Nucleophilic addition via metal-metal bond cleavage in an osmium-antimony cluster

Guizhu Chen and Weng Kee Leong*
Department of Chemistry, National University of Singapore, Kent Ridge, 119260, Singapore

Abstract

The room-temperature reaction of a number of two-electron nucleophiles with the osmium-antimony cluster $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}\left(\mu-\mathrm{SbPh}_{2}\right)\right] 1$ gave adducts $\left[\mathrm{Os} \mathrm{s}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mu-\mathrm{SbPh}_{2}\right) \mathrm{L}\right] 2\left(\mathrm{~L}=\mathrm{PPh}_{3} \mathbf{a}, \mathrm{AsPh}_{3} \mathbf{b}, \mathrm{SbPh}_{3} \mathbf{c}\right.$ or $\left.\mathrm{CO} \mathbf{d}\right)$, in which the antimony-bridged $\mathrm{Os}-\mathrm{Os}$ bond has been cleaved in order to accommodate the incoming ligand. X-Ray crystallographic studies on $\mathbf{2 b}$ and $\mathbf{2 c}$ confirmed that the ligands L occupied an equatorial site of the $\mathrm{Os}_{3} \mathrm{Sb}$ framework, while NMR studies indicated that the clusters 2a-2c existed as isomeric mixtures, which probably differ in the arrangements of the ligand L relative to the antimony vertex. The reaction leading to the formation of $\mathbf{2 b}$, which was carried out at elevated temperature, also led to decarbonylation to a substituted analogue of $\mathbf{1}$ in which the ligand L was on the unbridged osmium.

Main group-transition metal cluster compounds are of current interest as they are expected to show structural and reactivity patterns that may be quite unlike those of the homometallic main group or transition-metal clusters. This is the expectation, a priori, from the interplay between the differing properties of the elements. Over the years there has been a steady movement towards the view that the main group elements in many cluster compounds should be regarded as an integral part of the cluster core, and not as mere appendages (ligands). ${ }^{1-3}$ One of the points of contention between these two views is at what point a main group fragment should be better regarded as a ligand or as a cluster vertex; this delineation often falls at the μ bonding mode, the moiety under investigation in this study.

As has been pointed out by Whitmire, ${ }^{2}$ antimony-containing clusters are the least represented among the Group 15 elements. In the particular area of osmium-Group 15 clusters, for instance, there is a vast body of data available on phosphoruscontaining osmium clusters but hardly any on antimonyosmium clusters. Almost all the antimony-containing osmium clusters reported merely have the antimony as a terminal ligand (typically SbPh_{3}); the crystal structure of only one antimonyosmium cluster with the antimony as other than a terminal ligand has been reported. ${ }^{3}$ This state of affairs is probably the result of expectations that antimony-containing clusters will behave very similarly to the phosphorus analogues, although that is an unlikely prospect as the relatively larger number of studies carried out on arsenic-osmium clusters show that these very often do not behave like their phosphorus analogues. ${ }^{4,5}$ We report here some of our initial studies in this area which point to the uniqueness of antimony-osmium cluster chemistry.

Results and Discussion

The cluster $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}\left(\mu-\mathrm{SbPh}_{2}\right)\right] \mathbf{1}^{6}$ reacted slowly at room temperature with the Group 15 nucleophiles EPh_{3} $\left(\mathrm{E}=\mathrm{Ph}_{3}, \mathrm{As}\right.$ or Sb$)$ to give the adducts $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mu-\mathrm{SbPh}_{2}\right) \mathrm{L}\right]$ $\mathbf{2 a}-\mathbf{2 c}$ in high yields. The profiles of the CO stretching vibrations were all similar, indicating similar structures. The ${ }^{1} \mathrm{H}$ NMR spectra of 2a-2c showed two resonances at ca. $\delta-7.8$ and -8.1 in the high field region, indicative of the presence of terminal OsH and of isomers; the ${ }^{1} \mathrm{H}$ NMR signal for terminal OsH is usually at lower field ($c a . \delta-10$) than that of an edgebridging $\mathrm{OS}(\mu-\mathrm{H}) \mathrm{Os}(c a . \delta-15$ to -25$) .^{7}$ The presence of isomers was also reflected in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum for $\mathbf{2 a}$, which also showed two resonances.

