Discrete and polymeric iodoplumbates with $\mathrm{Pb}_{3} \mathrm{I}_{10}$ building blocks: $\left[\mathrm{Pb}_{3} \mathrm{I}_{10}\right]^{4-},\left[\mathrm{Pb}_{7} \mathbf{I}_{22}\right]^{\mathbf{8 -}},\left[\mathrm{Pb}_{10} \mathbf{I}_{28}\right]^{\mathbf{8 -}},{ }_{\infty}^{1}\left[\mathrm{~Pb}_{3} \mathbf{I}_{10}\right]^{4-}$ and ${ }_{\infty}^{2}\left[\mathrm{~Pb}_{7} \mathbf{I}_{18}\right]^{4-}$

Harald Krautscheid * and Frieder Vielsack
Institut für Anorganische Chemie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany

Received 1st April 1999, Accepted 16th June 1999

Iodoplumbate complexes were obtained by reaction of PbI_{2} with sodium iodide in polar organic solvents and precipitation with large cations. With diammonium cations $\left[\mathrm{R}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NR}_{3}\right]^{2+}$ a series of polynuclear iodoplumbates could be isolated and characterized by single crystal X-ray diffraction. While $\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NBu}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}\right] \mathbf{1}$, $\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NBu}_{3}\right]_{4}\left[\mathrm{~Pb}_{7} \mathrm{I}_{22}\right] \mathbf{2}$ and $\left[\mathrm{Bu}_{3} \mathrm{~N}_{\left.\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NBu}_{3}\right]_{4}\left[\mathrm{~Pb}_{10} \mathrm{I}_{28}\right] \mathbf{3} \text { contain discrete anions, the iodoplumbates }}\right.$ $\left[\mathrm{Me}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NMe}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}\right] 4$ and $\left[\mathrm{Pr}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NPr}_{3}\right]_{2}\left[\mathrm{~Pb}_{7} \mathrm{I}_{18}\right] 5$ consist of one-dimensional and two-dimensional co-ordination polymers, respectively. The $\left[\mathrm{Pb}_{3} \mathrm{I}_{10}\right]^{4-}$ anion in $\mathbf{1}$ can be regarded as a building block for the structures of $\mathbf{2 , 4 , 5}$ and, slightly modified, of $\mathbf{3}$. In spite of their related structures and similar compositions, these complexes are formed selectively and in good yield under appropriate reaction and crystallization conditions.

Introduction

The compound PbI_{2} reacts with iodide in polar organic solvents forming iodoplumbate anions, which can be crystallized in the presence of large counter ions such as quaternary ammonium, phosphonium or diammonium cations. In this way polynuclear iodoplumbates can be isolated, which contain, with exception of the discrete anions in $\left[\mathrm{Bu}_{4} \mathrm{~N}_{8}\left[\mathrm{~Pb}_{18} \mathrm{I}_{44}\right]\right.$, ${ }^{1}$ one-, two- or threedimensional polymeric anions. ${ }^{2-4}$ For example, in $\left[\mathrm{Me}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}-\right.$ $\left.\mathrm{NMe}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}{ }^{4} \mathrm{~Pb}_{3} \mathrm{I}_{11}\right.$ units are linked by common I atoms to form infinite zigzag chains. In $\left[\mathrm{Me}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMe}_{3}\right]_{3}\left[\mathrm{~Pb}_{3} \mathrm{I}_{9}\right]_{2}$ these chains are condensed to give a two-dimensional network. ${ }^{4}$ Regarding their composition this class of compounds can be considered as a link between the mononuclear complex $\left[\mathrm{PbI}_{6}\right]^{4-}$ and the corresponding binary solid PbI_{2}. Generally the physical properties of such low dimensional compounds differ from those of the parent compound. In this respect only few iodoplumbates have been investigated. For example the absorption edge is shifted to higher energies compared to 2.36 eV in the photoconductor PbI_{2}. Some derivatives of lead iodide show very efficient electroluminescence. ${ }^{5}$ Most of these investigations of physical properties, however, have been conducted on thin films and not using structurally characterized single crystals. Thus often there is not enough information about the structures of the iodoplumbates. Recently we showed that their structures strongly depend on the conditions of synthesis and crystallization. ${ }^{1-4}$ In many cases small variations of the reaction parameters allow selective formation of different products. This fact is impressively shown in the products of the reaction of PbI_{2} with NaI and $\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NBu}_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ in DMF, on which we report in this paper.

