Complexed bridging ligand, $\left[\mathrm{M}(\text { bpca })_{2}\right](\mathrm{M}=\mathbf{M n}$ (II) or Fe (II); Hbpca $=$ bis(2-pyridylcarbonyl)amine), as a building block for linear trinuclear complexes

Takashi Kajiwara and Tasuku Ito
Department of Chemistry, Graduate School of Science, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan. E-mail: ito@agnus.chem.tohoku.ac.jp

Received 24th August 1998, Accepted 25th August 1998

The antiferromagnetically coupled trimanganese complex $\left[\mathrm{Mn}^{\mathrm{II}}(\mathrm{bpca})_{2}\left\{\mathrm{Mn}^{\mathrm{II}}(\mathrm{hfac})_{2}\right\}_{2}\right] \quad$ (Hbpca $=$ bis(2-pyridylcarbonyl)amine; Hhfac = hexafluoroacetylacetone) and its iron-manganese mixed metal derivative, $\left[\mathrm{Fe}^{\mathrm{II}}(\mathrm{bpca})_{2}{ }^{-}\right.$ $\left\{\mathrm{Mn}^{\mathrm{II}}(\mathrm{hfac})_{2}\right\}_{2}$], were synthesized by the reaction of two equivalents of $\left[\mathrm{Mn}(\mathrm{hfac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ with one equivalent of $\left[\mathrm{M}(\mathrm{bpca})_{2}\right.$], the latter acting as a bridging complexedligand.

The chemistry of multi-metal-centered complexes or metal complex assemblies with highly ordered solid state structures has attracted much attention. ${ }^{1}$ In such chemistry, "complexedligands" are known to be beneficial in the construction of multi-metal complexes and the control of their properties. Monomeric complexes containing the tridentate ligand bpca $^{-}\left(\mathrm{Hbpca}=\right.$ bis $(2$-pyridylcarbonyl)amine $),\left[\mathrm{M}(\mathrm{bpca})_{2}\right](\mathrm{M}=$ $\left.\mathrm{Mn}(\mathrm{II}),{ }^{2} \mathrm{Fe}(\mathrm{II}),{ }^{3} \mathrm{Ni}(\mathrm{II}),{ }^{4} \mathrm{Cu}(\mathrm{II}),{ }^{4} \mathrm{Zn}(\mathrm{II})^{4}\right)$ and $\left[\mathrm{M}(\text { bpca })_{2}\right] \mathrm{X}$ ($\left.\mathrm{M}=\mathrm{Fe}(\mathrm{III}) ; \mathrm{X}^{-}=\mathrm{NO}_{3}^{-}, \mathrm{ClO}_{4}^{-}\right),{ }^{3}$ could be examples of this type of complexed ligand, although no example has been reported to our knowledge. They have four free $\mathrm{C}=\mathrm{O}$ groups which may act as two sets of bidentate donors, and, upon reaction with a metal ion M^{\prime}, they may give a trinuclear complex of the type $\mathrm{M}^{\prime}(\mu$-bpca $) \mathrm{M}(\mu$-bpca $) \mathrm{M}^{\prime}$. It has been reported that oximato and oxamido complexes can act as a complexed ligand to give di-, ${ }^{5}$ tri-, ${ }^{6}$ and tetra-nuclear complexes. ${ }^{7}$ One of the characteristics of the present system is that $\left\{\mathrm{M}(\mathrm{bpca})_{2}\right\}$ has a delocalized π-system which might mediate $\mathrm{M}-\mathrm{M}^{\prime}$ interactions in redox and magnetic behaviour in a different way from oxamido complexes. Here we report two examples of trinuclear complexes containing bridging $\left\{\mathrm{M}(\mathrm{bpca})_{2}\right\}$.

$\left[\mathrm{Mn}(\mathrm{bpca})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}^{2}$ or $\left[\mathrm{Fe}(\mathrm{bpca})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}^{3}$ was allowed to react with two equivalents of $\left[\mathrm{Mn}(\mathrm{hfac})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ in CHCl_{3} solution (Hhfac $=$ hexafluoroacetylacetone). Slow evaporation afforded