The molecular structure of one of these isomers has been

Fig. 1 An ORTEP diagram of compound $\mathbf{2 b}$ (50% thermal ellipsoids)

Scheme 1 Reaction of $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}\left(\mu-\mathrm{SbPh}_{2}\right)\right] 1$ with nucleophiles $\mathrm{L}\left[\mathrm{EPh}_{3}(\mathrm{E}=\mathrm{P}, \mathrm{As}\right.$ or Sb$)$ or CO$]$ to give $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mu-\mathrm{SbPh}_{2}\right) \mathrm{L}\right] 2$
confirmed in the case of compounds $\mathbf{2 b}$ and $\mathbf{2 c}$ by single crystal X-ray crystallographic studies; the ORTEP ${ }^{8}$ diagram of the molecular structure of $\mathbf{2 b}$ is given in Fig. 1. In the case of $\mathbf{2 b}$, the position of the metal hydride was also located directly from a low-angle difference map. The structures of $\mathbf{2 b}$ and $\mathbf{2 c}$ show that the osmium-osmium bond bridged by the antimony atom has been cleaved; the $\mathrm{Os}(1) \cdots \mathrm{Os}(2)$ distances are 4.266 and 4.248 $\AA \AA$ in $\mathbf{2 b}$ and $\mathbf{2 c}$, respectively. This indicates that $\mathbf{1}$ has undergone a novel nucleophilic addition reaction in which a metal-metal bond has been cleaved (Scheme 1); the nucleophile occupies an
equatorial position on the $\mathrm{Os}_{3} \mathrm{Sb}$ ring. To our knowledge, such a reaction mode has not been observed in the triosmiumphosphorus or -arsenic systems; two closely related examples from triosmium chemistry are the insertion of SnCl_{2} into an $\mathrm{Os}-\mathrm{Os}$ bond in $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}\left(\mu-\mathrm{CH}_{2}\right)\right]$ to form $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mu-\right.$ $\left.\left.\mathrm{CH}_{2}\right)\left(\mu_{3}-\mathrm{SnCl}_{2}\right)\right]$, and the reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{MeCN})\right]$ with $\mathrm{Me}_{2} \mathrm{AsH}$ to form $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\left(\mu-\mathrm{AsMe}_{2}\right)\right] .{ }^{5}$ We have also verified that the phosphorus analogue of $\mathbf{1}$, viz $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10^{-}}\right.$ $\left.\left(\mu-\mathrm{PPh}_{2}\right)\right]$ did not react with PPh_{3} at room temperature even after 1 week; at elevated temperatures it has been shown that orthometallation of one of the phenyl rings takes place and the orthometallated cluster could subsequently undergo nucleophilic attack with reversal of the orthometallation to give, for example, $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{9}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PPh}_{2} \mathrm{H}\right)\right] .{ }^{10}$ We believe that the reason for this difference in reactivity is due to the larger size of the antimony atom which disfavoured re-establishment of the cleaved Os-Os bond by ligand loss. This is also consistent with the observation that $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\left(\mu-\mathrm{AsMe}_{2}\right)\right]$ decarbonylated easily on silica gel, ${ }^{5}$ while the clusters $\mathbf{2}$ were somewhat more stable.

As was mentioned above, the OsH resonances for compounds 2a-2c consisted of two separate signals of unequal intensities, indicative of isomers. We believe that the two isomers in solution have structures differing in the orientation of the Group 15 ligand relative to the Sb atom. Consistent with this is the observation that the reaction of 1 with CO under ambient conditions gave the adduct $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\left(\mu-\mathrm{SbPh}_{2}\right)\right] \mathbf{2 d}$, which showed only one resonance in the OsH region in its ${ }^{1} \mathrm{H}$ NMR spectrum. The IR spectrum of 2d in the CO stretching region was similar to that ${ }^{5}$ of the known AsMe_{2} analogue [$\mathrm{v}(\mathrm{CO}$) 2118w, 2078s, 2053m, 2047s, 2035vs, 2016m, 2011m, 1992 m and $1977 \mathrm{~m} \mathrm{~cm}^{-1}$].

