Anna Knoepfler-Mühlecker, Birgit Scheffter, Holger Kopacka, Klaus Wurst and Paul Peringer*

Institut für Allgemeine, Anorganische und Theoretische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria. E-mail: paul.peringer@uibk.ac.at

Received 17th February 1999, Accepted 16th June 1999

The subvalent mercury clusters $Hg_3(\mu\text{-dppm})_3(SiF_6)_2$ and $Hg_3(\mu\text{-dppm})_3(PF_6)_4$ with weakly co-ordinating octahedral fluoro-anions have been prepared from HgO, H_2SiF_6 or HPF_6 , dppm and elemental mercury. The solid state structures of these clusters were determined by single crystal X-ray structure analysis as well as those of $Hg_3(\mu\text{-dppm})_3(O_3SCF_3)_4$, $Hg_3(\mu\text{-dppm})_3(O_3SCF_3)_4$ ·MeOH, $Hg_3(\mu\text{-dppm})_3(O_3SCH_3)_4$ and $Hg_3(\mu\text{-dppm})_3(O_3SCH_3)_4$ ·4 H_2O . The $[Hg_3(\mu\text{-dppm})_3]$ clusters are bifunctional recognition hosts and two anions of all the clusters are found inside the two cavities formed by the 12 phenyl groups of the dppm ligands and the Hg_3 triangle. The anion dependence of the ^{31}P NMR shift of the clusters is attributed to a varying occupancy of the cavities in solution.

Introduction

The design of multidentate Lewis acids is a current area of research. Scheme 1 summarises various previously studied multidentate Lewis acidic compounds of mercury.¹⁻⁹

Scheme 1

In this paper we report on the interaction of the tridentate Lewis acid $[Hg_3(\mu\text{-dppm})_3]^{4+}$ (Scheme 1) with the formal oxidation state +4/3 for Hg with different oxo- and fluoro-anions.

The host–guest chemistry of the related Group 10 metal members of the unsaturated $[M_3(\mu\text{-dppm})_3]$ type clusters with anionic and neutral ligands has been intensively studied. These complexes were shown to be bifunctional recognition hosts due to the hydrophobic cylindrical cavities formed by the phenyl groups of the dppm ligands and the Lewis acidic M_3 triangle. ^{10,11} In contrast to the Group 10 metal $[M_3(\mu\text{-dppm})_3]$ type clusters in which at least one cavity is persistently occupied by a one atom bridging ligand, *e.g.* CO, both cavities of the Hg cluster are accessible to host–guest interactions. The X-ray structure of $Hg_3(\mu\text{-dppm})_3(SO_4)_2$ has been previously deter-

mined and both cavities were found to be occupied by SO_4 anions. The ^{31}P NMR shifts of $Hg_3(\mu\text{-dppm})_3(SO_4)_2$ and $Hg_3(\mu\text{-dppm})_3(O_3SCF_3)_4$ in solution are surprisingly different (10 ppm) and this may be attributed to the different size and donor abilities of the anions involved. In order to investigate the host–guest interactions of the $[Hg_3(\mu\text{-dppm})_3]^{4+}$ cluster in solution and in the solid state we have synthesised and structurally characterised the hitherto unknown clusters with the weakly co-ordinating octahedral fluoro-anions PF_6^- and SiF_6^{2-} and also report on the X-ray structures of the previously reported 12 Hg clusters involving the $CF_3SO_3^-$ and $CH_3SO_3^-$ anions.

Results

Synthesis and NMR spectroscopy

The new subvalent clusters $Hg_3(\mu\text{-dppm})_3(SiF_6)_2$ 1 and $Hg_3(\mu\text{-dppm})_3(PF_6)_4$ 2 with the formal oxidation state of +4/3 were prepared according to eqn. (1) in almost quantitative yield.