Results and discussion

Variation of the molar ratio of the starting compounds $\mathrm{PbI}_{2}, \mathrm{NaI}$ and $\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NBu}_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ and the crystallization conditions leads to the formation of three iodoplumbates $\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NBu}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}\right] \quad \mathbf{1}, \quad\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NBu}_{3}\right]_{4}\left[\mathrm{~Pb}_{7} \mathrm{I}_{22}\right] \quad 2$ and $\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NBu}_{3}\right]_{4}\left[\mathrm{~Pb}_{10} \mathrm{I}_{28}\right]$ 3. They contain discrete complex anions whose structures are related to each other and show analogies to those in $\left[\mathrm{Me}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMe}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}\right]$ and $\left[\mathrm{Me}_{3} \mathrm{~N}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMe}_{3}\right]_{3}\left[\mathrm{~Pb}_{3} \mathrm{I}_{9}\right]_{2} .{ }^{4}$ Structurally related to $\mathbf{1 - 3}$ are $\left[\mathrm{Me}_{3} \mathrm{~N}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NMe}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}\right] 4$ and $\left[\mathrm{Pr}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NPr}_{3}\right]_{2}\left[\mathrm{~Pb}_{7} \mathrm{I}_{18}\right]$ 5, which are formed under similar reaction conditions with counter ions of different size, eqns. (1)-(3).

Yellow platelets of complex 1, yellow rods of $\mathbf{2}$ and orange-

$$
\begin{align*}
& \mathrm{PbI}_{2}+\mathrm{NaI}+\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NBu}_{3}\right]\left[\mathrm{PF}_{6}\right]_{2} \xrightarrow{\text { DMF }} \\
& {\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NBu}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}\right] \mathbf{1} } \\
&+ {\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NBu}_{3}\right]_{4}\left[\mathrm{~Pb}_{7} \mathrm{I}_{22}\right] \mathbf{2} } \\
&+ {\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NBu}_{3}\right]_{4}\left[\mathrm{~Pb}_{10} \mathrm{I}_{28}\right] \mathbf{3} } \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{PbI}_{2}+\mathrm{NaI}+[\left.\mathrm{Pr}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NPr}_{3}\right]\left[\mathrm{PF}_{6}\right]_{2} \xrightarrow{\text { DMF }} \\
& {\left[\mathrm{Pr}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NPr}_{3}\right]_{2 \propto}^{2}\left[\mathrm{~Pb}_{7} \mathrm{I}_{18}\right] 5 } \tag{3}
\end{align*}
$$

red crystals of $\mathbf{3}$ crystallize by slow condensation of diethyl ether into the DMF solution. In solutions richer in NaI the formation of $\mathbf{1}$ is preferred. Addition of THF to the reaction solution before condensation of diethyl ether yields 2 selectively. Layering of the DMF solution with toluene or ethanol instead of diethyl ether leads to crystals of $\mathbf{3}$ in good yield.

