Turning dihydrogen gas into a strong acid. Formation and reactions of the very acidic ruthenium dihydrogen complexes *trans*-[Ru(H₂)-(CNH){PPh₂(CH₂)_nPPh₂}][O₃SCF₃]₂ (n = 2 or 3)[†]

Tina P. Fong,^{*a*} Alan J. Lough,^{*a*} Robert H. Morris,^{*,*a*} Antonio Mezzetti,^{*b*} Eliana Rocchini^{*c*} and Pierluigi Rigo ^{*,*c*}

^a Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, Canada M5S 3H6

^b Laboratorium für Anorganische Chemie, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich, Switzerland

^c Dip. di Scienze e Tecnol. Chimiche, Università di Udine, Via del Cotonificio 108, I-33100 Udine, Italy

New, very acidic ruthenium dihydrogen complexes containing the hydrogen isocyanide ligand have been synthesised; when formed under 1 atm H_2 they have been shown to spontaneously eliminate trifluoromethylsulfonic acid.

Some of us recently reported that the protonation of trans-[FeH(CN)(dppe)₂] or trans-[FeH(CNH)(dppe)₂]OTf with CF₃SO₃H (HOTf)[‡] in the appropriate ratio gives trans-[Fe(H₂)(CNH)(dppe)₂][OTf]₂, which is very acidic but surprisingly stable with respect to loss of $H_2(g)$.¹ Similar reaction pathways are observed for the related ruthenium and osmium complexes (Scheme 1).² We now find that the very acidic ruthenium analogues *trans*-[Ru(H₂)(CNH)L₂][OTf]₂ (L = dppe 4a, L = dppp 4b) can be generated by reaction of the new triflate complexes trans-[Ru(OTf)(CNH)L₂]OTf (5a, 5b) with dihydrogen gas. These complexes then eliminate HOTf in the absence of excess acid although it is not known whether the proton comes from the H₂ or the CNH ligand. This is a significant new reaction pathway involving dihydrogen complexes: the in situ production of a very strong acid, in this case HOTf, triggered by the reaction of non-acidic $H_2(g)$ with a co-ordination complex which is not a strong Brønsted acid. Although very acidic dihydrogen complexes have been reported,^{1,3-8} there is only one other complex which is prepared from dihydrogen gas.⁹ This one case involves an unstable iridium dihydrogen complex which can protonate the tetraphenylborate anion in THF.9 There is evidence for the elimination of triflic acid from some iridium hydride complexes but it is not known whether dihydrogen complexes are involved.¹⁰⁻¹²

The reaction of the complexes *trans*-[RuH(CN)L₂] 1^2 in CH₂Cl₂ solution under 1 atm of H₂ with an excess of HOTf gives the dihydrogen complexes *trans*-[Ru(H₂)(CNH)L₂][OTf]₂ **4a**,§ **4b**.¶ They can also be prepared by reaction of complexes *trans*-[RuH(CNH)L₂]OTf **3a**, **3b**² with excess HOTf in CH₂Cl₂ (Scheme 1). The related osmium complexes have also been prepared.² The highly acidic ruthenium dihydrogen complexes have so far only been characterized in solution. The ³¹P-{¹H} NMR spectrum of **4a** is a sharp singlet at room temperature while that of **4b** is a broad singlet. At 183 K the latter complex gives the A₂X₂ pattern that has been observed for *trans*-[MXY(dppp)₂] species.⁴ The presence of the NH group in complexes **4** is signalled by a broad resonance in the ¹H NMR spectrum in the region at δ 9.6 for **4a** and 13.7 for **4b**. The latter signal is observed only at 183 K; at 293 K the resonance is averaged with

Scheme 1 [M] is the fragment [Ru(dppe)₂] or [Ru(dppp)₂]

