Bridge cleavage reactions of late transition-metal dimers with
 $\left[\mathrm{Ph}_{2} \mathbf{P}(\mathbf{E}) \mathbf{N P}\left(\mathrm{E}^{\prime}\right) \mathrm{Ph}_{2}\right]^{-}\left(\mathrm{E}=\mathrm{E}^{\prime}=\mathrm{S}\right.$ or $\mathrm{Se} ; \mathbf{E}=\mathbf{O}$ or S ,
 $\mathbf{E}^{\prime}=\mathbf{S}$ or Se)

Pravat Bhattacharyya, Alexandra M. Z. Slawin and Martin B. Smith *, \dagger
Department of Chemistry, Loughborough University, Loughborough, Leics., UK LE11 3TU

Abstract

Reaction of the dinuclear complexes $\left[\{\mathrm{Pd}(\mu-\mathrm{Cl})(\mathrm{L}-\mathrm{L})\}_{2}\right]\left(\mathrm{L}-\mathrm{L}=\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right.$ or $\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)$, $[\{\mathrm{Pt}(\mu-\mathrm{OMe})-$ $\left.\left.\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\right\}_{2}\right],\left[\left\{\mathrm{RuCl}(\mu-\mathrm{Cl})\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\prime}\right)\right\}_{2}\right]$ or $\left[\left\{\mathrm{RhCl}(\mu-\mathrm{Cl})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}\right]$ with $\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right]$ ($\mathrm{E}=\mathrm{S}$ or Se) in thf gave the corresponding bridge cleaved, mononuclear compounds $\left[\mathrm{Pd}(\mathrm{L}-\mathrm{L})\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E})-\right.\right.$ $\left.\left.\mathrm{Ph}_{2}-E, E^{\prime}\right\}\right],\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}-E, E^{\prime}\right\}\right],\left[\mathrm{RuCl}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}-E, E^{\prime}\right\}\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)\right]$ or $\left[\mathrm{Rh}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Cl}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}-E, E^{\prime}\right\}\right]$ in high yields (64-97\%). Transmetallation of $\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right]$ $(\mathrm{E}=\mathrm{S}$ or Se$)$ with $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right\}_{2}\right]$ in a $1: 1$ ratio gave $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}-E, E^{\prime}\right\}\right]$. In contrast, reaction of the potassium salt $\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right](\mathrm{E}=\mathrm{S}$ or Se$)$ with $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right\}_{2}\right]$ under analogous conditions gave instead the dimeric species $\left[\left\{\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}-E\right]\right\}_{2}\right]$. All new compounds have been characterised by a combination of multinuclear NMR $\left[{ }^{1} \mathrm{H},{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\},{ }^{195} \mathrm{Pt}-\left\{{ }^{2} \mathrm{H}\right\}\right]$ and IR spectroscopy, elemental analyses and in four cases by single crystal X-ray crystallography. The six-membered $\mathrm{ME}_{2} \mathrm{P}_{2} \mathrm{~N}$ metallacycles $\left[\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}, \mathrm{Se}^{\prime}\right\}\right],\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-\mathrm{S}, S^{\prime}\right\}\right]$ and $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}-\right.\right.$ (S)NP(S) $\left.\left.\mathrm{Ph}_{2}-S, S^{\prime}\right\}\right]$ all adopt pseudo-boat conformations. In contrast $\left[\left\{\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}_{2}\right\}_{2}\right]\right.$ is binuclear with a central four-membered $\mathrm{Pd}_{2} \mathrm{Se}_{2}$ core and two pendant $\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}$ moieties. The synthesis, characterisation and preliminary complexation studies of a new potassium salt, $\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}\right]$, prepared by deprotonation of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NHP}(\mathrm{Se}) \mathrm{Ph}_{2}$ with $\mathrm{KOBu}^{\mathrm{t}}$ are also described.

The co-ordination chemistry of $\mathrm{Ph}_{2} \mathrm{PNHPPh}_{2}$ (dppa) and $\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{R}_{2}\right]^{-} \quad(\mathrm{E}=\mathrm{O}, \mathrm{S}$ or Se including some mixed chalcogenide donor atom combinations; $\mathrm{R}=\mathrm{Ph}$ typically) has attracted widespread attention by ourselves and others. ${ }^{1-37}$ The anion $\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{R}_{2}\right]^{-}$, closely related to acetylacetonate (acac^{-}), forms many complexes with a diverse spectrum of metal ions, and moreover, selected complexes have found important applications in areas such as NMR shift reagents, ${ }^{11}$ selective metal extractants ${ }^{33}$ and in catalysis. ${ }^{10}$ Indeed, very recently the novel tetranuclear silver (I) cluster $[\{\mathrm{Ag}[\mathrm{Ph} 2 \mathrm{P}(\mathrm{O})$ $\left.\left.\mathrm{NP}(\mathrm{O}) \mathrm{Ph}_{2}\right]_{4}\right] \cdot 2 \mathrm{EtOH}$ reported by Rudler et al. ${ }^{10}$ was shown, in preliminary studies, to be a promising catalyst for alkene epoxidation.
Transition-metal complexes of acac and its derivatives have been well studied ${ }^{38,39}$ with a variety of ligating modes established, yet surprisingly only recently metal complexes containing novel ligand bonding modes for $\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{R}_{2}\right]^{-}$have been described. ${ }^{7-10}$ Table 1 highlights a selection of ligating modes observed for $\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{R}_{2}\right]^{-}$. Coincidentally four new co-ordination modes were reported in 1997 alone and confirmed unambiguously by X-ray crystallography. ${ }^{7-10} \mathrm{~A}$ common feature to both classes of ligand is the propensity to adopt a classical E, E^{\prime}-chelation mode utilising both chalcogenide donor atoms. ${ }^{2-6,11-33}$

We are particularly interested in this class of ligand for several reasons. (i) Most known metal complexes of $\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}\right.$ $\left.(\mathrm{E}) \mathrm{R}_{2}\right]^{-}$are homoleptic, i.e. $\left[\mathrm{M}\left\{\mathrm{R}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{R}_{2}-E, E^{\prime}\right\}_{n}\right]$ where $n=2$ or 3 . ${ }^{2-5,11-19,21-24,34}$ In contrast to the wealth of bis and tris chelate complexes documented only a handful of mixed complexes (with ancillary ligands such as chloride or tertiary phosphines) has been reported. ${ }^{18,20,26,27,29,31}$ (ii) There are remarkably very few examples of organometallic complexes bearing a chelating $\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{R}_{2}\right]^{-}$and, of those reported, the majority are with Sn , e.g. $\left[\mathrm{SnR}_{2}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}\left(\mathrm{E}^{\prime}\right) \mathrm{Ph}_{2}-E, E^{\prime}\right\}_{2}\right](\mathrm{R}=\mathrm{Me}$,

[^0]Bu^{n} or $\mathrm{Ph} ; \mathrm{E}=\mathrm{E}^{\prime}=\mathrm{O}$ or $\left.\mathrm{S} ; \mathrm{E}=\mathrm{O}, \mathrm{E}^{\prime}=\mathrm{S}\right] .{ }^{14,32}$ Examples incorporating transition metals are restricted to those of Mn , Os, Pt and Au. ${ }^{18,26,35,36}$ (iii) Metal complexes of $\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}\right.$ (E) $\left.\mathrm{R}_{2}\right]^{-}$display a diverse array of $\mathrm{ME}_{2} \mathrm{P}_{2} \mathrm{~N}$ chelate ring conformations. Two noteworthy examples are $\left[\mathrm{Mn}(\mathrm{CO})_{4}{ }^{-}\right.$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-S, S^{\prime}\right\}\right]$ in which the unit cell contains two independent molecules with the $\mathrm{MnS}_{2} \mathrm{P}_{2} \mathrm{~N}$ metallacycles adopting two different non-planar ring conformations ${ }^{26}$ and secondly cis- $\left[\mathrm{Pd}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-O, S e\right\}_{2}\right]$ in which two disparate $\mathrm{PdOSeP}{ }_{2} \mathrm{~N}$ ring geometries were present within the same molecule. ${ }^{18}{ }^{8}$ iv) The potential of mixed anionic ligands $\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{O}) \mathrm{N}\right.$ $\left.\mathrm{P}(\mathrm{E}) \mathrm{R}_{2}\right]^{-}(\mathrm{E}=\mathrm{S}$ or Se$)$ bearing both 'hard' and 'soft' donor centres to engage in new bonding modes (in addition to the orthodox O, E-chelate) has not been fully realised. ${ }^{9,14,18} \mathrm{~A}$ related mixed anionic ligand $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NPPh}_{2}\right]^{-}$can take on several ligating modes including P, O-chelating, P, O-bridging and P-monodentate ${ }^{40-42}$ but in contrast $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right]^{-}$ ($\mathrm{E}=\mathrm{S}$ or Se) has so far been observed to form O, E-chelate metal complexes. It is for these reasons we have probed the coordination chemistry of this unique class of ligand with a range of late transition-metal fragments.
We report herein the first example of organo-ruthenium(II), -rhodium(III), -palladium(II) and -platinum(II) complexes of $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}\left(\mathrm{E}^{\prime}\right) \mathrm{Ph}_{2}\right]^{-}\left(\mathrm{E}=\mathrm{E}^{\prime}=\mathrm{S}\right.$ or $\mathrm{Se} ; \mathrm{E}=\mathrm{O}$ or $\mathrm{S}, \mathrm{E}^{\prime}=\mathrm{S}$ or Se) with $\sigma-/ \pi$-bonded carbon auxiliary ligands. These are readily accessible via facile bridge cleavage reactions of, in general, the corresponding dichloro-bridged precursors. All new compounds have been characterised by a combination of NMR spectroscopy $\left[{ }^{1} \mathrm{H},{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\},{ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}\right]$, IR and elemental analysis. Three crystal structures have been determined: $\left[\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NP}\left(\mathrm{Se}_{2}\right) \mathrm{Ph}_{2}-\mathrm{Se}, \mathrm{Se} e^{\prime}\right\}\right], \quad\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)-\right.$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-S, S^{\prime}\right\}\right]$ and $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-\right.\right.$ $\left.\left.S, S^{\prime}\right\}\right]$. In each case the inorganic (carbon free) six-membered $\mathrm{ME}_{2} \mathrm{P}_{2} \mathrm{~N}$ metallacycle adopts a familiar pseudo-boat conformation. Our work has also revealed, by X-ray crystallography, a novel binding mode for $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right]^{-}(\mathrm{E}=\mathrm{S}$ or Se$)$ as seen in the palladium(II) complex $\left[\left\{\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}\right.\right.\right.$ -