Isomer A

Isomer B

We have also found that a trace of a second product was sometimes obtained; this was formed in significant amounts at elevated temperatures. For example, the reaction of cluster 1 with AsPh_{3} at $65^{\circ} \mathrm{C}$ gave a 23% yield of a product with spectroscopic characteristics similar to those of the known clusters $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{9}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mathrm{PR}_{3}\right)\right]\left[\mathrm{PR}_{3}=\mathrm{PPh}_{2} \mathrm{H}, \mathrm{P}(\mathrm{OMe})_{3}\right.$ or $\mathrm{P}(p-$ $\left.\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{3}$. ${ }^{5}$ We have confirmed the identity of our product by a single crystal X-ray structural study (Fig. 2), and ${ }^{1} \mathrm{H}$ NMR evidence did not suggest the presence of any other isomers. The molecular structure of the product, $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{9}-\right.$ $\left.\left(\mu-\mathrm{SbPh}_{2}\right)\left(\mathrm{AsPh}_{3}\right)\right]$, 3b, shows that the $\mathrm{Os}-\mathrm{Os}$ bond has been re-established. Quite unexpectedly, the AsPh_{3} occupies an equatorial position on the unique unbridged osmium.

There are at least three possible routes by which clusters 3 may be formed (Scheme 2). Path a involves direct decarbonylation of $\mathbf{1}$. If this were indeed the reaction path then it must be the kinetic pathway since ambient-temperature reaction gave almost exclusively 2. Furthermore, we have found 2 to be thermally fairly stable, indicating that any equilibrium between $\mathbf{1}$ and $\mathbf{2}$ lies largely towards the latter. Path \mathbf{b} involves an orthometallation similar to that observed in $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)\right] ;{ }^{10}$ we have found that heating 1 did not give any analogous product but a higher-nuclearity cluster. ${ }^{11}$ The reaction of 2a with an excess of PPh_{3} led rapidly to the formation of 3a; this observation, together with the thermal stability of 2a, suggests the non-dissociative pathway \mathbf{c}.
The structures of compounds $\mathbf{2 b}$ and $\mathbf{2 c}$ comprise a puckered $\mathrm{Os}_{3} \mathrm{Sb}$ ring; the dihedral angles between the $\mathrm{Os}(1) \mathrm{Os}(3) \mathrm{Os}(2)$

Fig. 2 An ORTEP diagram of compound $\mathbf{3 b}$ (50% thermal ellipsoids). $\mathrm{Os}(1)-\mathrm{Os}(2) 2.9973(3), \mathrm{Os}(1)-\mathrm{Os}(3) 2.8701(3), \mathrm{Os}(2)-\mathrm{Os}(3) 2.9423(3)$, $\mathrm{Os}(1)-\mathrm{Sb}(4) \quad 2.6433(4), \quad \mathrm{Os}(2)-\mathrm{Sb}(4)$ 2.6253(4) and $\mathrm{Os}(3)-\mathrm{As}(5)$ $2.4756(6) \AA ; \mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2) \quad 62.070(8)$ and $\mathrm{Os}(1)-\mathrm{Sb}(4)-\mathrm{Os}(2)$ 69.346(12) ${ }^{\circ}$