According to the crystal structure analysis, in complex $\mathbf{1}$ (space group $P \overline{1}$) three Pb atoms approximately form an equilateral triangle (Fig. 1; $\mathrm{Pb} \cdots \mathrm{Pb} 429.40-441.01$ (8) pm). The atoms Pb 1 and Pb 2 are co-ordinated by iodide ligands in a distorted octahedral fashion, whereas Pb 3 has square pyramidal co-ordination. The asymmetrically μ_{3}-bridging atoms I1 and I2 are situated above and below the Pb_{3} triangle, whereby I2 is shifted significantly towards Pb 3 ($\mathrm{Pb} 1-\mathrm{I} 2366.0(1), \mathrm{Pb} 2-\mathrm{I} 2$ $340.87(9), \mathrm{Pb} 3-\mathrm{I} 2298.5(1) \mathrm{pm})$. The bond length $\mathrm{Pb} 3-\mathrm{I} 2$ is unusually short for a triply bridging iodide ligand; this contraction can be attributed to the absence of a ligand trans to I2. The stronger bond of I 2 to Pb 3 leads to weaker and significantly longer bonds to Pb 1 and Pb 2 . Thus I 2 is involved in the shortest as well as in the longest $\mathrm{Pb}-\mathrm{I}$ bond in 1. The μ ligands I3, I4 and I5 bridge the edges of the Pb_{3} triangle $(\mathrm{Pb}-\mu-\mathrm{I} 323.1-332.7(1)$ pm). These iodo ligands deviate by 57.8(4) (I5), $-32.3(5)$ (I3) and $-22.3(4) \mathrm{pm}(\mathrm{I} 4)$ from the Pb_{3} plane. The octahedral coordination of Pb 1 and Pb 2 is completed by two terminal I atoms (I6-I9) with $\mathrm{Pb}-\mathrm{I}$ distances ranging from 304.2 to $313.4(1) \mathrm{pm}$. In contrast, only one terminal iodo ligand is bound to $\mathrm{Pb} 3(\mathrm{~Pb} 3-\mathrm{I} 10305.1(1) \mathrm{pm})$. We suggest that electrostatic forces inhibit the binding of a sixth ligand to Pb 3 . Therefore $\left[\mathrm{Pb}_{3} \mathrm{I}_{11}\right]^{5-}$, which would have the inverse structure to the $\mathrm{Cs}_{11} \mathrm{O}_{3}$ unit in caesium suboxides ${ }^{6}$ and would be isostructural to the iodoantimonate anion in $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]_{2}\left[\mathrm{Sb}_{3} \mathrm{I}_{11}\right]^{7}$ is not
formed. For cesium suboxides it has been shown that the unstable cation $\left[\mathrm{Cs}_{11} \mathrm{O}_{3}\right]^{5+}$ is stabilized by five electrons involved in metal-metal bonding. ${ }^{6}$ In the $\left[\mathrm{Sb}_{3} \mathrm{I}_{11}\right]^{2-}$ anion all Sb atoms are co-ordinated by two μ_{3}, two μ as well as two terminal iodo ligands in a distorted octahedral fashion. The lower coordination number of Pb 3 compared to Pb 1 and Pb 2 in 1 causes a shortening of the $\mathrm{Pb} 3-\mathrm{I}$ bonds by 10 pm in average (mean values $\mathrm{Pb} 1-\mathrm{I} 327.3$, $\mathrm{Pb} 2-\mathrm{I} 327.0$, $\mathrm{Pb} 3-\mathrm{I} 317.5 \mathrm{pm}$). The different co-ordination numbers of the Pb atoms and the combination of trans influences are obviously responsible for the asymmetry in bond lengths of the bridging iodo ligands. Five-co-ordinated Pb^{2+} ions in halogeno complexes have been observed in $\left[\mathrm{Ph}_{4} \mathrm{P}\right]\left[\mathrm{PbCl}_{3}\right],\left[\mathrm{Pr}_{4} \mathrm{~N}\right]\left[\mathrm{PbI}_{3}\right]$ or $\left[\mathrm{Mg}(\mathrm{dmf})_{6}\left[\mathrm{PbI}_{3}\right]_{2}\right.$, where $\mathrm{PbX}_{5}(\mathrm{X}=\mathrm{Cl}$ or I$)$ square pyramids share common edges to form polymeric chains. ${ }^{8}$