Table 1 Classification of bonding motifs in metal complexes of $\left[R_{2} P(E) N P(E) R_{2}\right]^{-}$(for clarity π delocalisation within the EPNPE backbone is not illustrated)

Ligand binding mode	Example(s)	Donor set	Ref.
	$\begin{aligned} & {\left[\mathrm{Bi}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}_{3}\right]} \\ & {\left[\mathrm{Ba}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{~S}) \mathrm{NP}(\mathrm{~S}) \mathrm{Ph}_{2}\right\}_{2}\right] \cdot 2 \mathrm{dme}} \\ & {\left[\mathrm{M}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}\right\}_{2}\right]} \\ & (\mathrm{M}=\mathrm{Sn}, \mathrm{~Pb}, \mathrm{Zn}, \mathrm{Cd} \text { or } \mathrm{Hg}) \end{aligned}$	$\begin{aligned} & O, O \\ & S, S \\ & S e, S e \end{aligned}$	$\begin{array}{r} 12 \\ 2 \\ 4 \end{array}$
	$\left[\left\{\mathrm{Au}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right]_{2}\right]\right.$	S,S	35
	$\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right]$	S, S	30
	$\left[\mathrm{Pd}\left\{(\mathrm{PhO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{S})(\mathrm{OPh})_{2}\right\}_{2}\right]$	N, S	34
	$\left[\mathrm{Hg}(\mathrm{Ph})\left\{\mathrm{N}\left[\mathrm{P}(\mathrm{O})(\mathrm{OPh})_{2}\right]_{2}\right\}\right]$	N	37
$M-E-P_{2}^{P_{2}}$	$\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{9}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right\}\right]$	S, S	8
	$\left[\operatorname{Sm}\left\{\eta^{3}-\mathrm{N}\left(\mathrm{SePPh}_{2}\right)_{2}\right\}\left\{\eta^{2}-\mathrm{N}\left(\mathrm{SePPh}_{2}\right)_{2}\right\}(\mathrm{thf})_{2}\right]$	$N, S e, S e$	7
	$\left[\left\{\mathrm{Na}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right] \cdot 2 \text { thf }\right\}_{2}\right]$	O,S	9
M	$\left[\left\{\mathrm{Ag}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{O}) \mathrm{Ph}_{2}\right]\right\}_{4}\right] \cdot 2 \mathrm{EtOH}$	N, O, O	10
$\mathrm{R}_{2}(\mathrm{E}) \mathrm{P}_{\backslash} \quad \stackrel{\mathrm{R}_{2}}{\mathrm{P}_{2}}$	$\left[\left\{\mathrm{Ag}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{O}) \mathrm{Ph}_{2}\right]\right\}_{4}\right] \cdot 2 \mathrm{EtOH}$	N,O	10
	$\begin{aligned} & {\left[\left\{\mathrm{Hg}\left[(\mathrm{RO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{O})(\mathrm{OR}) \mathrm{OC}_{6} \mathrm{H}_{4}\right]\right\}_{2}\right]} \\ & (\mathrm{R}=\mathrm{Ph}) \end{aligned}$	C, N	37
$\mathrm{R}_{2} \mathrm{P}^{-N}{ }^{-N(E) R_{2}}$	$\begin{aligned} & {\left[\left\{\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right]\right\}_{2}\right]} \\ & (\mathrm{E}=\mathrm{S} \text { or } \mathrm{Se}) \end{aligned}$	E	This work

(E) $\left.\left.\mathrm{Ph}_{2}-E\right]\right\}_{2}$]. Full details of the synthesis and preliminary reactivity of a new mixed ligand $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}\right]^{-}$are described.

Experimental

General

Unless otherwise stated, manipulations were carried out in air using previously distilled solvents. The potassium salts $\mathrm{K}\left[\mathrm{Ph}_{2}{ }^{-}\right.$
$\left.\mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right]^{25,43}$ and $\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right](\mathrm{E}=\mathrm{S}$ or Se$),{ }^{18}$ the metal-(II)/-(III) complexes $\left[\{\mathrm{Pd}(\mu-\mathrm{Cl})(\mathrm{L}-\mathrm{L})\}_{2}\right] \quad[\mathrm{HL}-\mathrm{L}=$ benzyldimethylamine $\left(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}\right)$ or dimethyl-1-naphthylamine $\left.\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}\right)\right]{ }^{44} \quad\left[\left\{\mathrm{Pt}(\mu-\mathrm{OMe})\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\right\}_{2}\right] \quad\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}=\right.$ 8 -methoxycyclooct-4-ene-1-yl) ${ }^{45}$ and $\quad\left[\left\{\mathrm{RhCl}(\mu-\mathrm{Cl})\left(\eta^{5}-\right.\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}\right]^{46}$ were prepared according to established literature methods. The compounds $\left[\left\{\operatorname{Pd}(\mu-\mathrm{Cl})\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right\}_{2}\right]$, $\{\{\mathrm{RuCl}(\mu-$ $\left.\left.\mathrm{Cl})\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)\right\}_{2}\right]$ and $\mathrm{KOBu}^{\mathrm{t}}$ were obtained commercially from Aldrich Chemical Co. and used without further purification.

Infrared spectra were recorded as KBr pellets in the range $4000-220 \mathrm{~cm}^{-1}$ on a Perkin-Elmer System 2000 Fouriertransform spectrometer, ${ }^{1} \mathrm{H}$ NMR spectra (250 MHz) on a Bruker AC250 FT spectrometer with chemical shifts (δ) in ppm (± 0.01) to high frequency of SiMe_{4} and coupling constants (J) in $\mathrm{Hz}(\pm 0.1),{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (36.2 MHz) on a JEOL FX90Q spectrometer with chemical shifts (δ) in ppm (± 0.1) to high frequency of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ and coupling constants (J) in Hz (± 3) and ${ }^{195} \mathrm{Pt}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (53.7 MHz) on a Bruker AC250 FT spectrometer with δ referenced to external $\mathrm{H}_{2} \mathrm{PtCl}_{6}$ (in $\mathrm{D}_{2} \mathrm{O}-\mathrm{HCl}$). All NMR spectra were measured in CDCl_{3} unless otherwise stated. Elemental analyses (Perkin-Elmer 2400 CHN Elemental Analyzer) were performed by the Loughborough University Analytical Service within the Department of Chemistry.
Precious metal salts were provided on loan by Johnson Matthey plc.

Preparations

$\left[\mathbf{P d}\left(\mathbf{C}_{9} \mathbf{H}_{12} \mathbf{N}\right)\left\{\mathbf{P h}_{2} \mathbf{P}(\mathbf{S e}) \mathbf{N P}(\mathbf{S e}) \mathbf{P h}_{2}-\boldsymbol{S e}, \boldsymbol{S e} e^{\prime}\right\}\right]$ 1. To a solution of $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)\right\}_{2}\right](0.036 \mathrm{~g}, 0.0652 \mathrm{mmol})$ in thf $\left(5 \mathrm{~cm}^{3}\right)$ was added $\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}\right](0.078 \mathrm{~g}, 0.134 \mathrm{mmol})$ as a solid in one portion. After stirring for $c a .30 \mathrm{~min}$ the solution was evaporated to dryness under reduced pressure. The residue was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ and the solution filtered through a small Celite pad. The volume was reduced to $c a .1$ cm^{3} and addition of light petroleum (b.p. $60-80^{\circ} \mathrm{C}, 25 \mathrm{~cm}^{3}$) followed by slow evaporation of the solvent to about half its original volume gave complex 1. The solid was collected by suction filtration and dried in vacuo. Yield: $0.097 \mathrm{~g}, 95 \%$.

In a similar manner the following complexes were prepared (yields given in Table 2): $\left[\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-\mathrm{S}_{2} \mathrm{~S}^{\prime}\right\}\right]$ 2, $\left[\mathrm{Pd}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}, S e^{\prime}\right\}\right]$ 3, $\left[\mathrm{Pd}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)-\right.$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-S, S^{\prime}\right\}\right] 4$, $\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NP}(\mathrm{Se})-\right.\right.$ $\left.\left.\mathrm{Ph}_{2}-\mathrm{Se}, S e^{\prime}\right\}\right]$ 5, $\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-S, S^{\prime}\right\}\right]$ 6, $\left[\mathrm{RuCl}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}, S e^{\prime}\right\}\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{2}\right)\right] \quad 7,[\mathrm{Ru}-$ $\left.\mathrm{Cl}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-S, S^{\prime}\right\}\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)\right] \quad$ 8, $\quad\left[\mathrm{RhCl}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}, \mathrm{Se}^{\prime}\right\}\right] 9$ and $\left[\mathrm{RhCl}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right.$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-S_{S} S^{\prime}\right\}\right]$ 10. Alternatively attempts to prepare the cationic compounds $\left[\mathrm{RuCl}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}-S, S^{\prime}\right\}\left(\eta^{6}-\right.\right.$ $\left.\left.p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr} \mathrm{I}^{\mathrm{i}}\right)\right] \mathrm{Cl}$ and $\left[\mathrm{RhCl}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}-\right.\right.$ $\left.\left.S, S^{\prime}\right\}\right] \mathrm{Cl}$ from $\left[\left\{\mathrm{RuCl}(\mu-\mathrm{Cl})\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)\right\}_{2}\right]$ or $[\{\mathrm{RhCl}(\mu-$ $\left.\mathrm{Cl})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}$] and 2 equivalents of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}$ gave compounds 8 and 10 exclusively.