Scheme 2 Possible reaction pathways for the formation of compounds 3
and $\mathrm{Os}(1) \mathrm{Sb}(4) \mathrm{Os}(2)$ planes are 150.0 and 149.4°, respectively, compared to 112° in $\mathbf{1}$ or 108.1° in $\mathbf{3 b} ;{ }^{6}$ the only other reported example of this structural type in osmium-Group 15 cluster chemistry is that of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\left(\mu-\mathrm{AsMe}_{2}\right)\right]^{5}$ Interestingly, the Sb atoms are puckered away from, rather than towards, the OsH moiety. This must indicate an electronic origin for the puckering of the ring.
The increasingly stronger σ-donor ability in moving from SbPh_{3} to AsPh_{3} may be responsible for the shorter $\mathrm{Os}(1)-\mathrm{Sb}(4)$ and $\mathrm{Os}(2)-\mathrm{Sb}(4)$ lengths for compound $2 \mathbf{c}$ as compared to $\mathbf{2 b}$ (Table 1). Interestingly, the $\mathrm{Os}(1)-\mathrm{Sb}(4)-\mathrm{Os}(2)$ angles are similar for the two clusters, the differing lengths of the $\mathrm{Os}-\mathrm{Sb}$ bonds being compensated by a change in the $\mathrm{Os}(1) \cdots \mathrm{Os}(2)$ distance instead. A more obvious consequence of the differing donor ability of AsPh_{3} vs. SbPh_{3} is the lengthening of the $\mathrm{Os}(1)-\mathrm{Os}(3)$ bond [3.0137(5) and 2.9962(10) \AA for 2b and 2c, respectively],

Table 1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for compounds $\mathbf{2 b}$ and 2c

Bond parameter	$\mathbf{2 b}(\mathrm{E}=\mathrm{As})$	2c ($\mathrm{E}=\mathrm{Sb}$)
Os(1) \cdots Os(2)	4.266	4.248
$\mathrm{Os}(1)-\mathrm{Os}(3)$	3.0137(5)	$2.9962(10)$
$\mathrm{Os}(2)-\mathrm{Os}(3)$	2.9580 (5)	$2.9548(12)$
$\mathrm{Os}(1)-\mathrm{Sb}(4)$	2.7191(6)	2.706(2)
$\mathrm{Os}(2)-\mathrm{Sb}(4)$	2.6441(7)	2.634(2)
Os(1)-E(5)	2.4918 (9)	$2.6238(13)$
av. Os $\cdots \mathrm{C} \cdots \mathrm{O}$ (axial)*	3.08	3.08
av. Os $\cdots \mathrm{C} \cdots \mathrm{O}$ (equatorial)*	3.06	3.03
$\mathrm{Os}(1)-\mathrm{Sb}(4)-\mathrm{Os}(2)$	105.37(2)	105.41(5)
$\mathrm{Sb}(4)-\mathrm{Os}(1)-\mathrm{E}(5)$	100.45(2)	99.55(4)
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$	91.171(13)	91.10(3)
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{Sb}(4)$	77.34(2)	$77.39(3)$
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Sb}(4)$	79.48(2)	79.24(4)
* Average over [$d(\mathrm{C}-\mathrm{O}$) $+d(\mathrm{Os}$		