Fig. 1 An ORTEP ${ }^{8}$ drawing of $\left[\mathrm{Mn}(\mathrm{bpca})_{2}\left\{\mathrm{Mn}(\mathrm{hfac})_{2}\right\}_{2}\right]$ with thermal ellipsoids at 30% probability. Hydrogen atoms and fluorine atoms are omitted for clarity. Selected bond distances $(\AA): \mathrm{Mn}(1)-\mathrm{N}(1)$ 2.246(2), $\mathrm{Mn}(1)-\mathrm{N}(2)$ 2.196(2), $\mathrm{Mn}(1)-\mathrm{N}(3) \quad 2.221(2), \mathrm{Mn}(1)-\mathrm{N}(4)$ 2.262(2), $\mathrm{Mn}(1)-\mathrm{N}(5)$ 2.203(2), $\mathrm{Mn}(1)-\mathrm{N}(6)$ 2.242(2), $\mathrm{Mn}(2)-\mathrm{O}(1)$ $2.153(2), \mathrm{Mn}(2)-\mathrm{O}(2)$ 2.176(2), $\mathrm{Mn}(2)-\mathrm{O}(5)$ 2.146(3), $\mathrm{Mn}(2)-\mathrm{O}(6)$ $2.163(3), \mathrm{Mn}(2)-\mathrm{O}(7) 2.126(3), \mathrm{Mn}(2)-\mathrm{O}(8)$ 2.113(3), $\mathrm{Mn}(3)-\mathrm{O}(3)$ 2.171(2), $\mathrm{Mn}(3)-\mathrm{O}(4)$ 2.190(2), $\mathrm{Mn}(3)-\mathrm{O}(9)$ 2.152(2), $\mathrm{Mn}(3)-\mathrm{O}(10)$ $2.147(2), \mathrm{Mn}(3)-\mathrm{O}(11) 2.120(2), \mathrm{Mn}(3)-\mathrm{O}(12)$ 2.122(2), $\mathrm{O}(1)-\mathrm{C}(6)$ $1.221(3), \quad \mathrm{O}(2)-\mathrm{C}(7) \quad 1.220(3), \quad \mathrm{O}(3)-\mathrm{C}(19) \quad 1.251(3), \quad \mathrm{O}(4)-\mathrm{C}(18)$ $1.241(3), \mathrm{Mn}(1) \cdots \mathrm{Mn}(2) 5.6708(6), \mathrm{Mn}(1) \cdots \mathrm{Mn}(3) 5.6855(6)$.
almost quantitatively orange and black crystals of trinuclear complexes, $\left[\mathrm{Mn}(\mathrm{bpca})_{2}\left\{\mathrm{Mn}(\mathrm{hfac})_{2}\right\}_{2}\right]$ and $\left[\mathrm{Fe}(\mathrm{bpca})_{2}\{\mathrm{Mn}-\right.$ $\left.\left.(\mathrm{hfac})_{2}\right\}_{2}\right]$, respectively. \dagger

Fig. 1 shows the structure of $\left[\mathrm{Mn}(\mathrm{bpca})_{2}\left\{\mathrm{Mn}(\mathrm{hfac})_{2}\right\}_{2}\right] . \ddagger$ As expected, a $\left\{\mathrm{Mn}(\mathrm{bpca})_{2}\right\}$ unit binds two $\left\{\mathrm{Mn}(\mathrm{hfac})_{2}\right\}$ units as a bridging bis-bidentate complexed-ligand. The central Mn ion, Mn 1 , is surrounded by four pyridyl nitrogens ($\mathrm{N} 1, \mathrm{~N} 3, \mathrm{~N} 4$ and N 6) with $\mathrm{Mn}-\mathrm{N}$ distances of $2.221(2)-2.262(2) \AA$ and two amide nitrogens (N 2 and N 5) with distances of 2.196(2) and 2.203(2) \AA. The latter are slightly longer than those in the parent monomeric $\left[\mathrm{Mn}(\mathrm{bpca})_{2}\right](2.179(7)$ and $2.169(7) \AA) .{ }^{2}$ The $\mathrm{C}=\mathrm{O}$ distances (average $1.233 \AA$) are definitely longer than those in the monomer, which results in the low frequency shift of $\mathrm{C}=\mathrm{O}$ stretching ($1670 \mathrm{~cm}^{-1}$: an intense band at $1700 \mathrm{~cm}^{-1}$ for the parent monomer ${ }^{2}$). These facts suggest that the minus charge of bpca^{-}is delocalized on the $\mathrm{O}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{O}$ moiety in the trinuclear complex, whereas it is located mainly on the amide nitrogen in $\left[\mathrm{Mn}(\mathrm{bpca})_{2}\right]$. Terminal Mn ions, Mn 2 and Mn 3 , are coordinated by six oxygen atoms from two hfac anions and from a $\left\{\mathrm{Mn}(\mathrm{bpca})_{2}\right\}$ unit with $\mathrm{Mn}-\mathrm{O}$ distances of 2.113(3)2.190(2) \AA. These two terminal Mn ions are in a chiral environment with the combination Δ, Λ. The three Mn ions are arranged in an almost linear fashion with separations of $5.6708(6) \AA$ for $\mathrm{Mn} 1 \cdots \mathrm{Mn} 2$ and $5.6855(6) \AA$ for $\mathrm{Mn} 1 \cdots$ Mn 3 , respectively.
The structure of $\left[\mathrm{Fe}(\mathrm{bpca})_{2}\left\{\mathrm{Mn}(\mathrm{hfac})_{2}\right\}_{2}\right]$ was isostructural to $\left[\mathrm{Mn}(\mathrm{bpca})_{2}\left\{\mathrm{Mn}(\mathrm{hfac})_{2}\right\}_{2}\right] . \&$ Overall structural features including delocalization of the $\mathrm{O}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{O}$ moiety are very similar to each other.