Slow diffusion of light petroleum $\left(60-80^{\circ} \mathrm{C}\right)$ into a CDCl_{3} solution of compound $\mathbf{1}$ over $c a .14 \mathrm{~d}$ gave crystals suitable for X-ray crystallography. A $\mathrm{CDCl}_{3}-\mathrm{MeOH}$ solution of 6 was allowed to stand for $c a .1 \mathrm{~d}$ affording crystals suitable for X-ray crystallography.
$\left[\mathbf{P d}\left(\boldsymbol{\eta}^{3}-\mathbf{C}_{3} \mathbf{H}_{5}\right)\left\{\mathbf{P h}_{2} \mathbf{P}(\mathbf{S e}) \mathbf{N P}(\mathbf{S e}) \mathbf{P h}_{2}-\boldsymbol{S e}, S \boldsymbol{S e}^{\prime}\right\}\right]$ 11. To a solution of $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right\}_{2}\right](0.031 \mathrm{~g}, 0.0847 \mathrm{mmol})$ in thf $\left(5 \mathrm{~cm}^{3}\right)$ was added $\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}\right](0.100 \mathrm{~g}, 0.172 \mathrm{mmol})$ as a solid in one portion. After stirring for $c a .30 \mathrm{~min}$ the solution was evaporated to dryness under reduced pressure. The residue was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ and the solution filtered through a small Celite pad. Reduction of the volume to $c a .1$ cm^{3} followed by addition of light petroleum (b.p. $60-80^{\circ} \mathrm{C}, 15$ cm^{3}) gave compound 11. The product was collected by suction filtration. Yield: $0.099 \mathrm{~g}, 85 \%$.
In a similar manner $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-\mathrm{S}^{\prime} S^{\prime}\right\}\right]$ 12 and the binuclear compounds $\left[\left\{\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})\right.\right.\right.$ $\left.\left.\mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}^{2}\right\}_{2}\right] \quad 13$ and $\left[\left\{\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-\right.\right.\right.$ $S]\}_{2}$] $\mathbf{1 4}$ were synthesized (yields given in Table 2). Slow diffusion of MeOH into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of compound $\mathbf{1 2}$ over $c a$. 10 d gave crystals suitable for X-ray crystallography. $\mathrm{A} \mathrm{CDCl}_{3}-$ light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) solution of compound $\mathbf{1 3}$ was allowed to stand for $c a .3 \mathrm{~d}$ affording crystals suitable for X-ray crystallography.
$\mathbf{P h}_{2} \mathbf{P}(\mathbf{S}) \mathbf{N H P}(\mathbf{S e}) \mathbf{P h}_{2} \mathbf{V}$. A mixture of $\mathrm{Ph}_{2} \mathbf{P}(\mathbf{S}) \mathrm{NHPPh}_{2}(1.151$ $\mathrm{g}, 2.757 \mathrm{mmol})$ and grey $\mathrm{Se}(0.305 \mathrm{~g}, 3.863 \mathrm{mmol})$ in thf $\left(50 \mathrm{~cm}^{3}\right)$ was stirred under a nitrogen atmosphere for $c a .3 \mathrm{~h}$. Unchanged Se was removed by filtration through a Celite pad and the volume concentrated in vacuo to $c a .5-10 \mathrm{~cm}^{3}$. Addition of light petroleum (b.p. $60-80^{\circ} \mathrm{C}, 30 \mathrm{~cm}^{3}$) afforded a white solid which was collected by suction filtration. Yield: 1.100 g , 80%.
$\mathbf{K}\left[\mathbf{P h}_{2} \mathbf{P}(\mathbf{S}) \mathbf{N P}(\mathbf{S e}) \mathbf{P h}_{2}\right] \mathbf{X}$. Under aerobic conditions, to a suspension of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NHP}(\mathrm{Se}) \mathrm{Ph}_{2}(0.495 \mathrm{~g}, 0.997 \mathrm{mmol})$ in $\mathrm{MeOH}\left(25 \mathrm{~cm}^{3}\right)$ was added $\mathrm{KOBu}^{\mathrm{t}}(0.117 \mathrm{~g}, 1.043 \mathrm{mmol})$ as a solid in one portion. The solution was stirred for ca. 45 min and the solvent removed to dryness in vacuo. Yield: 0.517 g , 97%.
$\left[\mathbf{P d}\left(\mathbf{C}_{9} \mathbf{H}_{12} \mathbf{N}\right)\left\{\mathbf{P h}_{2} \mathbf{P}(\mathbf{S}) \mathbf{N P}(\mathbf{S e}) \mathbf{P h}_{2}-\mathbf{S}, \boldsymbol{S e} \boldsymbol{\}}\right\}\right]$ 15. To a solution of $\left[\left\{\operatorname{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)\right\}_{2}\right](0.049 \mathrm{~g}, 0.089 \mathrm{mmol})$ in thf $\left(5 \mathrm{~cm}^{3}\right)$ was added $\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}\right](0.096 \mathrm{~g}, 0.180 \mathrm{mmol})$ as a solid in one portion. After stirring for $c a .1 \mathrm{~h}$ the yellow solution was evaporated to dryness under reduced pressure. The solid was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$, filtered through a small Celite pad and the volume concentrated to $c a .1-2 \mathrm{~cm}^{3}$. Addition of light petroleum (b.p. $60-80^{\circ} \mathrm{C}, 20 \mathrm{~cm}^{3}$) afforded the product $\mathbf{1 5}$ [as a mixture of two isomers $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$ established by ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (see Table 3 for data)] which was collected by suction filtration and dried in vacuo. Yield: $0.127 \mathrm{~g}, 97 \%$.

In a similar manner the following compounds were prepared (yields given in Table 2): $\left[\mathrm{Pd}\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}\left(\mathrm{Se}^{2}\right) \mathrm{Ph}_{2}-\right.\right.$ $S, S e\}] 16$ (mixture of two isomers $16 a$ and $\mathbf{1 6 b}),\left[\operatorname{Pd}\left(\eta^{3}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{S}, \mathrm{Se}\right\}\right] \quad 17, \quad\left[\mathrm{RuCl}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{Se})-\right.\right.$ $\left.\left.\mathrm{Ph}_{2}-\mathrm{S}, \mathrm{Se}\right\}\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)\right] \mathbf{1 8}$ and $\left[\mathrm{RhCl}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left\{\mathrm{Ph}_{2}-\right.\right.$ $\left.\mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{S}, \mathrm{Se}\right\}$] 19.

X-Ray crystallography

The crystal structures of compounds 1, 6, $\mathbf{1 2}$ and $\mathbf{1 3}$ were obtained using either a Rigaku AFC7S serial diffractometer with graphite-monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.54178$ \AA) and ω scans or a Siemens SMART diffractometer with graphite-monochromated Mo-K α radiation ($\lambda=0.71037 \AA$). Details of the crystal data collections and refinements are given in Table 4. For the SMART data, intensities were collected using 0.3 or 0.15° width ω steps accumulating area detector frames spanning a hemisphere of reciprocal space for all structures (data were integrated using the SAINT ${ }^{48}$ program) and for the Rigaku AFC7S data collections by ω scans over a single quadrant of reciprocal space. All data were corrected for Lorentz-polarisation and long-term intensity fluctuations. Absorption effects were corrected on the basis of multiple equivalent reflections (for $\mathbf{6}$ and 12) or by DIFABS ${ }^{49}$ (for $\mathbf{1}$ and 13).

Structures were solved by direct methods and refined by full-matrix least squares against $F\left(\mathrm{TEXSAN}^{50}\right)$ for data with $I>2 \sigma(I)$ or F^{2} (SHELXTL ${ }^{47}$) for all data. A standard SHELXTL weighting scheme was used for compounds 6 and $\mathbf{1 2}$ whilst in the case of $\mathbf{1}$ and $\mathbf{1 3}$ the weighting scheme for the Rigaku/TEXSAN was as previously reported. ${ }^{18}$ The CHCl_{3} solvent molecule in $\mathbf{1 3}$ was disordered in two orientations of 60 and 40% for the three chlorine atoms. The $\mathrm{C}-\mathrm{H}$ proton was idealised with respect to the major occupancy. Hydrogen atoms were placed in calculated positions ignoring any influence of the metal atoms. All other hydrogen atoms were assigned isotropic displacement parameters and constrained to idealised geometries. Refinements converged to residuals given in Table 4. In both $\mathbf{1 2}$ and $\mathbf{1 3}$ refinement of the allyl group was ill behaved. All calculations were made with programs of SHELXTL or TEXSAN systems.

CCDC reference number 186/1034.

Results and Discussion

The neutral phosphorus(v) compounds I-IV are readily accessible in either one (or two) simple steps starting from commercially available or readily synthesized $\mathrm{Ph}_{2} \mathrm{PNHPPh}_{2} .{ }^{18,25,43}$ Mixed phosphorus-(III)/-(v) compounds bearing a single oxidised phosphorus centre, $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NHPPh}_{2}$, have previously been isolated and moreover, in the case where $\mathrm{E}=\mathrm{O}$, a rich and diverse co-ordination chemistry of this ligand has been reported. ${ }^{40-42,51}$ We have now prepared a new asymmetrical ligand, $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NHP}(\mathrm{Se}) \mathrm{Ph}_{2}$, closely related to its methylene counterpart $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{CH}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{Ph}_{2}$ previously described by Grim and Walton. ${ }^{52}$ Reaction of $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NHPPh}_{2}{ }^{53}$ with grey selenium in thf gave, after separation of unchanged excess of Se and subsequent work-up, $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NHP}(\mathrm{Se}) \mathrm{Ph}_{2} \mathrm{~V}$ in 80% yield. The spectroscopic and analytical data for \mathbf{V} are given in Tables 2 and 3 . The ${ }^{31} \mathrm{P}$ resonances were confidently assigned by comparison of the spectral data with those of I and II $\left\{\delta(\mathrm{P}) 55.8\right.$ I; $52.7\left[{ }^{1} J(\mathrm{PSe}) 793 \mathrm{~Hz}\right] \mathbf{I I} ; 57.1,52.7$ [${ }^{1} J(\mathrm{PSe}) 783$ $\mathrm{Hz}] \mathbf{V}\}$ and in the ${ }^{1} \mathrm{H}$ NMR spectrum the NH proton was found at $\delta(\mathrm{H})$ 4.49. Deprotonation of the acidic NH proton under similar conditions ${ }^{18,25}$ to those described for VI-IX gave $\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}\right] \mathbf{X}$ in addition to small amounts of VI. The spectroscopic and analytical data for \mathbf{X} are given in Tables 2 and 3. The ${ }^{31} \mathrm{P}$ resonances match well with data reported for VI-IX $\left\{\delta(\mathrm{P}) 37.7 \mathrm{VI} ; 28.5\left[{ }^{1} J(\mathrm{PSe}) 687 \mathrm{~Hz}\right]\right.$ VII; 35.3, 13.9, ${ }^{2} J\left(\mathrm{P}_{\mathrm{S}} \mathrm{P}_{\mathrm{O}}\right) 3.3 \mathrm{~Hz}$ VIII; $23.6\left[{ }^{1} J(\mathrm{PSe}) 664 \mathrm{~Hz}\right]$, 12.9, ${ }^{2} J\left(\mathrm{P}_{\mathrm{Se}} \mathrm{P}_{\mathrm{O}}\right) 2.2 \mathrm{~Hz}$ IX; 37.6, 26.7 [$\left.{ }^{1} J(\mathrm{PSe}) 682 \mathrm{~Hz}\right],{ }^{2} J\left(\mathrm{P}_{\mathrm{S}} \mathrm{P}_{\mathrm{Se}}\right) 6.8$ $\mathrm{HzX}\} .{ }^{18,25}$