§ trans-[Ru(η²-H₂)(CNH)(dppe)₂][OTf]₂ 4a. Method 1: trans-[RuH-(CN)(dppe)₂] (1a, 100 mg, 0.11 mmol) was dissolved in 10 mL of CH₂Cl₂ producing a clear colourless solution. Excess triflic acid (60 mg, 0.40 mmol) was added to the solution and the resulting light yellow solution was stirred for 1 h. The solvent was removed *in vacuo*, producing a yellow oil. Method 2: trans-[RuH(CNH)(dppe)2][OTf] (3a, 15 mg, 0.02 mmol) was dissolved in 5 mL of CD₂Cl₂ and triflic acid (7 mg, 0.05 mmol) was added to the solution. The spectra were recorded immediately. ¹H NMR (300 MHz, CD₂Cl₂): δ 12.7 (s, HOTf), 9.6 (br, NH), 7.8–6.8 (m, Ph), 2.9–2.4 (m, 8 H, CH₂), -5.9 [br, Ru(η^2 -H₂)]. T_1 (min): 300 MHz, CD₂Cl₂, 13.6 ms, 246 K. ³¹P-{¹H} NMR (120.5 MHz, CD₂Cl₂): δ 52.2 (s). trans-[Ru(HD)(CND)(dppe)₂][OTf]₂, 4a-d₂. Method 2 was followed except deuteriated triflic acid (DOTf) was used instead. ¹H NMR (300 MHz, CD₂Cl₂): $\delta -6.0$ [t, ¹J(HD) = 32.4 Hz, Ru(HD)]. ³¹P-{H} NMR (120.5 MHz, CD₂Cl₂): δ 52.2 (s). ¶ trans-[Ru(η^2 -H₂)(CNH)(dppp)₂][OTf]₂ 4b. trans-[RuH(CN)(dppp)₂] (20 mg, 21 µmol) was dissolved in 0.5 mL of CD₂Cl₂ under H₂ in an NMR tube and CF₃SO₃H (6 μ L, 68 μ mol) was added thereto by means of a syringe. IR (CH₂Cl₂), cm⁻¹: v(CN) 2125 (s). ¹H NMR (CD₂Cl₂, 293 K, 200 MHz): δ 7.6–6.9 (m, Ph), 2.4 (br, 8 H, PCH₂), 1.9 (br, 2 H, PCH₂CH₂), 1.6 (br, 2 H, PCH₂CH₂), -4.2 (br, 2 H, RuH₂). ³¹P-{¹H} NMR (CD_2Cl_2 , 293 K, 81 MHz): δ 8.9 (br), T = 183 K, δ 3.2 (t), 15.6 [t, J(P,P') = 30.1 Hz]. trans-[Ru(HD)(CND)(dppp)₂][OTf]₂ 4b-d₂. Excess DOTf was used in the method above. ¹H NMR (200 MHz, CD₂Cl₂): δ -4.2 [t, ¹*J*(HD) = 31.8 Hz, Ru(HD)]. *trans*-[Ru(η²-H₂)(¹³CNH)-(dppp),][OTf]₂. ³¹P-{¹H} NMR (CD₂Cl₂): δ 8.9 [d, *J*(¹³C³¹P) 13.5 Hz]. ¹³C-{¹H} NMR (CD₂Cl₂): δ 149.9 [q, *J*(¹³C³¹P) 13.6 Hz].

[†] Non-SI unit employed: atm = 101 325 Pa.

[‡] Abbreviations used: dppe = 1,2-bis(diphenylphosphino)ethane; dppp = 1,3-bis(diphenylphosphino)propane; dtpe = 1,2-bis(ditolylphosphino)ethane; OTf = trifluoromethylsulfonate.

that of free HOTf because of fast proton exchange. This signal splits into a doublet with ${}^{1}J(\mathrm{H}^{15}\mathrm{N})$ 108.1 Hz when **4b** is prepared with the C¹⁵NH ligand. The CNH ligand has also been detected by IR and ${}^{13}\mathrm{C}$ NMR.

The dihydrogen ligand in complexes **4a** and **4b** gives a broad resonance at $\delta - 5.9$ and -4.2, respectively, with a characteristically short minimum T_1 time of 13.6 ms (at 246 K, 300 MHz) and 5.9 ms (at 223 K, 200 MHz). The corresponding η^2 -HD complexes are prepared by reacting complexes **1b** or **3a** with excess DOTf in CD₂Cl₂. The large ¹J(HD) coupling constants of 32.4 Hz for **4a** and 31.8 Hz for **4b** combined with the T_1 (min) data indicate that **4a** and **4b** have rapidly spinning H₂ ligands with H–H distances of 0.88 and 0.89 Å, respectively.¹³