$$2 \text{ HgO} + 2 \text{ H}_2 \text{SiF}_6 + 3 \text{ dppm} + \text{Hg}$$

$$2 \text{ HgO} + 4 \text{ HPF}_6 + 3 \text{ dppm} + \text{Hg}$$

$$4 + \text{Hg} - \text{Hg}$$

$$2 + \text{Hg} - \text{Hg}$$

$$3 + \text{Hg} - \text{Hg}$$

$$4 + \text{Hg}$$

The phosphorus-31 chemical shift of the PF₆ cluster **2** (60.5 ppm) is the highest value hitherto observed for a Hg₃(μ-dppm)₃ cluster. Table 1 summarises the phosphorus-31 shifts of **1** and **2** together with those of the previously reported clusters Hg₃(μ-dppm)₃(SO₄)₂ **3**, Hg₃(μ-dppm)₃(CF₃SO₃)₄ **4** and Hg₃(μ-dppm)₃(CH₃SO₃)₄ **5**. The shifts of these compounds cover a range of *ca.* 15 ppm and this is surprisingly large in view of the fact that each mercury atom is already strongly bound to two Hg and two phosphorus atoms. The NMR parameters appear to be related to the presence of the anions in the cavities which is thought to be controlled by the donor abilities and the size of the anions. Phosphorus shift data for the corresponding

Pd and Pt clusters exhibit a similar anion dependence. The solid state structure of $[Pd_3(\mu\text{-dppm})_3(\mu_3\text{-CO})][PF_6]_2$ shows that the PF₆ anion is located outside the cavity. The "empty" cluster exhibits unusual distortions of the Pd_3P_6 fragment when compared to clusters in which an anion is found inside the cavity e.g. $[Pd_3(\mu\text{-dppm})_3(\mu_3\text{-CO})(CF_3CO_2)][PF_6].$ ¹⁰

Crystallography

The crystal data of the clusters $1 \cdot 2H_2O \cdot C_4H_8O_2$, $2 \cdot 2CH_2Cl_2$, $4 \cdot MeOH$, 4, $5 \cdot 4H_2O$ and 5 are collected in Table 2. As exemplified for the SiF₆ cluster 1 depicted in Fig. 1 and for the PF₆ cluster 2 sketched in Fig. 2, all clusters invariably consist of Hg₃ triangles whose edges are bridged by three dppm ligands.

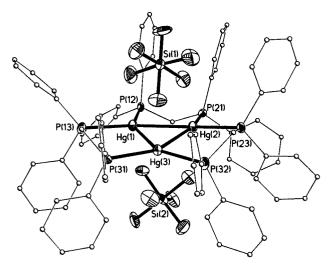


Fig. 1 An ORTEP²³ representation of 1.

Table 1 31 P NMR chemical shifts of the cluster $[Hg_3(\mu\text{-dppm})_3]^{4+}$ with different oxo- and fluoro-anions (solvent: CH_2Cl_2)

Anion	δ ³¹ P	Ref.	
SO ₄ ²⁻ CH ₃ SO ₃ - SiF ₆ ²⁻ CF ₃ SO ₃ - PF ₆ -	44.7 49.4 49.9 54.7 60.5	This work, 12 ^a This work, 12 ^a This work This work, 12 ^a This work	

^a Slightly different shifts were reported for different solvents.

Two of the CH₂ groups lie above and one below the Hg₃ triangle resulting in four equatorial and two axial phenyl groups above the Hg₃ triangle and two equatorial and four axial phenyl groups below the Hg₃ triangle forming two cavities. The cavities of all clusters are occupied by anions. This is also observed for the structure of Hg₃(μ-dppm)₃(SO₄)₂, where both SO₄ anions are found to be contained in the cavities.¹² In the case of the anions CH₃SO₃, CF₃SO₃ and PF₆, there are two peripheral counterions outside of the cavities which do not have any contacts with mercury within the sum of the appropriate van der Waals radii.

Table 3 summarises the Hg–Hg distances of the $[Hg_3(\mu-dppm)_3]^{4+}$ clusters which cover a range of 271.7(2)–286.49(13) pm. Interestingly, both extremes are observed for CF_3SO_3 clusters, the lowest value for $4\cdot MeOH$ and the highest value for 4 and this renders doubtful any correlation of the Hg–Hg distances with the anions involved. The mineral terlinguaite $Hg_4Cl_2O_2^{13}$ and $Hg_9As_4O_{16}^{14}$, which both possess Hg_3 triangles, have values of 270.3(1); 266.2, 266.8 and 269.6 pm, respectively. In elemental mercury each atom has six nearest neighbours at 299 and six more at 347 pm.