Chelate and bridging complexes of $\left[\mathrm{Ph}_{2} \mathbf{P}(\mathbf{E}) \mathbf{N P}\left(\mathbf{E}^{\prime}\right) \mathrm{Ph}_{2}\right]^{-}$

Transmetallation of the potassium salts VI and VII with the organometallic metal-(II) or -(III) precursors $\left[\{\mathrm{Pd}(\mu-\mathrm{Cl})(\mathrm{L}-\mathrm{L})\}_{2}\right]$ $\left(\mathrm{L}-\mathrm{L}=\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N} \quad\right.$ or $\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right), \quad\left[\left\{\mathrm{Pt}(\mu-\mathrm{OMe})\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\right\}_{2}\right]$, $\left[\left\{\mathrm{RuCl}(\mu-\mathrm{Cl})\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)\right\}_{2}\right] \quad$ or $\quad\left[\left\{\mathrm{RhCl}(\mu-\mathrm{Cl})\left(\eta^{5}-\mathrm{C}_{5}-\right.\right.\right.$ $\left.\left.\left.\mathrm{Me}_{5}\right)\right\}_{2}\right]$ in either tetrahydrofuran or methanol gave the following series of mononuclear complexes: $\left[\mathrm{Pd}(\mathrm{L}-\mathrm{L})\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E})-\right.\right.$ $\left.\left.\mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}-E, E^{\prime}\right\}\right]\left[\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}, \mathrm{E}=\mathrm{Se} 1\right.$ or $\mathrm{S} 2 ; \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}, \mathrm{E}=\mathrm{Se} 3$ or S 4$],\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}-E, E^{\prime}\right\}\right](\mathrm{E}=\mathrm{Se} 5$ or S 6), $\left[\mathrm{RuCl}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}-E, E^{\prime}\right\}\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{I}}\right)\right](\mathrm{E}=\mathrm{Se}$ 7 or S 8) and $\left[\mathrm{RhCl}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}-E, E^{\prime}\right\}\right]$ ($\mathrm{E}=\mathrm{Se} 9$ or S 10) (Scheme 1). Reactions were complete within ca. 30 min and all complexes were isolated from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$). The compounds $\mathbf{1} \mathbf{- 1 0}$ were air stable both in the solid state and in solution. Complex $\mathbf{6}$ containing the anionic nitrogen backbone ligand $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right]^{-}$is akin to the known neutral complex $\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\left\{\mathrm{Ph}_{2}-\right.\right.$ $\left.\left.\mathrm{P}(\mathrm{S}) \mathrm{CHP}(\mathrm{S}) \mathrm{Ph}_{2}-S, S^{\prime}\right\}\right]$ a prepared from $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{CH}_{2} \mathrm{P}(\mathrm{S}) \mathrm{Ph}_{2}$ and $\left[\left\{\mathrm{Pt}(\mu-\mathrm{Cl})\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\right\}_{2}\right]$ in acetone with $\mathrm{Na}\left[\mathrm{BF}_{4}\right]^{53}$ Recently Valderrama et al. ${ }^{55}$ reported some interesting methylene deprotonation reactions in complexes of the type [MCl-$\left(\eta^{2}-\mathrm{L}\right)($ ring $\left.)\right]^{+}\left[\right.$ring $=\mathrm{C}_{5} \mathrm{Me}_{5}, \mathrm{C}_{6} \mathrm{Me}_{6}$ or $\mathrm{C}_{10} \mathrm{H}_{14} ; \mathrm{M}=\mathrm{Ru}^{\mathrm{II}}, \mathrm{Rh}^{\text {III }}$ or $\mathrm{Ir}^{\text {III, }} ; \mathrm{L}=\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{CH}(\mathrm{R}) \mathrm{P}(\mathrm{E}) \mathrm{Ph}_{2}(\mathrm{R}=\mathrm{H}$ or $\mathrm{Me} ; \mathrm{E}=\mathrm{S}$ or Se$\left.)\right]$ giving novel complexes \mathbf{B} containing an anionic C, E, E^{\prime} tridentate ligand. In attempts to synthesize the cations [$\mathrm{RuCl}-$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}-S, S^{\prime}\right\}\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)\right] \mathrm{Cl}$ and $\left[\mathrm{RhCl}\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NHP}(\mathrm{S}) \mathrm{Ph}_{2}-S, S^{\prime}\right\}\right] \mathrm{Cl}$ from $\left[\left\{\mathrm{RuCl}(\mu-\mathrm{Cl})\left(\eta^{6}-p-\right.\right.\right.$ $\left.\left.\left.\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)\right\}_{2}\right]$ or $\left[\left\{\mathrm{RhCl}(\mu-\mathrm{Cl})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}\right]$ and 2 equivalents of \mathbf{I} we were able only to isolate the deprotonated compounds $\mathbf{8}$ and $\mathbf{1 0}$ respectively in moderate to good yields. The reaction of $\left[\left\{\operatorname{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)\right\}_{2}\right]$ with I in CDCl_{3} gave a single com-

Table 2 Microanalytical data (calculated values are given in parentheses) and yields for compounds \mathbf{V}, X and $1-19$

		Analysis (\%)		
Compound	Yield $(\%)$	C	H	N
\mathbf{V}	80	$58.15(58.05)$	$4.25(4.25)$	$2.85(2.80)$
\mathbf{X}	97	$53.35(53.90)$	$3.55(3.80)$	$2.75(2.60)$
$\mathbf{1}$	95	$49.95(50.60)$	$3.95(4.15)$	$3.70(3.60)$
$\mathbf{2}$	90	$56.95(57.50)$	$4.50(4.70)$	$3.75(4.05)$
$\mathbf{3}$	97	$51.45(52.80)$	$3.70(3.95)$	$2.95(3.40)$
$\mathbf{4}$	90	$59.30(59.60)$	$3.85(4.45)$	$3.10(3.85)$
$\mathbf{5}$	92	$44.85(45.20)$	$3.95(4.05)$	$1.60(1.60)$
$\mathbf{6}$	95	$50.45(50.65)$	$4.40(4.50)$	$1.80(1.80)$
$\mathbf{7}$	89	$49.90(50.20)$	$3.90(4.20)$	$1.10(1.70)$
$\mathbf{8}$	64	$56.45(56.75)$	$4.55(4.75)$	$1.15(1.95)$
$\mathbf{9}$	80	$49.90(50.05)$	$4.10(4.35)$	$1.00(1.70)$
$\mathbf{1 0}$	77	$56.00(56.55)$	$4.70(4.90)$	$2.05(1.95)$
$\mathbf{1 1}$	85	$46.80(47.10)$	$3.55(3.50)$	$2.20(2.05)$
$\mathbf{1 2}$	94	$53.75(54.50)$	$4.05(4.05)$	$2.20(2.35)$
$\mathbf{1 3}$	78	$51.10(51.80)$	$3.80(3.85)$	$2.60(2.25)$
$\mathbf{1 4}$	85	$55.65(56.00)$	$4.05(4.20)$	$1.95(2.40)$
$\mathbf{1 5}$	97	$53.80(53.85)$	$4.45(4.40)$	$3.60(3.80)$
$\mathbf{1 6}$	93	$55.70(56.00)$	$4.00(4.20)$	$3.90(3.65)$
$\mathbf{1 7}$	84	$49.95(50.45)$	$3.80(3.95)$	$2.05(2.20)$
$\mathbf{1 8}$	91	$50.30(53.30)$	$4.15(4.50)$	$1.40(1.85)$
$\mathbf{1 9}$	79	$52.55(53.10)$	$4.30(4.60)$	$1.70(1.80)$

Scheme 1 Reactions carried out in thf: $(i)\left[\{\mathrm{Pd}(\mu-\mathrm{Cl})(\mathrm{L}-\mathrm{L})\}_{2}\right](\mathrm{L}-\mathrm{L}=$ $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}$ or $\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)$, (ii) $\left[\left\{\mathrm{Pt}(\mu-\mathrm{OMe})\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\right\}_{2}\right]$, (iii) $[\{\mathrm{RuCl}-$ $\left.\left.(\mu-\mathrm{Cl})\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)\right\}_{2}\right],(i v)\left[\left\{\mathrm{RhCl}(\mu-\mathrm{Cl})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right\}_{2}\right]$

A

B
pound, identified by ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR as the homoleptic bis species $\left[\mathrm{Pd}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-S, S^{\prime}\right\}_{2}\right] .{ }^{23}$

The spectroscopic and analytical data for the organometallic complexes 1-10 are in good accord with the proposed structures (see Tables 2 and 3 for characterising data). Upon chelation to $\mathrm{Ru}^{\text {II }}, \mathrm{Rh}^{\text {III }}, \mathrm{Pd}^{\mathrm{II}}$ or $\mathrm{Pt}^{\mathrm{II}}$ there is a small ($c a . \pm 4 \mathrm{ppm}$) change in $\delta(\mathrm{P})$ for the ligated $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right]^{-}(\mathrm{E}=\mathrm{S}$ or Se) ligand and reduction in ${ }^{1} J(\mathrm{PSe})$ of $c a .100-150 \mathrm{~Hz}$ in comparison with $\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right]$. The $\delta(\mathrm{P})$ for compounds $\mathbf{8}$ and $\mathbf{1 0}$ obtained via the two independent routes described above were identical.