The high acidity of these complexes is illustrated by the chemistry of **4a**. When a CD_2Cl_2 solution of **4a** under $H_2(g)$ is treated with an excess of the weak base, diethyl ether, complex **2a** || forms immediately [equation (1)]. The dihydrogen ligand of

$$trans-[Ru(\eta^{2}-H_{2})(CNH)(dppe)_{2}]^{2+} + Et_{2}O \longrightarrow$$

$$4a$$

$$trans-[Ru(\eta^{2}-H_{2})(CN)(dppe)_{2}]^{+} + Et_{2}OH^{+} \quad (1)$$

$$2a$$

2a is identified by a broad peak at $\delta - 5.5$ with a minimum T_1 of 12.4 ms at 240 K, 300 MHz. The corresponding HD complex has ¹*J*(HD) 32.0 Hz. These two data indicate that the H₂ ligand in **2a** is fast spinning with an H–H distance of 0.89 Å. Complexes **4b** are also deprotonated by diethyl ether to give a mixture of the dihydrogen complex *trans*-[Ru(η^2 -H₂)(CN)(dppp)₂]⁺ **2b** and the hydrogen isocyanide complex *trans*-[Ru(H)(CNH)-(dppp)₂]⁺ **3b**.²

The dicationic dihydrogen complexes **4** are less stable with respect to loss of H₂ than the analogous iron complex.¹ Evaporation of solvent leaves yellow oils of complexes **4** and excess acid. These oils slowly lose H₂ under Ar to give mainly the complexes *trans*-[Ru(OTf)(CNH)L₂]OTf [equation (2), L = dppe 5a,** $L = dppp 5b \dagger \dagger$]. Complexes 5 can be identified

trans-[Ru(η^2 -H₂)(CNH)L₂][OTf]₂ \longrightarrow 4a or 4b trans-[Ru(OTf)(CNH)L₂]OTf + H₂ (2) 5a or 5b

|| *trans*-[Ru(η^2 -H₂)(CN)(dppe)₂][HOTf–OTf] **2a**. A yellow oil containing **4a** in HOTf was stirred for 30 min in Et₂O under 1 atm H₂ to form the product. ¹H NMR (300 MHz, CD₂Cl₂): δ 13.1 (s, TfOH–OTf), 7.8–6.6 (m, Ph), 2.5–3.0 (m, 8 H, CH₂), –5.5 [br, Ru(η^2 -H₂)]; *T*₁(min): 12.4 ms, 240.3 K. ³¹P-{¹H} NMR (120.5 MHz, CD₂Cl₂): δ 54.2 (s). *trans*-[Ru(η^2 -HD)(CN)(dppe)₂]⁺. Diethyl ether was added to the yellow oil of **4a**-d₂ to produce a light yellow precipitate. The solvent was decanted and the product was quickly dried under argon. The product under Ar loses HD and must be isolated and analysed without delay. ¹H NMR (300 MHz, CD₂Cl₂): δ –5.5 [t, ¹J(HD) = 32.0 Hz, Ru(HD)]. ³¹P-{¹H} NMR (120.5 MHz, CD₂Cl₂): δ 54.1 (s).

** trans-[Ru(OTf)(CNH)(dppe)_2]OTf **5a**. Diethyl ether was added to the yellow oil of **4a** under Ar, producing a light yellow precipitate. The solvent was decanted and the precipitate was washed twice with 5 mL of diethyl ether and dried *in vacuo*. Yield of crude **5a** 60%. Yellow crystals were obtained by slow evaporation of a concentrated solution of the product in CH₂Cl₂. ¹H NMR (300 MHz, CD₂Cl₂): δ 10.5 [t, ¹J(HN) = 79 Hz, NH], 7.8–6.6 (m, Ph), 3.0–2.8 (m, 8 H, CH₂). ³¹P-{¹H} NMR (120.5 MHz, CD₂Cl₂): δ 48.8 (s) (Found: C, 53.66; H, 4.35; N, 1.32. Calc. for C₅₅H₄₉F₆NO₆P₄RuS₂: C, 54.01; H, 4.04; N, 1.14%).