which is trans to the Group 15 ligand. Another structural consequence of electronic effects is the general observation that axial $\mathrm{Os}-\mathrm{CO}$ bond lengths tend to be longer than equatorial ones. As has been argues elsewhere, a better way to gauge such an effect, given the inherent difficulty of locating light atoms in a heavy-atom structure with any precision, is to examine the Os $\cdots \mathrm{O}$ distance rather than the $\mathrm{Os}-\mathrm{C}$ bond length. ${ }^{12}$ In $\mathbf{2 b}$ and $\mathbf{2 c}$, therefore, it is found that the Os $\cdots \mathrm{O}$ distances tend to be longer for axial (ranges of 3.067-3.12 and 3.06-3.10 Å, respectively, for $\mathbf{2 b}$ and $\mathbf{2 c}$) than for equatorial carbonyls (ranges of $3.034-3.067$ and 3.02-3.04 \AA, respectively, for $\mathbf{2 b}$ and $\mathbf{2 c}$); the upper limits for the equatorial carbonyls are for those trans to $\mathrm{Sb}(4)$. A very significant difference between $\mathbf{2 b}$ and $\mathbf{2 c}$ is the $\mathrm{Sb}(4)-\mathrm{Os}(1)-\mathrm{E}(5)$ bond angle [100.45(2) and $99.55(4)^{\circ}$, respectively]. This suggests that there is actually less steric repulsion between the EPh_{3} and the SbPh_{2} for $\mathrm{E}=\mathrm{Sb}$ than for $\mathrm{E}=\mathrm{As}$, presumably because the phenyl rings, which are expected to be the main contributors to steric interaction between these two moieties, are further apart in $\mathbf{2 c}$; the $\mathrm{Os}(1)-\mathrm{E}(5)$ lengths are $2.4918(9)$ and $2.6238(13) \AA$, respectively. It is tempting to ascribe the asymmetry between the $\mathrm{Os}(1)-\mathrm{Sb}(4)$ and $\mathrm{Os}(2)-$ $\mathrm{Sb}(4)$ bond lengths to this steric interaction, but that this is also observed for $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\left(\mu-\mathrm{AsMe}_{2}\right)\right][2.523(2)$ and $2.480(3) \AA$, respectively] which has a CO in place of $\mathrm{EPh}_{3}{ }^{5}$ suggests that this is not very likely. It may be argued that the reason is electronic, but we believe that the symmetry may be a consequence of the susceptibility of the $\mathrm{Os}-\mathrm{Sb}$ and $\mathrm{Os}-\mathrm{As}$ bonds to distortion, such as by crystal packing forces. In support of this we note that $\mathbf{3 b}$ also shows the same asymmetry, despite the fact that the AsPh_{3} ligand is now one bond further away; no such asymmetry is observed in $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{9}\left(\mu-\mathrm{PPh}_{2}\right)\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right] .{ }^{10}$ Furthermore, the $\mathrm{Os}-\mathrm{As}$ bond lengths in $\mathbf{2 b}$ and $\mathbf{3 b}$ are also very different [2.4918(9) and 2.4756(6) \AA, respectively], indicating the wide range that such bond lengths can have.

Experimental

General procedures

All reactions and manipulations were carried out under nitrogen by using standard Schlenk techniques. Solvents were purified, dried, distilled, and stored under nitrogen prior to use. The NMR spectra were recorded on a Bruker ACF-300 FT-NMR
spectrometer. Microanalyses were carried out by the microanalytical laboratory at the National University of Singapore. The starting material 1 was prepared by the published method; ${ }^{6}$ all other reagents were from commercial sources and used as supplied.

Reactions of compound 1

With $\mathbf{P P h}_{3}$. Cluster $\mathbf{1}(54 \mathrm{mg}, 0.048 \mathrm{mmol})$ and an excess of $\mathrm{PPh}_{3}(30 \mathrm{mg}, 0.104 \mathrm{mmol})$ were stirred together in hexane (20 cm^{3}) at room temperature until the IR spectrum of the solution showed that the reactant had been consumed ($\approx 2 \mathrm{~d}$). Removal of the solvent followed by chromatographic separation on silica gel using dichloromethane-hexane ($10: 90, \mathrm{v} / \mathrm{v}$) as eluent gave a trace amount of 3a, followed by $\mathbf{2 a}(54 \mathrm{mg}, 81 \%)$ as yellow bands. Compound 2a (Found: C, 35.85; H, 2.46. Calc. for $\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{O}_{10} \mathrm{Os}_{3} \mathrm{PSb} \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{14}: \mathrm{C}, 36.00 ; \mathrm{H}, 2.30 \%$): presence of hexane in crystals confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy; $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ (hexane) $2092 \mathrm{~m}, 2058 \mathrm{~m}, 2040 \mathrm{w}, 2017 \mathrm{~s}, 1999 \mathrm{~m}, 1980 \mathrm{w}$ (br) and 1968w (CO); ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene, standard SiMe_{4}) $\delta 7.9-6.7(\mathrm{~m}, \mathrm{Ph}),-7.83(\mathrm{~s}, \mathrm{OsH}$, major isomer) and $-8.10(\mathrm{~s}, \mathrm{OsH}$, minor isomer) ($\approx 1: 4$ relative intensity); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene, standard $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$) $\delta-5.56$ (minor isomer) and -7.82 (major isomer). Compound 3a: $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ (hexane) 2071w, 2042s, 2022m, 1996vs, 1980m, 1972mw and 1954w (CO).