Fig. 2 Plots of $\chi_{\mathrm{m}} T(\mathrm{o})$ and $\chi_{\mathrm{m}}(\mathrm{x})$ vs. T for $\left[\mathrm{Mn}(\mathrm{bpca})_{2}\left\{\mathrm{Mn}(\mathrm{hfac})_{2}\right\}_{2}\right]$. Solid line corresponds to the theoretical curve for which parameters are given in the text.

The temperature dependence of the magnetic susceptibility of the compounds was measured down to 2.0 K . Fig. 2 shows the magnetic susceptibility data for $\left[\mathrm{Mn}(\mathrm{bpca})_{2}\left\{\mathrm{Mn}(\mathrm{hfac})_{2}\right\}_{2}\right]$ in the form of $\chi_{\mathrm{m}} T$ and χ_{m} vs. T plots. The $\chi_{\mathrm{m}} T$ value at room temperature, $12.9 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$, is slightly smaller than the spin-only value of $13.1 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ for the dilute three-spin system with a g value of 2.00 . On lowering the temperature, the $\chi_{\mathrm{m}} T$ value gradually decreases suggesting antiferromagnetic interaction between adjoining Mn (II) ions through the delocalized π-system. Magnetic data of the trimer was analyzed by the three-spin model with exchange coupling constant $J[H=$ $\left.-2 J\left(S_{\mathrm{Mn} 1} \cdot S_{\mathrm{Mn} 2}+S_{\mathrm{Mn} 1} \cdot S_{\mathrm{Mn} 3}\right)\right]^{9}$ The least squares calculation yielded the best fit parameters of $g=1.98(1)$ and $J=-0.35(1)$ $\mathrm{cm}^{-1} .\left[\mathrm{Fe}(\mathrm{bpca})_{2}\left\{\mathrm{Mn}(\mathrm{hfac})_{2}\right\}_{2}\right]$ containing low-spin $\mathrm{Fe}(\mathrm{II})$ gave a temperature independent $\chi_{\mathrm{m}} T$ value of $8.52 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$ above 10.0 K . The weak magnetic interaction in $\left[\mathrm{Mn}(\mathrm{bpca})_{2}\{\mathrm{Mn}-\right.$ (hfac) $\left.)_{2}\right\}_{2}$] may be related to the $\mathrm{Mn}-\mathrm{N}$ distances of 2.196(2)2.262(2) \AA, which are longer than the M-N separations of divalent late first row transition metal ions. In fact, [Mn(bpca) $)_{2}\left\{\mathrm{Mn}(\mathrm{hfac})_{2}\right\}_{2}$] shows no distinct MLCT (from Mn to bpca $^{-}$) band in the absorption spectrum, $\boldsymbol{\|}$ suggesting weak $\mathrm{d} \pi$ $\mathrm{p} \pi$ interactions.
This study shows that $\left[\mathrm{M}(\mathrm{bpca})_{2}\right]^{n+}$ could be a potential building block for supramolecular compounds. In fact, similar trinuclear complexes $\left[\mathrm{M}(\mathrm{bpca})_{2}\left\{\mathrm{Mn}(\mathrm{hfac})_{2}\right\}_{2}\right] \quad(\mathrm{M}=\mathrm{Ni}(\mathrm{II})$, $\mathrm{Cu}(\mathrm{II})$) have been isolated via similar reactions, in which $\left\{\mathrm{M}(\text { bpca })_{2}\right\}$ is acting as a building block. ${ }^{10}$ Such studies are now in progress in our laboratories.