†† trans-[Ru(CNH)(OTf)(dppp)]]OTf **5b**. trans-[RuH(CN)(dppp)]] (1b, 200 mg, 0.21 mmol) was dissolved in 20 mL of CH₂Cl₂. Triflic acid (60 µl, 0.68 mmol) was added and the solution was stirred at room temperature for 20 min under argon bubbling. The solvent was removed *in vacuo* and diethyl ether was added producing a white-pale yellow precipitate. The product was filtered off, washed with diethyl ether, and dried *in vacuo*. Recrystallization from CH₂Cl₂-diethyl ether yielded 0.21 g, 80% (Found: C, 53.86; H, 4.33; N, 1.10. Calc. for C₅₇H₅₃F₆-NO₆P₄RuS₂: C, 54.72; H, 4.27; N, 1.12%). IR (Nujol), cm⁻¹: v (CN) 2074w. ¹H NMR (CD₂Cl₂. 293 K, 200 MHz): δ 1.8 (br), *T* = 193 K, δ - 7.3 (t), 0.9 [t, *J*(P,P') = 32.7 Hz].

Fig. 1 An ORTEP ¹⁴ diagram of complex **5a**. Thermal ellipsoids represent the 50% probability surface. The hydrogen on the nitrogen was located in Fourier electron difference map. Selected bond lengths (Å) and angles (°): Ru–O(1) 2.299(2), Ru–C(5) 1.883(3), Ru–P(1), 2.3938(7), Ru–P(2) 2.3851(8), Ru–P(3) 2.4363(8), Ru–P(4) 2.4144(8), C(5)–N(1) 1.149(4), N(1)–H(1N) 0.77, H(1N)–O(3S) 1.86; O(1)–Ru–C(5) 171.3(1), Ru–C(5)–N(1) 177.2(3), C(5)–N(1)–H(1N) 170.4, N(1)–H(1N)–O(3S) 173.4

by a characteristic ¹HN 1:1:1 triplet in the ¹H NMR spectrum at δ 10.5 [¹J(NH) 79 Hz] for **5a** or by a broad singlet at δ 11.0 at 183 K for 5b. Complexes 5 give singlets in the room temperature $^{31}\text{P-}\{^1\text{H}\}$ NMR spectra at δ 48.8 for **5a** and 1.8 for **5b**, respectively. A single-crystal X-ray diffraction study of 5a^{‡‡} reveals the presence of a co-ordinated triflate and a triflate anion which is hydrogen bonded to an NH group of a slightly bent CNH unit (C-N-H 170.4°) (Fig. 1). The CNH ligand has similar dimensions to the one of the complex trans-[FeH-(CNH)(dtpe)₂]BF₄.¹⁵ The Ru–O(1) distance of 2.299(2) Å is long in comparison to the range of Ru-O distances of 2.177(4) to 2.233(2) Å observed in other ruthenium(II)-triflate complexes.¹⁶⁻¹⁸ The crowded Ru(dppe)₂ site and the high trans influence of the CNH ligand cause a weakening of the Ru-O bond and this allows the weak dihydrogen ligand to co-ordinate in its place (see below). Complex 5a is a weak Brønsted acid. It is not deprotonated by diethyl ether or triphenylphosphine.

When complex **5a** in CD₂Cl₂ with excess HOTf is reacted with 1 atm H₂, complex **4a** is formed in less than 5 min as expected for the reverse of equation (2). Significantly, when complex **5a** in CD₂Cl₂ is placed under 1 atm H₂ in the absence of HOTf, the dihydrogen complex *trans*-[Ru(η^2 -H₂)(CN)-(dppe)₂]⁺ **2a** is produced along with 1 equivalent of triflic acid, probably present mainly as [TfO–HOTf]⁻⁷ (Scheme 2). The hydrogen-bonded triflic acid–triflate cluster is identified by ¹H NMR spectroscopy as a broad peak at δ 13.1. Complex **4a** is the likely intermediate in this reaction. However, since it is only

^{‡‡} Crystal data for **5a**: C₃₅H₄₉F₆NO₆P₄RuS₂, M = 1223.02, monoclinic, space group P_{2_1}/c (no. 14), a = 9.8064(12), b = 22.121(2), c = 25.213(3) Å, $\beta = 93.210(8)^\circ$, U = 5460.6(11) Å³, $D_c = 1.488$ g cm⁻³, Z = 4, T = 173(2) K, $\mu = 0.552$ mm⁻¹. For reflections with 2.56 $< 0 < 27.00^\circ$, R(F) = 0.0365 for 7908 observed reflections $[I > 2\sigma(I)]$ and $wR(F^2) = 0.0914$ for all 10 773 reflections. CCDC number 186/1011. See http:// www.rsc.org/suppdata/dt/1998/2111/ for crystallographic files in .cif format.

