzer, H. Knupfer and K. Offermann, Angew. Chem., Int. Ed. Engl., 1965, 4, 472.
8 M. A. Urbanic and J. R. Shapley, Inorg. Synth., 1990, 28, 165.
9 International Tables for X-Ray Crystallography, Kluwer, Dordrecht, 1992, vol. C.
10 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
11 G. M. Sheldrick, SHELXL 93, A Program for the Solution of Crystal Structures from X-Ray Diffraction Data, University of Göttingen, 1993.
12 L. Zsolnai, ZORTEP, A Program for the Presentation of Thermal Ellipsoids, University of Heidelberg, 1994.
13 E. W. Abel and G. Wilkinson, J. Chem. Soc., 1959, 1501; P. W. Jolly and F. G. A. Stone, J. Chem. Soc., 1965, 5259; P. G. Douglas and
B. L. Shaw, J. Chem. Soc. A, 1969, 1491; R. H. Reimann and E. Singleton, J. Organomet. Chem.., 1973, 59, 309; E. Singleton, J. T. Moelwyn-Hughes and A. W. B. Garner, J. Organomet. Chem., 1970, 21, 445; J. Chatt, J. R. Dilworth, H. P. Gunz and G. J. Leigh, J. Organomet. Chem., 1974, 64, 245; R. H. Reimann and E. Singleton, J. Chem. Soc., Dalton Trans., 1973, 841; A. M. Bond, R. Colton and M. E. McDonald, Inorg. Chem., 1978, 17, 2842; N. W. Hoffman, N. Prokopuk, M. J. Robbins, C. M. Jones and N. M. Doherty, Inorg. Chem., 1991, 30, 4177; A. E. Leins and N. J. Coville, J. Organomet. Chem., 1991, 407, 359.
14 D. M. Heinekey, C. E. Radzewich, M. H. Voges and B. M. Schomber, J. Am. Chem. Soc., 1997, 119, 4172.
15 (a) H. W. Walker, G. B. Rattinger, R. L. Belford and T. L. Brown, Organometallics, 1983, 2, 775; (b) W. D. Jones and J. A. Maquire, Organometallics, 1987, 6, 1728; (c) X.-L. Luo, H. Liu and R. H. Crabtree, Inorg. Chem., 1991, 30, 4740; (d) D. G. Gusev, D. Nietlispach, A. B. Vymenits, V. I. Bakhmutov and H. Berke, Inorg. Chem., 1993, 32, 3270; (e) C. Bianchini, A. Marchi, L. Marvelli, M. Peruzzini, A. Romerosa, R. Rossi and A. Vacca, Organometallics, 1995, 14, 3203.
16 T. G. Teller and R. Bau, Struct. Bonding (Berlin), 1981, 44, 1.
17 D. G. Hamilton and R. H. Crabtree, J. Am. Chem. Soc., 1988, 110, 4126; M. T. Bautista, K. A. Earl, P. A. Maltby, R. H. Morris, C. T. Schweitzer and A. Sella, J. Am. Chem. Soc., 1988, 110, 7031; P. J. Desrosiers, L. Cai, Z. Lin, R. Richards and J. Halpern, J. Am. Chem. Soc., 1991, 113, 4173.
18 X.-L. Luo, D. Michos and R. H. Crabtree, Organometallics, 1992, 11, 237.
19 X.-L. Luo and R. H. Crabtree, J. Am. Chem. Soc., 1990, 112, 6912.
20 X. L. R. Fontaine, T. P. Layzell and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1994, 917.
21 A. P. Ginsberg and M. E. Tully, J. Am. Chem. Soc., 1973, 95, 4749; F. A. Cotton and R. L. Luck, Inorg. Chem., 1989, 28, 2181.

22 (a) S. Feracin, T. Bürgi, V. I. Bakhmutov, I. Eremenco, E. V. Vorontsov, A. B. Vimenits and H. Berke, Organometallics, 1994, 13, 4194; (b) D. G. Gusev, D. Nietlispach, I. L. Eremenko and H. Berke, Inorg. Chem., 1993, 32, 3628
23 M. Brookhart, M. L. H. Green and L.-L. Wong, Prog. Inorg. Chem., 1988, 36, 1.
24 M. Sato, T. Tatsumi, T. Kodama, M. Hidai, T. Uchida and Y. Uchida, J. Am. Chem. Soc., 1978, 100, 447.

25 K. Zhang, A. A. Gonzalez, S. L. Mukerjee, S.-J. Chou, C. D. Hoff, K. A. Kubat-Martin, D. Barnhart and G. J. Kubas, J. Am. Chem. Soc., 1991, 113, 9170.
26 D. M. Heinekey, B. M. Schomber and C. E. Radzewich, J. Am. Chem. Soc., 1994, 116, 4515.

Received 12th February 1998; Paper 8/01230J```


[^0]:    $\dagger$ E-Mail: albertin@unive.it
    $\ddagger$ Non-SI unit employed: cal $=4.184 \mathrm{~J}$.

[^1]:    cis- $\left[\operatorname{ReH}(\mathrm{CO})_{4} \mathrm{~L}\right] 1\left[\mathrm{~L}=\mathrm{PPh}_{2}(\mathrm{OEt}) \mathrm{c}\right.$ or $\left.\mathrm{PPh}_{2}(\mathrm{OMe}) \mathrm{d}\right]$. To a solution of $\left[\operatorname{ReH}(\mathrm{CO})_{5}\right](2.5 \mathrm{mmol}, 0.82 \mathrm{~g})$ in thf $\left(20 \mathrm{~cm}^{3}\right)$ an equimolar amount of the appropriate phosphite was added