In complex $\mathbf{2}$ two of the $\left[\mathrm{Pb}_{3} \mathrm{I}_{10}\right]^{4-}$ anions of $\mathbf{1}$ are linked by a PbI_{2} unit (Fig. 2). This is in keeping with the observation that $\mathbf{2}$ preferentially crystallizes from reaction solutions richer in PbI_{2}. According to the crystal structure analysis (space group $P 2_{1} / n$) both Pb_{3} units in the $\left[\mathrm{Pb}_{7} \mathrm{I}_{22}\right]^{8-}$ anion define two parallel planes separated by 136.2(2) pm. Atom Pb 4 occupies the inversion centre between the two $\mathrm{Pb}_{3} \mathrm{I}_{11}$ groups. Through the linkage of two $\left[\mathrm{Pb}_{3} \mathrm{I}_{10}\right]^{4-}$ anions by PbI_{2} or two (hypothetical) $\left[\mathrm{Pb}_{3} \mathrm{I}_{11}\right]^{5-}$ anions by an additional Pb^{2+} ion (Pb 4), respectively, each Pb atom has distorted octahedral co-ordination. At the same time the degree of bridging of the iodo ligands increases: I10, which

Fig. 1 Crystal structure of the $\left[\mathrm{Pb}_{3} \mathrm{I}_{10}\right]^{4-}$ anion in complex 1. Selected distances (± 0.1) and angles $(\pm 0.03): \mathrm{Pb}-\mathrm{I} 1325.7 ; \mathrm{Pb}-\mathrm{I} 2366.0 ; \mathrm{Pb} 1-$ I3 331.6; Pb1-I4 323.1; Pb1-I6 313.4; Pb1-I7 304.2; Pb2-I1 350.5; Pb2I8 304.4; Pb3-I1 327.1; Pb3-I2 298.5; Pb3-I3 327.7 and Pb3-I10 305.1 pm; I1-Pb1-I2 79.12; I1-Pb1-I6 175.96; I3-Pbl-I4 154.27; I1-Pb3-I2 89.68; I1-Pb3-I10 168.06; I2-Pb3-I10 102.26; $\mathrm{Pb} 1-\mathrm{I} 1-\mathrm{Pb} 281.33$ and $\mathrm{Pb} 1-\mathrm{I} 3-\mathrm{Pb} 381.29^{\circ}$.
was terminal in $\mathbf{1}$, becomes μ bridging in $\mathbf{2}$, and 13 , which was μ in $\mathbf{1}$, is μ_{3} bridging in $\mathbf{2}$. As a result the distances and angles in $\mathbf{2}$ change compared to those in $\mathbf{1}$. As expected, the shortest $\mathrm{Pb}-\mathrm{I}$ distances are found to the terminal iodo ligands $\left(\mathrm{Pb}-\mathrm{I}_{\text {term }}\right.$ 304.67-308.38(9) pm); in trans position to the terminal ligands the longest bonds are found to triply bridging ligands ($\mathrm{Pb}-\mu_{3}-\mathrm{I}$ 313.80-354.30(9) pm).