Scheme 2 [Ru] is the fragment [Ru(dppe)₂] or [Ru(dppp)₂]

stable in the presence of excess HOTf (see above), it must eliminate triflic acid. The product expected from the heterolytic splitting of dihydrogen would be the monohydride complex *trans*-[Ru(H)(CNH)(dppe)₂]OTf **3a**. However as indicated by equation (1), **2a** is the thermodynamically stable product. A similar, slower reaction between **5b** and H₂ produces a mixture of both **2b** and **3b**. However complex **2b** can be quantitatively formed in CH₂Cl₂ solution by treating **5b** with 1 equivalent of NEt₃ and then reacting the product with 1 atm H₂. Studies of the factors that influence the stability of the tautomers **2** and **3** and the properties of related complexes containing iron and osmium and the diphosphine ligands PEt₂CH₂CH₂PEt₂ and PPh₂CH₂PPh₂ are in progress.

Acknowledgements

This work was supported by an NSERC operating grant and loan of ruthenium salts from Johnson Matthey PLC (to R. H. M.) and by Italian Ministero dell'Università e della Ricerca Scientifica (to P. R.). E. R. gratefully acknowledges the Regione Friuli-Venezia Giulia for a fellowship.

References

- 1 C. E. Forde, S. E. Landau and R. H. Morris, J. Chem. Soc., Dalton Trans., 1997, 1663.
- 2 T. P. Fong, A. J. Lough, R. H. Morris, T. Stephan, P. Rigo and E. Rocchini, unpublished work.
- 3 M. S. Chinn, D. M. Heinekey, N. G. Payne and C. D. Sofield, Organometallics, 1989, 8, 1824.
- 4 E. Rocchini, A. Mezzetti, H. Ruegger, U. Burckhardt, V. Gramlich, A. Del Zotto, P. Martinuzzi and P. Rigo, *Inorg. Chem.*, 1997, **36**, 711.
- 5 M. Schlaf, A. J. Lough, P. A. Maltby and R. H. Morris, *Organometallics*, 1996, **15**, 2270.
- 6 M. Schlaf, A. J. Lough and R. H. Morris, *Organometallics*, 1996, **15**, 4423.
- 7 R. M. Bullock, J. S. Song and D. J. Szalda, *Organometallics*, 1996, **15**, 2504.
- 8 T. A. Luther and D. M. Heinekey, Inorg. Chem., 1998, 37, 127.
- 9 C. Bianchini, S. Moneti, M. Peruzzini and F. Vizza, *Inorg. Chem.*, 1997, **36**, 5818.
- 10 R. C. Schnabel and D. M. Roddick, Organometallics, 1996, 15, 3550.
- 11 R. C. Schnabel and D. M. Roddick, Organometallics, 1993, 12, 704.
- 12 B. P. Cleary and R. Eisenberg, Inorg. Chim. Acta, 1995, 240, 135.
- 13 R. H. Morris and R. Wittebort, Magn. Res. Chem., 1997, 35, 243.
- 14 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 15 P. I. Amrhein, S. D. Drouin, C. E. Forde, A. J. Lough and R. H. Morris, *Chem. Commun.*, 1996, 1665.
- 16 P. W. Blosser, J. C. Gallucci and A. Wojcicki, *Inorg. Chem.*, 1992, 31, 2376.
- 17 C. Gemel, D. Kalt, K. Mereiter, V. N. Sapunov, R. Schmid and K. Kirchner, Organometallics, 1997, 16, 427.
- 18 J.-P. Sutter, S. L. James, P. Steenwinkel, T. Karlen, D. M. Grove, N. Veldman, W. J. J. Smeets, A. L. Spek and G. van Koten, *Organometallics*, 1996, **15**, 941.

Received 30th April 1998; Communication 8/03256D