Reaction of the potassium salts VI-IX with $[\{\mathrm{Pd}(\mu-\mathrm{Cl})-$ $\left.\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right\}_{2}$] (1:1 ratio) in thf gave new compounds with the apparent stoichiometry $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}\left(\mathrm{E}^{\prime}\right) \mathrm{Ph}_{2}\right\}\right]$ $\left[\mathrm{E}=\mathrm{E}^{\prime}=\operatorname{Se} 11\right.$ or $\mathrm{S} 12 ; \mathrm{E}=\mathrm{O}, \mathrm{E}^{\prime}=\operatorname{Se} 13$ or S 14$]$ (Scheme 2).

Table 3 Selected NMR $(\delta, J / H z)$ and IR data $\left(\mathrm{cm}^{-1}\right)$ for compounds \mathbf{V}, \mathbf{X} and 1-19

n.r. $=$ Not resolved. ${ }^{a}{ }^{1} \mathrm{H}$ NMR: $\delta 7.98-7.82,7.46-7.30($ aromatic H$) ; 4.49(\mathrm{NH}) . v\left(\mathrm{P}_{2} \mathrm{NH}\right) 922 \mathrm{~cm}^{-1} .{ }^{b 1} \mathrm{H}$ NMR: $\delta 8.00-7.91,7.24-7.22$ (aromatic H$)$ [recorded in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$]. ${ }^{c}{ }^{1} \mathrm{H}$ NMR: $\delta 8.03-7.95,7.48-6.94$ (aromatic H$) ; 3.85\left(\mathrm{CH}_{2}\right) ; 2.56\left(\mathrm{NMe}_{2}\right) .{ }^{d}$ No attempts to assign $\delta(\mathrm{P})$ were made. ${ }^{e 1} \mathrm{H}$ NMR: $\delta 8.00-7.95,7.53-6.93$ (aromatic H); $3.83\left(\mathrm{CH}_{2}\right) ; 2.54\left(\mathrm{NMe}_{2}\right) .{ }^{f 1} \mathrm{H}$ NMR: $\delta 8.06-7.20$ (aromatic H$) ; 3.15\left(\mathrm{NMe}_{2}\right) .{ }^{g}{ }^{1} \mathrm{H}$ NMR: $\delta 8.05-7.24$ (aromatic H); $3.13\left(\mathrm{NMe}_{2}\right) .{ }^{h}$ Value in parentheses denotes ${ }^{2} J(\operatorname{PtP})$; Se trans to olefinic double bond. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.98-7.88,7.45-7.37$ (aromatic H) and the expected $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}$ resonances. ${ }^{i}$ Value in parentheses denotes ${ }^{2} J(\mathrm{PtP})$; S trans to olefinic double bond. ${ }^{1} \mathrm{H}$ NMR: $\delta 7.99-7.88,7.45-7.37$ (aromatic H) and the expected $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}$ resonances. ${ }^{j 1} \mathrm{H}$ NMR: $\delta 8.28-8.19,7.60-7.01$ (aromatic H) and the expected $\mathrm{C}_{10} \mathrm{H}_{14}$ resonances. ${ }^{k 1} \mathrm{H}$ NMR: $\delta 8.26-8.18,7.61-7.02$ (aromatic H) and the expected $\mathrm{C}_{10} \mathrm{H}_{14}$ resonances. ${ }^{11} \mathrm{H}$ NMR: $\delta 8.14-6.80$ (aromatic H); $1.34\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) .{ }^{11} \mathrm{H}$ NMR: δ 8.25-6.91 (aromatic H); $1.39\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) .{ }^{n 1} \mathrm{H}$ NMR: $\delta 7.99-7.95,7.40-7.38$ (aromatic H) and η^{3}-allyl resonances. ${ }^{o 1} \mathrm{H}$ NMR: $\delta 8.03-7.87,7.40-7.24$ (aromatic H) and η^{3}-allyl resonances. ${ }^{p 1} \mathrm{H}$ NMR: $\delta 7.95-7.77,7.37-7.31$ (aromatic H) and η^{3}-allyl resonances. ${ }^{q 1} \mathrm{H}$ NMR: $\delta 7.95-7.77,7.36-7.29$ (aromatic H) and η^{3}-allyl resonances. ${ }^{r 1} \mathrm{H}$ NMR: $\delta 7.95-7.84,7.36-6.65$ (aromatic H); 3.76, $3.74\left(\mathrm{CH}_{2}\right)$ and $2.51,2.41\left(\mathrm{NMe}_{2}\right.$, values given first correspond to the minor isomer). ${ }^{s}$ Major isomer observed. ${ }^{t}{ }^{1} \mathrm{H}$ NMR: $\delta 8.05-7.19$ (aromatic H); 3.16, $3.09\left(\mathrm{NMe}_{2}\right.$, value given first corresponds to the minor isomer). ${ }^{u}{ }^{1} \mathrm{H}$ NMR: $\delta 8.03-7.89,7.39-7.37$ (aromatic H) and η^{3}-allyl resonances. ${ }^{v}{ }^{1} \mathrm{H}$ NMR: $\delta 8.27-8.18,7.63-6.05$ (aromatic H) and $\mathrm{C}_{10} \mathrm{H}_{14}$ resonances. ${ }^{w 1} \mathrm{H}$ NMR: $\delta 8.12-7.01$ (aromatic H); $1.41\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)$.

Scheme 2 (i) $\left[\left\{\operatorname{Pd}(\mu-\mathrm{Cl})\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right\}_{2}\right]$, thf
The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1 1}$ and $\mathbf{1 2}$ each reveal a single resonance at $\delta(\mathrm{P}) 26.2$ [$\left.{ }^{1} J(\mathrm{PSe}) 550 \mathrm{~Hz}\right]$ and 37.9 respectively. For 13 and 14 the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra each show two doublets consistent with two inequivalent phosphorus nuclei P_{E} and P_{o}. Conformation of an η^{3}-allyl group in 11-14 was obtained by ${ }^{1} \mathrm{H}$ NMR spectroscopy and furthermore, in the case of $\mathbf{1 2}$ and 13 , by X-ray crystallography (see below). In compounds 11 and 12 the ligand $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(E) \mathrm{Ph}_{2}\right]^{-}$behaves as a typical E, E^{\prime}-chelate whereas in 13 and 14 the ligand $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})\right.$ $\left.\mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right]^{-}$bridges two palladium(II) metal centres yielding a binuclear complex with a four-membered $\mathrm{Pd}_{2} \mathrm{E}_{2}$ core. We recently described the unexpected formation of a tenmembered palladacycle $\left[\left\{\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NPPh}_{2}-O, P\right]\right\}_{2}\right]$
containing a head to tail bridging arrangement of two anionic asymmetrical $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NPPh}_{2}\right]^{-}$ligands. ${ }^{41}$

Preliminary co-ordination studies with $\left[\mathbf{P h}_{2} \mathbf{P}(\mathbf{S}) \mathbf{N P}(\mathbf{S e}) \mathbf{P h}_{2}\right]^{-}$

Whilst the symmetrical ligands $\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{R}_{2}\right]^{-}$containing two identical 'soft' donor atoms have received widespread attention, the asymmetrical ligands $\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{E}) \mathrm{R}_{2}\right]^{-}$bearing a 'soft' and 'hard' donor centre have only attracted interest in the last few years. ${ }^{14,18,32}$ Furthermore we are unaware of any reports of co-ordination complexes with the mixed ligand $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}\right]^{-} \mathbf{X}$ bearing two dissimilar 'soft' donor atoms. Reaction of \mathbf{X} with the cyclopalladated compounds $\left[\{\mathrm{Pd}(\mu-\mathrm{Cl})(\mathrm{L}-\mathrm{L})\}_{2}\right]\left(\mathrm{L}-\mathrm{L}=\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right.$ or $\left.\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}\right)$ gave $[\mathrm{Pd}(\mathrm{L}-\mathrm{L})-$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-S, S e\right\}\right]$ as a mixture of two isomers in an approximate ratio of 4.6:1 (for 15) and 4.9:1 (for 16) (from integration of the ${ }^{31} \mathrm{P}$ signals). The distribution of isomers was unaltered even after allowing CDCl_{3} solutions to stand for periods up to 15 d . In contrast reactions performed under similar conditions with $\mathrm{K}\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right](\mathrm{E}=\mathrm{S}$ or Se$)$ gave $\left[\mathrm{Pd}(\mathrm{L}-\mathrm{L})\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}-O, E\right\}\right]$ as one isomer $(\mathrm{O}$ trans to C) only. ${ }^{56}$ The complexes $\left[\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\right.\right.$ $S, S e\}]$ 17, $\left[\mathrm{RuCl}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-S, S e\right\}\left(\eta^{6}-p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Pr}^{\mathrm{i}}\right)\right]$

Table 4 Details of the X-ray data collections and refinements for compounds 1, 6, 12 and 13

	1	6	12	13
Empirical formula	$\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{PdSe}_{2}$	$\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{NOP}_{2} \mathrm{PtS}_{2}$	$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NP}_{2} \mathrm{PdS}_{2}$	$\mathrm{C}_{56} \mathrm{H}_{52} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{Se}_{2}$
M	782.90	782.77	595.94	1492.37
Crystal system	Triclinic ${ }^{\text {a }}$	Triclinic	Triclinic	Monoclinic
Space group	$P \overline{1}$	$P \overline{1}$	$P \overline{1}$	I2/a
alÅ	11.808(1)	10.647(1)	11.005(1)	19.927(4)
b/Å	12.077(1)	12.491(1)	15.583(1)	10.861(3)
clA	11.717(2)	12.647(1)	17.478(1)	28.788(2)
$\alpha /{ }^{\circ}$	94.23(1)	98.36(1)	114.31(1)	
$\beta /{ }^{\circ}$	106.36(1)	95.61(1)	93.77(1)	92.99(1)
$\gamma /{ }^{\circ}$	86.44(1)	102.93(1)	98.57(1)	
U / \AA^{3}	1597(3)	1607(7)	2674(9)	6222(2)
T/K	293	293	293	293
Z	2	2	4	4
μ / mm^{-1}	8.64	4.62	0.99	9.66
Measured reflections	5014	7004	11590	5079
Independent reflections ($R_{\text {int }}$)	4748 (0.112)	$4600(0.268)^{\text {b }}$	7538 (0.017)	4918 (0.361) ${ }^{\text {b }}$
Observed reflections [$I>2.0 \sigma(I)$]	4125	3194	5789	2706
Final $R, R^{\prime \prime}$	0.047, 0.057	0.059, 0.138	0.030, 0.090	0.071, 0.062

${ }^{a}$ Standard setting $11.717,11.808,12.077 \AA ; 86.43,85.77,73.64{ }^{\circ} .{ }^{b}$ Poor crystal quality/disorder. ${ }^{c}$ Weighting scheme as described in refs. 18 (for compounds 1 and 13) and 47 (for $\mathbf{6}$ and 12); R values are for observed data.