Table 4 summarises the Hg-O and Hg-F distances between the mercury atoms of the Hg_3 triangle and the anions contained in

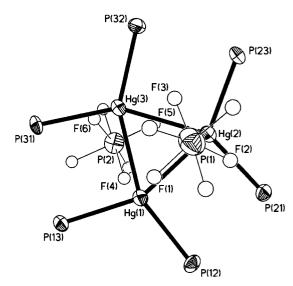


Fig. 2 An ORTEP representation of 2 showing that the phosphorus atoms of the PF_6 anions are not positioned exactly above and below the midpoint of the Hg_3 triangle; for clarity, only the *ipso* carbon atoms of the phenyl groups are drawn.

Table 2 Crystal data of the cluster $[Hg_3(\mu-dppm)_3]^{4+}$ with different oxo- and fluoro-anions

Compound	$1.2H_2O.C_4H_8O_2$	2.2CH ₂ Cl ₂	4 ⋅MeOH	4	5 ⋅4H ₂ O	5
Formula M Crystal system a/pm b/pm	C ₇₅ H ₆₆ F ₁₂ Hg ₃ OP ₆ Si ₂ 2163.18 Orthorhombic 2228.0(4) 2066.5(4)	C ₇₅ H ₆₆ F ₂₄ Hg ₃ P ₁₀ 2504.60 Monoclinic 1455.9(4) 4442.1(11)	C ₇₉ H ₆₆ F ₁₂ Hg ₃ O ₁₂ P ₆ S ₄ 2383.19 Triclinic 1483.1(5) 1504.5(5)	C ₇₉ H ₆₆ F ₁₂ Hg ₃ O ₁₂ P ₆ S ₄ 2351.15 Monoclinic 1439.2(3) 2677.3(5)	C ₇₉ H ₇₈ Hg ₃ O ₁₂ P ₆ S ₄ 2207.31 Triclinic 1492.0(3) 1503.6(3)	C ₇₉ H ₇₈ Hg ₃ O ₁₂ P ₆ S ₄ 2135.24 Monoclinic 2395.0(2) 2175.2(3)
c/pm a/° β/° γ/°	1690.9(4) ————————————————————————————————————	1511.3(3) — 115.12(2)	2319.0(5) 100.74(3) 96.81(4) 112.99(4)	2372.3(2) — 99.51(3)	2218.2(3) 83.19(2) 71.49(2) 65.96(2)	1959.4(3) — 111.13(1)
U/nm³ T/K Space group Z	7.785(3) 213(2) <i>Pca</i> 2 ₁	8.850(4) 213(2) P2 ₁ /c 4	4.574(2) 188(2) PĪ	9.015(3) 293(2) P2 ₁ /c 4	4.3092(14) 293(2) PĪ	9.521(2) 293(2) P2 ₁ /c 4
μ (Mo-K α)/mm ⁻¹ Reflections total, independent, $R_{\rm int}$ Final $R1$	6.134 6390, 5702, 0.0404 0.078	5.586 9046, 7567, 0.0650 0.0646	5.299 7223, 6887, 0.0338 0.0649	5.375 13090, 10753, 0.700 0.0656	5.601 14022, 12409, 0.0465 0.0642	5.064 9256, 7432, 0.06 80 0.0612

Table 3 Hg-Hg distances in 1-5 (pm)

	Hg1–Hg2	Hg1–Hg3	Hg2–Hg3	mean Hg-Hg	Ref.
1·2H ₂ O·C ₄ H ₈ O ₂	279.57(12)	281.04(12)	273.46(12)	278.02	This work This work 12 This work This work This work This work This work
2·2CH ₂ Cl ₂	280.7(2)	279.5(2)	281.7(2)	280.6	
3·1.5H ₂ O	276.4(1)	276.4(1)	280.2(1)	277.7	
4·CH ₃ OH	271.7(2)	274.8(2)	278.1(2)	274.9	
4	275.26(11)	286.49(13)	284.09(13)	281.95	
5·4H ₂ O	281.91(9)	274.49(11)	277.80(9)	278.07	
5	277.76(13)	275.45(13)	279.94(13)	277.72	

Table 4 Hg-O/F distances in 1-5 (pm); values exceeding the appropriate upper van der Waals limit are in parentheses