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research on Priority Areas (No. 10149102) from the Ministry of Education, Science and Culture, Japan.

Notes and references

\dagger Elemental analysis: 1, found: C, 36.37; 1.62; N, 5.85. Calc. for $\mathrm{C}_{44} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{Mn}_{3} \mathrm{~F}_{24}$: C, $36.61 ; \mathrm{H}, 1.26 ; \mathrm{N}, 5.82 \%$. 2, found: C, 36.59 ; $\mathrm{H}, 1.53$; $\mathrm{N}, 5.77$. Calc. for $\mathrm{C}_{44} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{FeMn}_{2} \mathrm{~F}_{24}$: C, 36.59; H, 1.26; N, 5.82%.
\ddagger Crystal data: $\mathrm{C}_{44} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{Mn}_{3} \mathrm{~F}_{24}, M=1443.44$, orthorhombic, space group Pna $_{1}$ (no. 33), $a=17.142(9)$) $b=20.552(3), c=16.233(4) \AA$, $U=5718(3) \AA^{3}, Z=4, D_{\mathrm{c}}=1.676 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=2940.00, \mu(\mathrm{Mo}-$ $\mathrm{K} \alpha)=12.30 \mathrm{~cm}^{-1}$, 3953 unique reflections $(I>2.0 \sigma(I))$ collected at room temperature with $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($\lambda=0.71069 \AA$) up to $2 \theta=55.0^{\circ}$ on a Rigaku AFC 7S diffractometer. Final R value is 0.058 for observed data. CCDC reference number 186/1132. See http:// www.rsc.org/suppdata/dt/1998/3351/ for crystallographic files in .cif format.
\S Crystal data: $\mathrm{C}_{44} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{12} \mathrm{FeMn}_{2} \mathrm{~F}_{24}, M=1444.35$, orthorhombic, space group Pna2 (no. 33), $a=16.701$ (6), $b=20.134$ (7), $c=16.353$ (5) $\AA, U=5498(2) \AA^{3}, Z=4, R=0.052$.

- Electronic spectrum in CHCl_{3} solution: $\lambda_{\max }=290 \mathrm{~nm}\left(\varepsilon=60500 \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$) and $c a .420 \mathrm{~nm}$ (shoulder, $c a .600 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$).

1 For example, H. O. Stumpf, L. Ouahab, Y. Pei, D. Grandjean and O. Kahn, Science, 1993, 261, 447; S. L. Suib, Chem. Rev., 1993, 93, 803.

2 D. Marcos, J.-V. Folgado and D. Beltrán-Porter, Polyhedron, 1990, 9, 2699.
3 S. Wocadlo, W. Massa and J.-V. Folgado, Inorg. Chim. Acta, 1993, 207, 199.
4 D. Marcos, R. Martinez-Mañe, J.-V. Folgado, A. Beltrán-Porter, D. Beltrán-Porter and A. Fuertes, Inorg. Chim. Acta, 1989, 159, 11.

5 F. Birkelbach, M. Winter, U. Flörke, H.-J. Haupt, C. Butzlaff, M. Lengen, E. Bill, A. X. Trautwein, K. Weighardt and P. Chaudhuri, Inorg. Chem., 1994, 33, 3990; P. Basu, S. Pal and A. Chakravorty, J. Chem. Soc., Dalton Trans., 1991, 3217; A. Escuer, R. Vicente, J. Ribas, R. Costa and X. Solans, Inorg. Chem., 1992, 31, 2627.
6 For example, S. Chattopadhyay, P. Basu, S. Pal and A. Chakravorty, J. Chem. Soc., Dalton Trans., 1990, 3829; R. Costa, A. Garcia, R. Sanchez, J. Ribas, X. Solans and V. Rodriguez, Polyhedron, 1993, 12, 2697.
7 C. Krebs, M. Winter, T. Weyhermüller, E. Bill, K. Wieghardt and P. Chaudhuri, J. Chem. Soc., Chem. Commun., 1995, 1913; F. Corazza, E. Solari, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Chem. Commun., 1986, 1562.

8 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
9 O. Kahn, Molecular Magnetism, VCH Publishers, Weinheim, 1993; S. Ménage, S. E. Vitols, P. Bergerat, E. Codjovi, O. Kahn, J.-J. Girerd, M. Guillot, X. Solans and T. Calvet, Inorg. Chem., 1991, 30, 2666.

10 T. Noguchi, T. Kajiwara and T. Ito, unpublished work.

Communication 8/06618C