18 and $\left[\mathrm{RhCl}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}\left(\mathrm{Se}^{2}\right) \mathrm{Ph}_{2}-S, S e\right\}\right] 19$ were synthesized under similar conditions to those described above for $\mathbf{7 - 1 4}$. Despite several attempts we were unable to obtain analytically pure samples of $\mathbf{1 8}$ and $\mathbf{1 9}$ although spectroscopic evidence was in good agreement with the proposed formulations. In particular the ${ }^{31} \mathrm{P}$ chemical shifts for P_{S} and P_{Se} in compounds 15-19 were similar to those for 1-10.

Crystal structures of compounds $\mathbf{1 , 6 , 1 2}$ and 13

The crystal structure of compound 1 (Fig. 1 and Table 5) reveals an approximately square planar co-ordination of the $\mathrm{Pd}^{\mathrm{II}}$ with two bidentate anionic ligands. The ligands are arranged in a slightly distorted square planar geometry [$\mathrm{Se}(1)-$ $\mathrm{Pd}-\mathrm{Se}(2)$ 101.27(3), $\mathrm{Se}(1)-\mathrm{Pd}-\mathrm{C}(27) 86.9(2), \mathrm{Se}(2)-\mathrm{Pd}-\mathrm{N}(2)$ $\left.91.1(2)^{\circ}\right]$. The $\mathrm{Pd}-\mathrm{Se}$ bond lengths reflect the nature of the trans ligand $[2.4069(9)$ for $\operatorname{Se}(1)$ trans to $\mathrm{N}(2)$ and $2.560(1) \AA$ for $\mathrm{Se}(2)$ trans to $\mathrm{C}(27)]$. Upon complexation the $\mathrm{PdSe}_{2} \mathrm{P}_{2} \mathrm{~N}$ ring adopts a pseudo-boat conformation with $\mathrm{P}(1)$ and $\mathrm{Se}(2)$ at the stern and prow of the boat. The two planar fragments $\mathrm{Pd}-\mathrm{Se}(1)-$ $\mathrm{P}(1)-\mathrm{Se}(2)$ [maximum deviation from this mean plane is $0.11 \AA$ for $\mathrm{P}(1)$] and $\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{Se}(2)$ [maximum deviation from this mean plane is $0.35 \AA$ for $\mathrm{N}(1)$] are inclined by 58° to each other. Within the six-membered ring there is evidence for π delocalisation as reflected in the P-Se bond lengths [2.184(2) for $\mathrm{Se}(1), 2.155(2) \AA$ for $\mathrm{Se}(2)]$ which are comparable to those distances reported for $\left[\mathrm{Pd}\left\{\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Se}) \mathrm{Ph}_{2}-P, S e\right\}\left\{\mathrm{Ph}_{2}-\right.\right.$ $\left.\left.\mathrm{P}(\mathrm{Se}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}, \mathrm{Se} e^{\prime}\right\}\right] \cdot 0.5 \mathrm{EtOH} \cdot 0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad[2.172(4)$ and $2.174(5) \AA$ for the $S e, S e e^{\prime}$-chelate ring], $\left[\mathrm{Pd}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se})-\right.\right.$ $\left.\left.\mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}, \mathrm{Se}^{\prime}\right\}_{2}\right] \cdot \mathrm{CHCl}_{3}$ [2.189(3) and 2.178(3) \AA] and $\left[\mathrm{Pd}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}, \mathrm{Se}^{\prime}\right\}_{2}\right] \quad[2.194(2)$ and 2.181(2) $\AA]^{5,23,25}$ but longer than those observed in II [2.085(1) and $2.101(1) \AA ̊]{ }^{23}$ The $\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$ angle in $1\left[124.9(4)^{\circ}\right]$ is

Fig. 1 Crystal structure of $\left[\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}, S e^{\prime}\right\}\right]$ 1 (hydrogen atoms omitted for clarity)
similar to that in $\left[\mathrm{Pd}\left\{\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{Se}) \mathrm{Ph}_{2}-P, S e\right\}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se}) \mathrm{NP}(\mathrm{Se})-\right.\right.$ $\left.\left.\mathrm{Ph}_{2}-\mathrm{Se}, \mathrm{Se} e^{\prime}\right\}\right] \cdot 0.5 \mathrm{EtOH} \cdot 0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad\left[123.2(6)^{\circ}\right], \quad\left[\mathrm{Pd}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se})-\right.\right.$ $\left.\left.\mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}, \mathrm{Se}^{\prime}\right\}_{2}\right] \cdot \mathrm{CHCl}_{3} \quad\left[122.9(5)^{\circ}\right]$ and $\left[\mathrm{Pd}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{Se})-\right.\right.$ $\left.\left.\mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}, S e^{\prime}\right\}_{2}\right]\left[127.0(3)^{\circ}\right]$ but somewhat contracted with respect to II [P-N-P 132.3(2) ${ }^{\circ}$]. Bond lengths and angles for the cyclometallated ring in $\mathbf{1}$ are similar to those reported for $\left[\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)\left\{\mathrm{Ph}_{2} \mathrm{PNP}(\mathrm{O}) \mathrm{Ph}_{2}-P, O\right\}\right]$ and $\left[\mathrm{Pd}\left(\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}\right)(\mathrm{L}-\mathrm{L})\right]$ [where $\mathrm{L}-\mathrm{L}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CO}_{2}-P, O, \mathrm{Ph}_{2} \mathrm{PCH}=\mathrm{C}(\mathrm{OEt}) \mathrm{O}-P, O$ or $\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{PCMe}_{2} \mathrm{CH}_{2} \mathrm{COMe}-P, O\right] .{ }^{40,57}$
The crystal structure of compound 6 (Fig. 2 and Table 5) shows that the complex is roughly square planar with $\mathrm{Pt}-\mathrm{S}$ distances of 2.442(2) [S trans to σ-bonded $\mathrm{C}(38)$] and 2.309(4) \AA, comparable to those observed in $\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\left\{\mathrm{Ph}_{2}-\right.\right.$ $\left.\left.\mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-O, S\right\}\right]\left[\mathrm{Pt}-\mathrm{S} 2.310(3) \AA \AA^{\AA}\right],\left[\mathrm{Pt}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-\right.\right.$ $\left.\left.S, S^{\prime}\right\}\left(\mathrm{PEt}_{3}\right)_{2}\right] \mathrm{PF}_{6} \quad[\mathrm{Pt}-\mathrm{S} \quad 2.393(3) \quad \AA]$ and $\left[\mathrm{PtCl}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S})-\right.\right.$ $\left.\left.\mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-\mathrm{S}, \mathrm{S}^{\prime}\right\}\left(\mathrm{PPh}_{3}\right)\right][\mathrm{Pt}-\mathrm{S} 2.301(2)$ (S trans to Cl) and $2.372(2) \AA]^{18,20,27}$ Furthermore the $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}\right]^{-}$ligand clearly adopts a chelating mode of bonding with the formation of a $\mathrm{PtS}_{2} \mathrm{P}_{2} \mathrm{~N}$ ring with a pseudo-boat conformation. The two planar fragments $\mathrm{Pt}-\mathrm{S}(1)-\mathrm{P}(2)-\mathrm{S}(2)$ [maximum deviation from this mean plane is $0.13 \AA$ for $\mathrm{S}(2)]$ and $\mathrm{S}(1)-\mathrm{P}(1)-$ $\mathrm{N}(1)-\mathrm{P}(2)$ [maximum deviation from this mean plane is $0.01 \AA$ for $\mathrm{N}(1)$] are inclined to each other by 56°. The $\mathrm{P}-\mathrm{N}$ bonds are shorter in $\mathbf{6}$ [1.598(11) and $1.585(11) \AA$] than in free I [1.671(2) and $1.684(2) \AA$] whilst the $\mathrm{P}-\mathrm{S}$ bonds are longer [2.026(5) and