With $\mathbf{A s P h}_{3}$. Cluster $\mathbf{1}(50 \mathrm{mg}, 0.044 \mathrm{mmol})$ and an excess of $\mathrm{AsPh}_{3}(40 \mathrm{mg}, 0.13 \mathrm{mmol})$ were heated at $60^{\circ} \mathrm{C}$ in hexane $(20$ cm^{3}). The reaction was monitored by IR spectroscopy until 1 had been consumed ($\approx 9 \mathrm{~h}$). Removal of the solvent followed by column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane (1:9, v/v) as eluent gave $3(14.0 \mathrm{mg}, 22.5 \%)$ and $\mathbf{2 b}(39.5 \mathrm{mg}, 62.2 \%)$ in that order. Compound 2b (Found: C, 33.47; H, 2.05. Calc. for $\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{AsO}_{10} \mathrm{Os}_{3} \mathrm{Sb}: \mathrm{C}, 33.49 ; \mathrm{H}, 1.81 \%$): $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ (hexane) $2093 \mathrm{mw}, 2054 \mathrm{~m}, 2038 \mathrm{mw}, 2017 \mathrm{~s}, 1998 \mathrm{~m}, 1979 \mathrm{mw}$ (br) and 1968w (CO); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene, standard $\left.\mathrm{SiMe}_{4}\right) \delta 7.4-6.8(\mathrm{~m}, \mathrm{Ph}),-7.81(\mathrm{~s}, \mathrm{OsH}$, minor isomer) and -8.16 (s, OsH, major isomer) ($\approx 1: 2$ relative intensity). Compound 3b (Found: C, 33.45; H, 1.90. Calc. for $\mathrm{C}_{39} \mathrm{H}_{26} \mathrm{AsO}_{9} \mathrm{Os}_{3} \mathrm{Sb}: \mathrm{C}, 33.32 ; \mathrm{H}, 1.85 \%$); $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ (hexane) $2072 \mathrm{w}, 2043 \mathrm{~s}, 2020 \mathrm{~m}, 1995 \mathrm{~s}, 1978 \mathrm{~s}, 1964 \mathrm{w}$ and $1953 \mathrm{w} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene, standard SiMe_{4}) $7.5-7.0(\mathrm{~m}, \mathrm{Ph})$ and -19.46 ($\mathrm{s}, \mathrm{OsHOs}$).

With $\mathbf{S b P h}_{3}$. The reaction of cluster $\mathbf{1}(30 \mathrm{mg}, 0.027 \mathrm{mmol})$ with $\mathrm{SbPh}_{3}(30 \mathrm{mg}, 0.085 \mathrm{mmol})$ was carried out in a similar manner to that for PPh_{3} above. A similar work-up gave 2c (35 $\mathrm{mg}, 89 \%$) (Found: C, 32.79; H, 2.00. Calc. for $\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{O}_{10} \mathrm{Os}_{3}-$ $\mathrm{Sb}_{2}: \mathrm{C}, 32.40 ; \mathrm{H}, 1.76 \%$). $\tilde{\mathrm{v}}_{\max } / \mathrm{cm}^{-1}$ (hexane) $2089 \mathrm{w}, 2053 \mathrm{~m}$, $2037 \mathrm{mw}, 2017 \mathrm{~s}, 1998 \mathrm{mw}, 1978 \mathrm{~m}$ (br) and 1967w (CO). ${ }^{1} \mathrm{H}$ NMR (300 MHz , solvent $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene, standard SiMe_{4}) $\delta 7.9-$ $6.8(\mathrm{~m}, \mathrm{Ph}),-7.88(\mathrm{~s}, \mathrm{OsH}$, major isomer) and -8.15 (s, OsH, minor isomer) ($\approx 3: 2$ relative intensity).