	Hg1–O/F1	Hg1–O/F4	Hg2–O/F2	Hg2-O/F5	Hg3–O/F3	Hg3–O/F6	Ref.
1.2H ₂ O.C ₄ H ₈ O ₂	307(2)	269(2)	265(2)	266.9(14)	257.9(14)	298(2)	This work
2.2CH ₂ Cl ₂	299(2)	291(2)	279(2)	[401(3)]	313(2)	280(2)	This work
3·1.5H₂O	270	288	256	296	325	254	12
4·CH₃ÔH	321(2)	286(2)	302(2)	289(2)	279(2)	[347(3)]	This work
4	283(2)	[349(2)]	336(2)	273(2)	273(2)	290(2)	This work
5·4H ₂ O	263.0(11)	[397(2)]	298.1(11)	268.5(10)	326.4(11)	251.6(12)	This work
5	294(2)	322(6)	370(3)	263(2)	264(2)	[348(7)]	This work

the cavities. In order to discuss the values of the Hg–O distances it is useful to have a look at the van der Waals sum of Hg and oxygen. On the basis of Hg-Hg distances in metallic mercury, Grdenic proposed a van der Waals radius of 150 pm for Hg, but also suggested some sort of bonding within a value of 173 based on the 346 pm contacts in elemental mercury.¹⁵ Canty and Deacon proposed a general Hg radius of 173 and a possible range of 170 to 200 pm. In combination with 140 for oxygen this amounts to a Hg-O van der Waals sum between 290 and 340 pm. ¹⁶ There are two reviews compiling experimental Hg–O distances.^{17,18} Reference to Table 4 reveals that four of the five clusters have three Hg-O distances below the lower limit of 290, while the other distances exceed this value and in part also the higher limit of 340 pm. Typically, the short distances to oxygen atoms are formed by different mercury atoms within the Hg₃ system.

The van der Waals radius for fluorine is 135 pm, thus resulting in a range of 285–335 pm for $Hg\cdots F$ distances. According to Table 3, four $Hg\cdots F$ interactions of the SiF_6 cluster and two of the PF_6 cluster are within the lower limit whilst all $Hg\cdots F$ interactions of the SiF_6 cluster and five of the PF_6 cluster are within the upper limit. One Hg atom (Hg2) of the SiF_6 cluster has two short $Hg\cdots F$ contacts.

Discussion

Since all anions are contained in the cavities in the solid state, the ³¹P chemical shift phenomena appear not to be caused by the different size of the anions. This is in contrast to the corresponding palladium clusters [Pd₃(μ-dppm)₃(μ₃-CO)]²⁺ whose cavity is too small to accommodate the PF₆ anion in the solid state. The size of the cavities in M₃(μ-dppm)₃ clusters is governed by the M-M and M-P distances which are larger for Hg (Hg: Hg-Hg 271.7-286.5, Hg-P 247.3-254.8 pm) than for the Pd clusters (Pd: Pd-Pd 258-263, Pd-P 230-235 pm). 10,11 The size of the cavities has also been tuned by modification of the dppm ligands. In a recent paper the arsenic analogue of dppm, dpam [dpam = bis(diphenylarsino)methane], has been used to increase the size of the cavity of the Pd cluster and one PF₆ anion of $[Pd_3(\mu-dpam)_3(\mu_3-CO)][PF_6]_2$ is now contained in the cavity as has been established by the X-ray structure. 19 Another approach involves the substitution of the phenyl rings of dppm in Pt₃(μ-dppm)₃ clusters.²⁰

The $Hg\cdots O/F$ interactions are thought to be of largely electrostatic nature: the $Hg\cdots F$ distances of the hexafluoro-

silicate ion are distinctly shorter (mean 277.3 pm) compared with the substantially smaller hexafluorophosphate ion (mean 310.5 pm), and this is attributed to the charge of the respective anions. The same reason is thought to be responsible for the shorter Hg–O distances of the sulfate ion compared to the methanesulfonate and trifluoromethanesulfonate ions. The ³¹P NMR shift phenomena in solution are thus attributed to a varying dissociation of the different anions depending on the strength of the electrostatic binding in the cavities of the clusters. In view of the relatively long $Hg \cdots O/F$ distances observed, we propose that the large range of ³¹P chemical shifts observed for $Hg_3(\mu$ -dppm)₃ clusters with oxo- and fluoroanions is not directly caused by the co-ordination of the anions to the Hg_3 Lewis acid, but indirectly by distortions of the $Hg_3(\mu$ -dppm)₃ skeleton when the cavities are filled by anions.