Table 5 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for complexes $\mathbf{1}, \mathbf{6}$ and 12
$\mathrm{M}(1)-\mathrm{E}(1)$
$\mathrm{E}(1)-\mathrm{P}(1)$
$\mathrm{P}(1)-\mathrm{N}(1)$
$\mathrm{N}(1)-\mathrm{P}(2)$
$\mathrm{P}(2)-\mathrm{E}(2)$
$\mathrm{E}(2)-\mathrm{M}(1)$
$\mathrm{Pd}-\mathrm{N}(2)$
Pd-C(27)
$\mathrm{Pt}-\mathrm{C}(34)$
$\mathrm{Pt}-\mathrm{C}(35)$
$\mathrm{Pt}-\mathrm{C}(38)$
$\mathrm{Pd}(1)-\mathrm{C}(25)$
$\mathrm{Pd}(1)-\mathrm{C}(26)$
$\mathrm{Pd}(1)-\mathrm{C}(27)$
$\mathrm{M}(1)-\mathrm{E}(1)-\mathrm{P}(1)$
$\mathrm{E}(1)-\mathrm{P}(1)-\mathrm{N}(1)$
$\mathrm{P}(1)-\mathrm{P}(1)-\mathrm{N}(1)$
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{E}(2)$
$\mathrm{P}(2)-\mathrm{E}(2)-\mathrm{M}(1)$
$\mathrm{E}(2)-\mathrm{M}(1)-\mathrm{E}(1)$
$\mathrm{Se}(1)-\mathrm{Pd}-\mathrm{C}(27)$
$\mathrm{Se}(1)-\mathrm{Pd}-\mathrm{N}(2)$
$\mathrm{Se}(2)-\mathrm{Pd}-\mathrm{N}(2)$
$\mathrm{Se}(2)-\mathrm{Pd}-\mathrm{C}(27)$
$\mathrm{S}(1)-\mathrm{Pt}-\mathrm{C}(34)$
$\mathrm{S}(1)-\mathrm{Pt}-\mathrm{C}(35)$
$\mathrm{S}(1)-\mathrm{Pt}-\mathrm{C}(38)$
$\mathrm{S}(2)-\mathrm{Pt}-\mathrm{C}(38)$
$\mathrm{S}(2)-\mathrm{Pt}-\mathrm{C}(35)$
$\mathrm{S}(2)-\mathrm{Pt}-\mathrm{C}(34)$
$\mathrm{S}(1)-\mathrm{Pd}(1)-\mathrm{C}(25)$
$\mathrm{S}(1)-\mathrm{Pd}(1)-\mathrm{C}(26)$
$\mathrm{S}(1)-\mathrm{Pd}(1)-\mathrm{C}(27)$
$\mathrm{S}(2)-\mathrm{Pd}(1)-\mathrm{C}(25)$
$\mathrm{S}(2)-\mathrm{Pd}(1)-\mathrm{C}(26)$
$\mathrm{S}(2)-\mathrm{Pd}(1)-\mathrm{C}(27)$

6
$(\mathrm{M}=\mathrm{Pt}, \mathrm{E}=\mathrm{S})$
2.442(4)
2.026 (5)
1.598(11)
$1.585(11)$
2.025(6)
2.309(4)
2.16(2)
2.163(14)
2.05(2)
101.7(2)
115.6(4)
126.7(6)
117.4(5)
109.3(2)
99.66(14)
101.27(3)
86.9(2)
167.2(2)
91.1(2)
171.2(2)

1
2.4069(9)
2.184(2)
$1.598(5)$
1.589 (6)
$2.155(2)$
2.560(1)
2.120 (6)
2.013(8)

$109.33(6)$	$101.7(2)$
$118.5(2)$	$115.6(4)$
$124.9(4)$	$126.7(6)$
$116.9(2)$	$117.4(5)$
$99.84(6)$	$109.3(2)$
$101.27(3)$	$99.66(14)$

12
$(\mathrm{M}=\mathrm{Pd}, \mathrm{E}=\mathrm{S}) *$
$2.3769(9)$ [2.3654(9)]
2.0201(12) [2.0216(12)]
1.589(3) [1.595(3)]
$1.584(3)$ [1.595(3)]
2.0185(12) [2.0166(12)]
$2.3749(10)[2.3739(11)]$
2.134(4) [2.128(5)]
$2.078(5)[2.080(6)]$
$2.136(4)$ [2.132(5)]
103.66(4) [105.65(4)]
117.79(11) [117.78(11)]
129.7(2) [128.8(2)]
$118.76(12)$ [119.35(11)]
105.76(4) [106.17(4)]
107.83(3) [106.75(3)]

* Value in square brackets are the equivalent parameter in the second molecule.

Fig. 2 Crystal structure of $\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{OMe}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-S, S^{\prime}\right\}\right]$ 6 (hydrogen atoms omitted for clarity)
$2.025(6) \AA$ § than in the parent disulfide [1.950(1) and 1.936(1) Å] indicating some delocalisation within the metallacycle. ${ }^{58}$ The $\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$ angle in $\mathbf{6}\left[126.7(6)^{\circ}\right]$ is contracted with respect to the angle observed in $\mathbf{I}\left[132.62(11)^{\circ}\right]$.

The crystal structure of compound 12 (Fig. 3 and Table 5) reveals two independent molecules and established unequivocally that both are monomeric six-membered $\mathrm{PdS}_{2} \mathrm{P}_{2} \mathrm{~N}$ chelate ring complexes. The $\mathrm{PdS}_{2} \mathrm{P}_{2} \mathrm{~N}$ ring adopts a pseudo-boat con-

Fig. 3 Crystal structure of $\left[\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{S}) \mathrm{NP}(\mathrm{S}) \mathrm{Ph}_{2}-S, S^{\prime}\right\}\right] 12$ showing one of the two independent molecules (hydrogen atoms omitted for clarity)
formation in both molecules with shorter P-N [1.589(3) and 1.584(3) (molecule 1); both 1.595 (3) \AA (molecule 2)] and longer P-S bonds [2.0201(12) and 2.0185(12) (molecule 1); 2.0216(12) and $2.0166(12) \AA$ (molecule 2)] than in free I consistent with some delocalisation within the ring. The two planar fragments $\mathrm{Pd}(1)-\mathrm{S}(1)-\mathrm{P}(2)-\mathrm{S}(2)$ [maximum deviation from this mean plane is $0.21 \AA$ for $S(2)$ (molecule 1) and $0.25 \AA$ for $S(4)$

Table 6 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for complex 13

$\operatorname{Pd}(1)-\mathrm{Se}(1)$	$2.477(2)$	$\mathrm{P}(2)-\mathrm{O}(2)$	$1.448(9)$
$\mathrm{Pd}(1)-\mathrm{Se}\left(1^{*}\right)$	$2.475(2)$	$\mathrm{Pd}(1)-\mathrm{C}(25)$	$2.01(2)$
$\mathrm{Se}(1)-\mathrm{P}(1)$	$2.225(3)$	$\mathrm{Pd}(1)-\mathrm{C}(26)$	$2.14(1)$
$\mathrm{P}(1)-\mathrm{N}(1)$	$1.539(9)$	$\mathrm{Pd}(1)-\mathrm{C}(27)$	$2.06(2)$
$\mathrm{N}(1)-\mathrm{P}(2)$	$1.613(9)$		
$\mathrm{Se}(1)-\mathrm{Pd}(1)-\mathrm{Se}\left(1^{*}\right)$	$88.80(5)$	$\mathrm{Se}(1)-\mathrm{Pd}(1)-\mathrm{C}(25)$	$99.7(4)$
$\mathrm{Pd}(1)-\mathrm{Se}(1)-\mathrm{Pd}\left(1^{*}\right)$	$91.20(5)$	$\mathrm{Se}(1)-\mathrm{Pd}(1)-\mathrm{C}(26)$	$133.1(6)$
$\mathrm{Pd}(1)-\mathrm{Se}(1)-\mathrm{P}(1)$	$101.32(9)$	$\mathrm{Se}(1)-\mathrm{Pd}(1)-\mathrm{C}(27)$	$168.6(4)$
$\mathrm{Pd}\left(1^{*}\right)-\mathrm{Se}(1)-\mathrm{P}(1)$	$102.16(9)$	$\mathrm{Se}\left(1^{*}\right)-\mathrm{Pd}(1)-\mathrm{C}(25)$	$171.1(4)$
$\mathrm{Se}(1)-\mathrm{P}(1)-\mathrm{N}(1)$	$120.1(3)$	$\mathrm{Se}\left(1^{*}\right)-\mathrm{Pd}(1)-\mathrm{C}(26)$	$136.9(6)$
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$	$136.8(6)$	$\mathrm{Se}\left(1^{*}\right)-\mathrm{Pd}(1)-\mathrm{C}(27)$	$100.9(4)$
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{O}(1)$	$120.3(5)$		

Fig. 4 Crystal structure of $\left[\left\{\mathrm{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}\right]\right\}_{2}\right]$. $2 \mathrm{CHCl}_{3} 13$ (hydrogen atoms and solvent molecules omitted for clarity). The molecule contains an inversion centre and the starred atoms are generated from the inversion centre
(molecule 2)] and $\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)$ [maximum deviation from this mean plane is $0.22 \AA$ for $\mathrm{N}(1)$ (molecule 1) and $0.24 \AA$ for N(3) (molecule 2)] are inclined to each other by 42 (molecule 1) and 37° (molecule 2) respectively.