With CO. A hexane $\left(20 \mathrm{~cm}^{3}\right)$ solution of cluster $1(42 \mathrm{mg}$, 0.037 mmol) was placed in a Carius tube under CO (1 atm , 101325 Pa) and heated in an oil-bath at $60^{\circ} \mathrm{C}$ until the CO absorption bands of $\mathbf{1}$ in the IR spectrum had disappeared ($\approx 9 \mathrm{~h}$). Removal of the solvent followed by column chromatographic separation gave $\mathbf{2 d}(34 \mathrm{mg}, 79 \%)$ as an oil: $\tilde{v}_{\text {max }} / \mathrm{cm}^{-1}$ (hexane) 2116w, 2077s, 2052mw, 2043m, 2035vs, 2015m, 1994 mw and $1978 \mathrm{mw}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz},\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene, standard $\left.\mathrm{SiMe}_{4}\right) \delta 7.8-6.9(\mathrm{~m}, \mathrm{Ph})$ and $-8.45(\mathrm{~s}, \mathrm{OsH})$.

Reaction of compound 2a with $\mathbf{P P h}_{3}$

A solution of cluster $\mathbf{2 a}(35 \mathrm{mg}, 0.025 \mathrm{mmol})$ and an excess of $\mathrm{PPh}_{3}(14 \mathrm{mg})$ in toluene $\left(10 \mathrm{~cm}^{3}\right)$ was heated at $75^{\circ} \mathrm{C}$ for 5 h . The solution changed from light yellow to orange. Chromatographic separation of the solution gave 3a as the major band, identified spectroscopically.

Table 2 Crystal data $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mu-\mathrm{SbPh}_{2}\right)\left(\mathrm{AsPh}_{3}\right)\right] \mathbf{2 b},\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\left(\mu-\mathrm{SbPh}_{2}\right)\left(\mathrm{SbPh}_{3}\right)\right] \mathbf{2 c}$ and $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{9}\left(\mu-\mathrm{SbPh}_{2}\right)\left(\mathrm{AsPh}_{3}\right)\right] \mathbf{3 b}$

	$\mathbf{2 b}$
Empirical formula	$\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{AsO}_{10} \mathrm{Os}_{3} \mathrm{Sb}$
Formula weight	1433.88
Crystal system	Triclinic
Space group	$P \overline{1}$
al \AA	$12.5027(1)$
b / \AA	$13.5169(2)$
c / \AA	$14.6903(2)$
$\alpha /^{\circ}$	$63.659(1)$
$\beta /{ }^{\circ}$	$89.945(1)$
$\gamma / /^{\circ}$	$80.756(1)$
U / \AA^{3}	$2169.13(5)$
Z	2
μ / mm^{-1}	10.183
Reflections collected	18271
Independent reflections $\left(R_{\text {int }}\right)$	$10423(0.0421)$
Final $R[I>2 \sigma(I)]$	0.0438
$w R 2($ all data $)$	0.1300

2c	3b
$\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{O}_{10} \mathrm{Os}_{3} \mathrm{Sb}_{2}$	$\mathrm{C}_{39} \mathrm{H}_{26} \mathrm{AsO}_{9} \mathrm{Os} \mathrm{Sb}_{3} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
1480.71	1490.79
Triclinic	Monoclinic
$P \overline{1}$	$P 2_{1} / c$
$12.7738(1)$	$12.8364(1)$
$13.7256(3)$	$23.4741(2)$
$14.6834(3)$	$14.6154(2)$
$63.210(1)$	-
$89.741(1)$	$101.127(1)$
$79.099(1)$	-
$2247.03(7)$	$4321.17(8)$
2	4
9.688	10.346
17678	33057
$9401(0.0636)$	$9974(0.0378)$
0.0688	0.0337
0.1948	0.0767

Crystallography

Crystals were grown from dichloromethane-hexane solutions and mounted on quartz fibres. X-Ray data were collected on a Siemens SMART CCD system, using Mo-K α radiation, at ambient temperature [295(2) K]. Data were corrected for Lorentz-polarisation effects with the SMART suite of programs, ${ }^{13}$ and for absorption effects with SADABS. ${ }^{14}$ The final unit-cell parameters were obtained by least squares on 8192 (5174 for $\mathbf{2 c}$) strong reflections. Structural solution and refinement were carried out with the SHELXTL suite of programs. ${ }^{15}$