The ³¹P chemical shift is thought to indicate the occupancy. A single resonance is observed in all cases, indicating, that the anion dissociation/association processes [e.g. eqn. (2)] occur rapidly on the ³¹P NMR timescale.

$$[Hg_{3}(\mu\text{-dppm})_{3}]^{4+} + O_{3}SCF_{3}^{-} \rightleftharpoons \\ [Hg_{3}(\mu\text{-dppm})_{3}(O_{3}SCF_{3})]^{3+} \\ [Hg_{3}(\mu\text{-dppm})_{3}(O_{3}SCF_{3})]^{3+} + O_{3}SCF_{3}^{-} \rightleftharpoons \\ [Hg_{3}(\mu\text{-dppm})_{3}(O_{3}SCF_{3})_{2}]^{2+} \quad (2)$$

In this context it is interesting to note, that the exchange of CH₃SO₃ anions located inside and outside the cavities has been shown to reach the slow exchange limit on the 1H NMR timescale at temperatures below 213 K, 12 whereas the SO₄ $^{2-}$ transfer between Hg₃(µ-dppm)₃(SO₄)(O₃SCF₃)₂, which is formed by the reaction of equimolar amounts of Hg₃(µ-dppm)₃(SO₄)₂ and Hg₃(µ-dppm)₃(O₃SCF₃)₄ as indicated in eqn. (3), and Hg₃(µ-dppm)₃(O₃SCF₃)₄ occurs slowly on the ^{31}P NMR time scale at ambient temperature.

$$Hg_3(\mu\text{-dppm})_3(SO_4)_2 + Hg_3(\mu\text{-dppm})_3(O_3SCF_3)_4 \longrightarrow$$

 $2 Hg_3(\mu\text{-dppm})_3(SO_4)(O_3SCF_3)_2$ (3)

In all cases the solid state structure has no three-fold symmetry whereas the equivalence of the dppm ligands in solution is indicated by ³¹P NMR. This fluxional behaviour reflects the relatively weak association of the anions.

Experimental

NMR spectra were recorded on a Bruker AC 200 spectrometer. Microanalyses were acquired by the Institut für Physikalische Chemie of the Universität Wien.

Synthesis of Hg₃(μ-dppm)₃(SiF₆)₂ 1

A suspension of yellow HgO (43.2 mg, 0.2 mmol) in H_2O (0.2 cm³) is treated with a 25% aqueous solution of H_2SiF_6 until a clear solution is obtained. Elemental Hg (ca. 100 mg), dppm (115.2 mg, 0.3 mmol) and CH_2Cl_2 (0.5 cm³) is added and the mixture is stirred for 1 h. According to ³¹P NMR spectroscopy, the products are formed in almost quantitative yield. The volatiles are evaporated under reduced pressure and the residue is recrystallised from ethyl acetate–methanol (1:1) to give colourless crystals of $1\cdot 2H_2O$ (160 mg, 74%) (Found: C, 44.0; H, 3.4. $C_{75}H_{66}F_{12}Hg_3P_6Si_2\cdot 2H_2O\cdot C_4H_8O_2$ requires: C, 43.86; H, 3.63%).

Synthesis of Hg₃(µ-dppm)₃(SO₄)₂ 3

A mixture of $\mathrm{HgSO_4}$ (59.3 mg, 0.2 mmol), dppm (115.2 mg, 0.3 mmol), $\mathrm{CH_2Cl_2}$ (0.6 ml) and $\mathrm{CH_3OH}$ (0.9 ml) is stirred until a clear solution is obtained. Elemental mercury (*ca.* 100 mg) is added and the mixture is stirred for 24 h. The volatiles are evaporated and the residue is suspended in 1 cm³ of $\mathrm{H_2O}$ and dissolved by addition of a minimal amount of $\mathrm{CH_3CN}$ at reflux. Upon slow cooling to ambient temperature, 160 mg (81%) of colourless crystals of $3\cdot1.5\mathrm{H_2O}$ are obtained (Found: C, 45.8; H, 3.5. $\mathrm{C_{75}H_{66}Hg_3O_8P_6S_2\cdot1.5H_2O}$ requires: C, 45.63; H, 3.52%).