In an alternative description, the anion of complex 2 contains a $\mathrm{Pb}_{5} \mathrm{I}_{18}$ chain formed by five trans face sharing PbI_{6} octahedra ($\mathrm{Pb} 2, \mathrm{~Pb} 3, \mathrm{~Pb} 4, \mathrm{~Pb}^{\prime}, \mathrm{Pb}^{\prime}$). This structural principle is also observed in the pentanuclear iodobismuthate $\left[\mathrm{Ph}_{4} \mathrm{P}_{3}-\right.$ $\left[\mathrm{Bi}_{5} \mathrm{I}_{18}\right]^{9}$ and in the polymeric chains of iodoplumbates [Cat]$\left[\mathrm{PbI}_{3}\right]^{2}$ with $\mathrm{Cat}^{+}=\mathrm{Me}_{4} \mathrm{~N}^{+}, \mathrm{Bu}_{4} \mathrm{~N}^{+}, \mathrm{Ph}_{4} \mathrm{P}^{+}, \mathrm{Hpy}^{+}, \mathrm{Hpip}^{+}$(pip $=$ piperidine), etc. Formally the anion of $\mathbf{2}$ is generated from the $\mathrm{Pb}_{5} \mathrm{I}_{18}$ chain by addition of two PbI_{2} groups ($\mathrm{Pb} 1, \mathrm{I} 6, \mathrm{I} 7$ and symmetry related atoms) which are bound by the iodo ligands I1-I4. Thus the bond angle $\mathrm{Pb} 1-\mathrm{I} 3-\mathrm{Pb} 4$ is $153.44(2)^{\circ}$, whereas all other $\mathrm{Pb}-\mathrm{I}-\mathrm{Pb}$ angles are in the range $74.83(2)$ to $86.24(2)^{\circ}$. In 2 the weakest $\mathrm{Pb}-\mathrm{I}$ interaction is found between Pb 1 and I3 with a distance of $354.30(9) \mathrm{pm}$.

Fig. 3 shows the result of the crystal structure determination of complex 3 which crystallizes in space group $P \overline{4} 2 c$, with D_{2} symmetric $\left[\mathrm{Pb}_{10} \mathrm{I}_{28}\right]^{8-}$ anions. This anion is composed of $\mathrm{Pb}_{3} \mathrm{I}_{10}$ subunits (one unit is highlighted in Fig. 3). As in $\mathbf{1}$ and 2, these subunits feature Pb_{3} triangles triply capped by two iodo ligands. In contrast, however, only two edges of the Pb_{3} triangle $(\mathrm{Pb} 1 \cdots \mathrm{~Pb} 3, \mathrm{~Pb} 2 \cdots \mathrm{~Pb} 3)$ are bridged. Two $\mathrm{Pb}_{3} \mathrm{I}_{10}$ units share a common Pb atom $(\mathrm{Pb} 1)$ and three common I atoms ($\mathrm{I} 1-\mathrm{I} 3$). Two of the resulting $\mathrm{Pb}_{5} \mathrm{I}_{17}$ groups are linked by six common I atoms to form $\left[\mathrm{Pb}_{10} \mathrm{I}_{28}\right]^{8-}$ anions in 3. In this way the coordination number of some iodo ligands is increased compared to those in the basic $\left[\mathrm{Pb}_{3} \mathrm{I}_{10}\right]^{4-}$ structure: Il is μ_{4} bridging ($\mathrm{Pb}-\mathrm{I} 1$ $320.29-363.96(7) \mathrm{pm})$ and the former μ ligand I3 is now μ_{3}, being bound to $\mathrm{Pb} 1, \mathrm{~Pb} 3$ and $\mathrm{Pb} 3^{\prime}$.
The missing μ iodo ligand between Pb 1 and Pb 2 leads to elongation of the $\mathrm{Pb} 1 \cdots \mathrm{~Pb} 2$ distance $(\mathrm{Pb} 1 \cdots \mathrm{~Pb} 2$ 494.33(4), $\mathrm{Pb} 1 \cdots \mathrm{~Pb} 3442.25(8), \mathrm{Pb} 2 \cdots \mathrm{~Pb} 3419.45(6) \mathrm{pm})$. Whereas the (distorted) octahedral co-ordination of Pb 2 is completed by interaction with the ligand I^{\prime} ' of the neighboring $\mathrm{Pb}_{3} \mathrm{I}_{10}$ unit, Pb 1 remains in a square pyramidal environment. This again allows a rather short $\mathrm{Pb} 1 \cdots \mathrm{~Pb}^{\prime}$ distance of $374.4(1) \mathrm{pm}$, which is the shortest $\mathrm{Pb} \cdots \mathrm{Pb}$ distance observed in iodoplumbates. It is however significantly longer than the $\mathrm{Pb}-\mathrm{Pb}$ single bond in $\mathrm{Me}_{3} \mathrm{~Pb}-\mathrm{PbMe} e_{3}(288 \mathrm{pm})$) or the $\mathrm{Pb} \cdots \mathrm{Pb}$ distance in metallic lead (349 pm), ${ }^{10}$ and therefore a bonding $\mathrm{Pb} \cdots \mathrm{Pb}$ interaction is not indicated. As in $\mathbf{1}$ the shortest $\mathrm{Pb}-\mathrm{I}$ distances involve I atoms in trans position to unoccupied co-ordination sites ($\mathrm{Pb} 1-\mathrm{I} 3296.2(1) \mathrm{pm}$). In crystals of $\mathbf{3}$ the $\left[\mathrm{Pb}_{10} \mathrm{I}_{28}\right]^{8-}$ anions occupy positions of a tetragonal body centered lattice, with the