The structures were solved by direct methods to locate the heavy atoms, followed by difference maps for the light, nonhydrogen atoms. Phenyl H atoms were placed in calculated positions and given isotropic thermal parameters 1.5 times those of the C atoms to which they are attached. The metal hydride positions in compounds $\mathbf{2 b}$ and $\mathbf{3 b}$ were located by a low angle $\left(2 \theta \leqslant 30^{\circ}\right)$ difference map. For $2 \mathbf{c}$ the metal hydride was placed at $1.60 \AA$ from $\mathrm{Os}(2)$ and trans to $\mathrm{CO}(23)$; an isotropic thermal parameter of $0.08 \AA^{2}$ was assigned. All nonhydrogen atoms were given anisotropic thermal parameters in the final model.

A disordered dichloromethane solvent molecule was found in structure 3b. This was modelled with four alternative positions, with the occupancies summing to unity. The $\mathrm{C}-\mathrm{Cl}$ bond lengths for the main site were restrained to be equal; those for the other sites were restrained to equal these. The C and Cl atoms were given a common isotropic thermal parameter for each atom type. Crystal data for all these compounds are given in Table 2.

CCDC reference number 186/1029.

Acknowledgements

This work was supported by the National University of Singapore (Research Grant No. RP 960677) and one of us (G. C.) thanks the University for a Research Scholarship.

References

1 For example, T. P. Fehlner, Inorganometallic Chemistry, Plenum, New York, 1992; W. A. Herrmann, Angew. Chem., Int. Ed. Engl., 1986, 25, 56; J. N. Nicholls, Polyhedron, 1984, 3, 1307.
2 K. H. Whitmire, Adv. Organomet. Chem., 1998, 42, 1.
3 W. K. Leong, Bull. Sing. N. I. C., 1996, 24, 51.
4 For example, K. Guldner, B. F. G. Johnson, J. Lewis, A. D. Massey and S. Bott, J. Organomet. Chem., 1991, 408, C13; K. Guldner, B. F. G. Johnson and J. Lewis, J. Organomet. Chem., 1988, 355, 419; A. J. Deeming, R. E. Kimber and M. Underhill, J. Chem. Soc., Dalton. Trans., 1973, 2589.
5 K. Guldner, B. F. G. Johnson, J. Lewis, S. M. Owen and P. R. Raithby, J. Organomet. Chem., 1988, 341, C45.
6 B. F. G. Johnson, J. Lewis, A. J. Whitton and S. G. Bott, J. Organomet. Chem., 1990, 389, 129.

7 For example, J. B. Keister and J. R. Shapley, Inorg. Chem., 1982, 21, 3304; W. Ehrenreich, M. Heberhold, G. Hermann, G. Suess-Fink, A. Gieren and T. Huebner, J. Organomet. Chem., 1985, 294, 183; S. C. Brown and J. Evans, J. Chem. Soc., Dalton. Trans., 1982, 1049; E. A. V. Ebsworth, A. P. McIntosh and M. Schroder, J. Organomet. Chem., 1986, 312, C41; F. W. B. Einstein, R. K. Pomeroy and A. C. Willis, J. Organomet. Chem., 1986, 311, 257.
8 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
9 N. Viswanathan, E. D. Morrison, G. L. Geoffroy, S. J. Geib and A. L. Rheingold, Inorg. Chem., 1986, 25, 3100.

10 S. B. Colbran, P. T. Irele, B. F. G. Johnson, F. J. Lahoz, J. Lewis and P. R. Raithby, J. Chem. Soc., Dalton. Trans., 1989, 2023.

11 W. K. Leong and G. Chen, unpublished work.
12 W. K. Leong, F. W. B. Einstein and R. K. Pomeroy, J. Cluster Sci., 1996, 7, 121.
13 SMART, version 4.05, Siemens Energy \& Automation Inc., Madison, WI, 1995.
14 G. M. Sheldrick, SADABS, University of Göttingen, 1996.
15 SHELXTL, version 5.03, Siemens Energy \& Automation Inc., Madison, WI, 1995.

Received 28th April 1998; Paper 8/03169J