Synthesis of $Hg_3(\mu\text{-dppm})_3(PF_6)_4$ 2, $Hg_3(\mu\text{-dppm})_3(O_3SCF_3)_4$ 4 and $Hg_3(\mu\text{-dppm})_3(O_3SCH_3)_4$ 5

The clusters were obtained similarly to **1** except for the use of a 60% aqueous solution of HPF₆, neat HO₃SCF₃ or HO₃SCH₃ instead of H₂SiF₆. **2**: (200 mg, 80% from ethyl acetate–dichloromethane) (Found: C, 37.4; H, 2.8. $C_{75}H_{66}F_{24}Hg_3P_{10}$ · 2CH₂Cl₂ requires: C, 36.92; H, 2.82%) **4**: (155 mg, 66% from ethyl acetate–dichloromethane) (Found: C, 40.5; H, 2.9. $C_{79}H_{66}F_{12}Hg_3O_{12}P_6S_4$ requires: C, 40.36; H, 2.83%) **5**: (128 mg, 60% from ethyl acetate–dichloromethane) (Found: C, 44.3; H, 3.7. $C_{79}H_{78}Hg_3O_{12}P_6S_4$ requires: C, 44.44; H, 3.68%). The solvate content of the solvates of **4** and **5** was confirmed by integration of the ¹H NMR spectra.

The asymmetric cluster $Hg_3(\mu\text{-dppm})_3(SO_4)(O_3SCF_3)_2$ was formed immediately upon mixing equimolar amounts of $Hg_3(\mu\text{-dppm})_3(SO_4)_2$ and $Hg_3(\mu\text{-dppm})_3(O_3SCF_3)_4$ and was not isolated.

Crystallog raphy

Suitable crystals of $Hg_3(\mu\text{-dppm})_3(SiF_6)_2 \cdot 2H_2O \cdot C_4H_8O_2$ were grown from ethyl acetate saturated with H₂O-methanol; of Hg₃(μ-dppm)₃(PF₆)₄·2CH₂Cl₂ from ethyl acetate-dichloromethane; of Hg₃(μ-dppm)₃(O₃SCF₃)₄ from ethyl acetatedichloromethane; of Hg₃(μ-dppm)₃(O₃SCF₃)₄·MeOH from ethyl acetate-methanol; of $Hg_3(\mu\text{-dppm})_3(O_3SCH_3)_4$ from ethyl acetate-dichloromethane; of Hg₃(µ-dppm)₃(O₃SCH₃)₄·4H₂O from ethyl acetate saturated with H₂O-dichloromethane. All crystals were examined by similar procedures. Crystals were mounted on a glass fiber, X-ray data were collected on a Siemens P4 diffractometer (Mo-Kα radiation, monochromator: highly oriented graphite crystal, ω-scan). Unit cell parameters were determined and refined from 22 to 32 randomly selected reflections in the θ range of 5.0 to 12.5°, obtained by P4 automatic routine. Every 97 reflections three standard reflections were measured. Data were corrected for Lorentz-polarisation and absorption effects (ψ -scans). The structures were solved by direct methods and subsequent difference Fourier techniques (SHELXS-86). 21 Refinement on F^2 with all measured reflections

was carried out by full-matrix least-squares techniques (SHELXL-93).²²

Because of the poor quality of some crystals, not all non-hydrogen atoms could be refined anisotropically. Only for 5·4H₂O the anisotropic refinement of all non-hydrogen atoms was possible. In all structures, at least the Hg and P atoms and the co-ordinated anions were refined anisotropically. All hydrogen atoms were placed at calculated ideal positions (riding model).

The peripheral O₃SCF₃ anions of **4·MeOH** were found to be disordered over three positions with occupancies of 0.75, 0.75 and 0.5. For the latter, an inversion center lies in the middle of the S–C bond and therefore three pairs of O- and F-atoms were refined with equal co-ordinates. The O₃SCH₃ anions of **5** were found to be disordered over four positions with occupancies of 0.66, 0.66, 0.33 and 0.33.