In contrast the crystal structure of compound 13 (Fig. 4 and Table 6) reveals that a binuclear complex is formed in which two $\operatorname{Pd}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ metal fragments are bridged by two $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})\right.$ $\left.\mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{Se}\right]^{-}$ligands forming a four-membered $\mathrm{Pd}_{2} \mathrm{Se}_{2}$ core. To the best of our knowledge this represents the first example of a crystallographically characterised $\mathrm{Pd}_{2} \mathrm{Se}_{2}$ ring system. The binuclear compound is disposed about a crystallographic centre of symmetry at the midpoint of the planar $\mathrm{Pd}_{2} \mathrm{Se}_{2}$ ring. The $\mathrm{Pd}_{2} \mathrm{Se}_{2}$ ring is strictly planar $\left[\mathrm{Se}(1) \cdots \mathrm{Se}\left(1^{*}\right) 3.46, \operatorname{Pd}(1) \cdots\right.$ $\operatorname{Pd}\left(1^{*}\right) 3.54 \AA$. A comparison of bond lengths and angles within the $\mathrm{Se}(1)-\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{O}(2)$ backbone is especially noteworthy. The $\mathrm{Se}(1)-\mathrm{P}(1), \mathrm{P}(1)-\mathrm{N}(1)$ and $\mathrm{N}(1)-\mathrm{P}(2)$ bond lengths indicate some degree of delocalisation within the $\left[\mathrm{Ph}_{2} \mathrm{P}\right.$ (O)NP(Se) $\left.\mathrm{Ph}_{2}\right]^{-}$ligand and are similar to those reported for cis$\left.\left[\mathrm{Pd}\left\{\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{Se}) \mathrm{Ph}_{2}-\mathrm{O}, \mathrm{Se}\right\}_{2}\right]\right]^{18}$ The $\mathrm{P}(2)-\mathrm{O}(2)$ bond length $[1.448(9) \AA]$ in 13 is shorter than that observed for Ph_{2} $\mathrm{P}(\mathrm{O}) \mathrm{NHPPh}_{2}[1.508(2) \AA$ A $]$ which exists in the solid state as a hydrogen-bonded dimer pair. ${ }^{51}$ There is a disordered CHCl_{3}
solvate which displays a close contact with the PO functionality ($\mathrm{C} \cdots \mathrm{O} 3.11, \mathrm{H} \cdots \mathrm{O} 2.16 \AA$; $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} 163^{\circ}$). Bond lengths for the allyl group in $\mathbf{1 2}$ and $\mathbf{1 3}$ are similar to those reported for $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right\}_{2}\right] .{ }^{59}$

It is apparent from this work that $\left[\mathrm{R}_{2} \mathrm{P}(\mathrm{E}) \mathrm{NP}(\mathrm{E}) \mathrm{R}_{2}\right]^{-}$is a versatile chelating ligand ideally suited for ligation to a variety of late transition-metal organometallic fragments. Unexpectedly we have also demonstrated an unprecedented bonding mode for the unsymmetrical ligands $\left[\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{NP}(\mathrm{E}) \mathrm{Ph}_{2}\right]^{-}$ ($\mathrm{E}=\mathrm{S}$ or Se). Further studies extending the scope of these reactions may be beneficial.

Acknowledgements

We should like to thank the EPSRC for support and Johnson Matthey plc for loan of precious metals.

References

1 F. A. Cotton, A. Yokochi, M. J. Siwajek and R. A. Walton, Inorg. Chem., 1998, 37, 372; J. Geicke, I.-P. Lorenz, M. Engel and K. Polborn, Inorg. Chim. Acta, 1998, 269, 157; P. Bhattacharyya and J. D. Woollins, Polyhedron, 1995, 14, 3367.

2 G. Kräuter, S. K. Sunny and W. S. Rees, jun., Polyhedron, 1998, 17, 391.

3 C. Silvestru, R. Rösler, J. E. Drake, J. Yang, G. Espinosa-Pérez and I. Haiduc, J. Chem. Soc., Dalton Trans., 1998, 73.

4 V. García-Montalvo, J. Novosad, P. Kilian, J. D. Woollins, A. M. Z. Slawin, P. García y García, M. López-Cardoso, G. Espinosa-Pérez and R. Cea-Olivares, J. Chem. Soc., Dalton Trans., 1997, 1025.
5 C. Papadimitriou, P. Veltsistas, J. Novosad, R. Cea-Olivares, A. Toscano, P. García y García, M. López-Cardosa, A. M. Z. Slawin and J. D. Woollins, Polyhedron, 1997, 16, 2727.
6 U. Abram, E. Schulz Lang, S. Abram, J. Wegmann, J. R. Dilworth, R. Kirmse and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1997, 623.

7 M. Geissinger and J. Magull, Z. Anorg. Allg. Chem., 1997, 623, 755.

8 E. N.-M. Ho and W.-T. Wong, J. Chem. Soc., Dalton Trans., 1997, 915.

9 J. Yang, J. E. Drake, S. Hernandez-Ortega, R. Rösler and C. Silvestru, Polyhedron, 1997, 16, 4061.
10 H. Rudler, B. Denise, J. R. Gregorio and J. Vaissermann, Chem. Comтип., 1997, 2299.
11 L. Barkaoui, M. Charrouf, M.-N. Rager, B. Denise, N. Platzer and H. Rudler, Bull. Soc. Chim. Fr., 1997, 134, 167 and refs. therein.

12 V. García-Montalvo, R. Cea-Olivares, D. J. Williams and G. Espinosa-Pérez, Inorg. Chem., 1996, 35, 3948.
13 V. García-Montalvo, R. Cea-Olivares and G. Espinosa-Pérez, Polyhedron, 1996, 15, 829.
14 R. Rösler, J. E. Drake, C. Silvestru, J. Yang and I. Haiduc, J. Chem. Soc., Dalton Trans., 1996, 391.
15 R. Cea-Olivares, V. García-Montalvo, J. Novosad, J. D. Woollins, R. A. Toscano and G. Espinosa-Pérez, Chem. Ber., 1996, 129, 919.

16 J. D. Woollins, J. Chem. Soc., Dalton Trans., 1996, 2893.
17 D. Cupertino, R. Keyte, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, Inorg. Chem., 1996, 35, 2695.

18 A. M. Z. Slawin, M. B. Smith and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1996, 3659.
19 C. S. Browning, D. H. Farrar and D. C. Frankel, Inorg. Chim. Acta, 1996, 241, 111.
20 D. J. Williams, A. M. Z. Slawin, J. R. Phillips and J. D. Woollins, Polyhedron, 1996, 15, 3175.
21 R. Cea-Olivares, J. Novosad, J. D. Woollins, A. M. Z. Slawin, V. García-Montalvo, G. Espinosa-Pérez and P. García y García, Chem. Commun., 1996, 519.
22 R. Rösler, C. Silvestru, G. Espinosa-Pérez, I. Haiduc and R. Cea-Olivares, Inorg. Chim. Acta, 1996, 241, 47.

23 P. Bhattacharyya, J. Novosad, J. Phillips, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1995, 1607.

24 C. Silvestru, R. Rösler, I. Haiduc, R. Cea-Olivares and G. EspinosaPérez, Inorg. Chem., 1995, 34, 3352.
25 P. Bhattacharyya, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1995, 2489.
26 N. Züñiga-Villarreal, C. Silvestru, M. Reyes Lezama, S. HernándezOrtega and C. Alvarez Toledano, J. Organomet. Chem., 1995, 496, 169.

27 J. R. Phillips, A. M. Z. Slawin, A. J. P. White, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1995, 2467.

28 H. Bock, H. Schödel, Z. Havlas and E. Herrmann, Angew. Chem., Int. Ed. Engl., 1995, 34, 1355.
29 I. Haiduc, R. Cea-Olivares, R. A. Toscano and C. Silvestru, Polyhedron, 1995, 14, 1067.
30 A. M. Z. Slawin, J. Ward, D. J. Williams and J. D. Woollins, J. Chem. Soc., Chem. Commun., 1994, 421.
31 R. Rossi, A. Marchi, L. Marvelli, L. Magon, M. Peruzzini, U. Casellato and R. Graziani, J. Chem. Soc., Dalton Trans., 1993, 723.

32 I. Haiduc, C. Silvestru, H. W. Roesky, H.-G. Schmidt and M. Noltemeyer, Polyhedron, 1993, 12, 69.
33 O. Navrátil, E. Herrmann, G. Grossmann and J. Teply, Collect. Czech. Chem. Commun., 1990, 55, 364.
34 P. Z. Zak, M. Fofana, J. Kamenicek and T. Glowiak, Acta Crystallogr., Sect. C, 1989, 45, 1686.
35 A. Laguna, M. Laguna, A. Rojo and M. N. Fraile, J. Organomet. Chem., 1986, 315, 269.
36 H. W. Chen, C. Paparizos and J. P. Fackler, jun., Inorg. Chim. Acta, 1985, 96, 137.
37 H. Richter, E. Fluck and W. Schwarz, Z. Naturforsch., Teil B, 1980, 35, 578.
38 S. Kawaguchi, Coord. Chem. Rev., 1986, 70, 51.
39 W. Lin, S. R. Wilson and G. S. Girolami, Inorg. Chem., 1997, 36, 2662.

40 A. M. Z. Slawin, M. B. Smith and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1996, 1283.
41 M. B. Smith, A. M. Z. Slawin and J. D. Woollins, Polyhedron, 1996, 15, 1579.
42 A. M. Z. Slawin, M. B. Smith and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1996, 4567, 4575.

43 I. Haiduc, in Inorganic Experiments, ed. J. D. Woollins, VCH, Weinheim, 1994.
44 A. C. Cope and E. C. Friedrich, J. Am. Chem. Soc., 1968, 90, 909.
45 A. B. Goel, S. Goel and D. G. Vanderveer, Inorg. Chim. Acta, 1981, 54, L169.
46 C. White, A. Yates and P. M. Maitlis, Inorg. Synth., 1992, 29, 228.
47 Siemens SHELXTL, Revision 5.03, Siemens Analytical X-ray, Madison, WI, 1995.
48 SAINT (Siemens Area Detector INTegration) program, Siemens Analytical X-ray, Madison, WI, 1995.
49 N. Walker and D. Stuart, DIFABS, Acta Crystallogr., Sect. A, 1983, 39, 158.
50 TEXSAN, Crystal Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, 1985 and 1992.
51 P. Bhattacharyya, A. M. Z. Slawin, M. B. Smith and J. D. Woollins, Inorg. Chem., 1996, 35, 3675.
52 S. O. Grim and E. D. Walton, Inorg. Chem., 1980, 19, 1982.
53 P. Bhattacharyya, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1995, 3189.
54 J. Browning, K. R. Dixon and R. W. Hilts, Organometallics, 1989, 8, 552.

55 M. Valderrama, R. Contreras, V. Arancibia and P. Muñoz, Inorg. Chim. Acta, 1997, 255, 221 and refs. therein.
56 A. M. Z. Slawin, M. B. Smith and J. D. Woollins, Polyhedron, 1998, in the press.
57 P. Braunstein, D. Matt, D. Nobel, S.-E. Bouaoud and D. Grandjean, J. Organomet. Chem., 1986, 301, 401 and refs. therein.

58 H. Nöth, Z. Naturforsch., Teil. B, 1982, 37, 1491.
59 A. E. Smith, Acta Crystallogr., 1965, 18, 331.

Received 8th April 1998; Paper 8/02676I

[^0]: \dagger E-Mail: m.b.smith@lboro.ac.uk