Crystal data and numerical details of structure determination and refinement are collected in Table 2.

CCDC reference number 186/1520.

See http://www.rsc.org/suppdata/dt/1999/2525/ for crystallographic files in .cif format.

Acknowledgements

Financial support from the "Fonds zur Förderung der wissenschaftlichen Forschung", Project P 11842-PHY is gratefully acknowledged.

References

- 1 M. F. Hawthorne, X. Yang and Z. Zheng, *Pure Appl. Chem.*, 1994, **66**, 245.
- 2 X. Yang, C. B. Knobler, Z. Zheng and M. F. Hawthorne, *J. Am. Chem. Soc.*, 1994, **116**, 7142.
- 3 M. F. Hawthorne and Z. Zheng, Acc. Chem. Res., 1997, 30, 267.
- 4 J. Vaugeois, M. Simard and J. D. Wuest, *Coord. Chem. Rev.*, 1995, 145, 55.
- 5 V. B. Shur, I. A. Tikhonova, F. M. Dolgushin, A. I. Yanovsky, Y. T. Struchkov, A. Y. Volkonsky, E. V. Solodova, S. Y. Panov, P. V. Pertovskii and M. E. Vol'pin, J. Organomet. Chem., 1993, 443, C19.
- 6 I. A. Tikhonova, F. M. Dolgushin, A. I. Yanovsky, Y. T. Struchkov, A. N. Gavrilova, L. N. Saitkulova, E. S. Shubina, L. M. Epstein, G. G. Furin and V. B. Shur, *J. Organomet. Chem.*, 1996, 508, 271.
- 7 A. L. Chistyakov, I. V. Stankevich, N. P. Gambaryan, Y. T. Struchkov, A. I. Yanovsky, I. A. Tikhonova and V. B. Shur, J. Organomet. Chem., 1997, 536, 413.
- 8 J. Vaugeois, M. Simard and J. D. Wuest, *Organometallics*, 1998, 17, 1215.
- 9 H. Schmidbaur, H.-J. Öller, D. L. Wilkinson, B. Huber and G. Müller, *Chem. Ber.*, 1989, **122**, 31.
- 10 R. Provencher, K. T. Aye, M. Drouin, J. Gagnon, N. Boudreault and P. D. Harvey, *Inorg. Chem.*, 1994, **33**, 3689.
- 11 R. J. Puddephatt, L. Manojlovic-Muir and K. W. Muir, *Polyhedron*, 1990, **9**, 2767.
- 12 B. Hämmerle, E. P. Müller, D. L. Wilkinson, G. Müller and P. Peringer, J. Chem. Soc., Chem. Commun., 1989, 1527.
- 13 S. Scavnicar, Acta Crystallogr., 1956, 9, 956; K. Aurivillius and L. Folkmarson, Acta Chem. Scand., 1968, 22, 2529; K. Brodersen, G. Göbel and G. Liehr, Z. Anorg. Allg. Chem., 1989, 575, 145.
- 14 A. L. Wessels, W. Jeitschko and M. H. Möller, Z. Naturforsch., Teil B, 1997, 52, 469.
- 15 D. Grdenic, Quart. Rev., 1965, 19, 303.
- 16 A. J. Canty and G. B. Deacon, Inorg. Chim. Acta, 1980, 45, L225.
- 17 W. Levason and C. A. McAuliffe, in *The Chemistry of Mercury*, ed. C. A. McAuliffe, McMillan, London, 1977.
- 18 K. Brodersen and H. U. Hummel, in *Comprehensive Coordination Chemistry*, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, Vol. 5, p. 1047.
- 19 T. Zhang, M. Drouin and P. D. Harvey, Chem. Commun., 1996, 877.
- 20 L. Hao, I. R. Jobe, J. J. Vittal and R. J. Puddephatt, Organometallics, 1995, 14, 2781.
- 21 G. M. Sheldrick, SHELXS-86, Program for crystal structure solutions, Universität Göttingen, 1986.
- 22 G. M. Sheldrick, SHELXL-93, Program for refinement of crystal structures, Universität Göttingen, 1993.
- 23 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.

Paper 9/01327J