Fig. 2 Crystal structure of the $\left[\mathrm{Pb}_{7} \mathrm{I}_{22}\right]^{8-}$ anion in complex 2. Selected distances (± 0.09) and angles (± 0.03): $\mathrm{Pb} 1-\mathrm{I} 1346.17 ; \mathrm{Pb} 1-\mathrm{I} 2326.43 ; \mathrm{Pb} 1-\mathrm{I} 3$ 354.30; $\mathrm{Pb} 1-\mathrm{I} 4312.16 ; \mathrm{Pb} 1-\mathrm{I} 6306.78$; $\mathrm{Pb} 1-\mathrm{I} 7307.87$; $\mathrm{Pb} 2-\mathrm{I} 1329.04 ; \mathrm{Pb} 2-\mathrm{I} 8308.38 ; \mathrm{Pb} 3-\mathrm{I} 1313.80 ; \mathrm{Pb} 3-\mathrm{I} 2318.26 ; \mathrm{Pb} 3-\mathrm{I} 3328.55 ; \mathrm{Pb} 3-\mathrm{I} 10324.27$; Pb4-I3 325.56 and $\mathrm{Pb} 4-\mathrm{I} 10320.89 \mathrm{pm}$; $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 280.62$; $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 6 ; 167.10$; $\mathrm{I} 3-\mathrm{Pb} 1-\mathrm{I} 4152.63$; $\mathrm{I} 1-\mathrm{Pb} 3-\mathrm{I} 287.07$; I1- $\mathrm{Pb} 3-\mathrm{I} 10165.79$; $\mathrm{I} 2-\mathrm{Pb} 3-\mathrm{I} 10$ 98.51; $\mathrm{I} 10-\mathrm{Pb} 4-\mathrm{I} 1185.96$; $\mathrm{Pb} 1-\mathrm{I} 1-\mathrm{Pb} 279.89$; $\mathrm{Pb} 1-\mathrm{I} 3-\mathrm{Pb} 378.67$; $\mathrm{Pb} 1-\mathrm{I} 3-\mathrm{Pb} 4153.44$ and $\mathrm{Pb} 3-\mathrm{I} 3-\mathrm{Pb} 474.83^{\circ}$.
$\mathrm{Pb} 1 \cdots \mathrm{~Pb} 1^{\prime}$ direction alternatingly aligned along the crystallographic a and b axes.

Small yellow needles of $\left[\mathrm{Me}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NMe}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}\right] \mathbf{4}$ crystallize after addition of diethyl ether to a solution of $\mathrm{PbI}_{2}, \mathrm{NaI}$ and $\left[\mathrm{Me}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NMe}_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ in DMF. According to the crystal structure determination, the anions of 4 (space group $C 2 / c$) form polymeric chains, oriented along the crystallographic [001] direction. As shown in Fig. 4, these chains contain $\mathrm{Pb}_{3} \mathrm{I}_{11}$ links; the shared I4 atoms are situated on the inversion centers. Twofold rotation axes run along [010] through the atoms Pb 2 and I2.

The basic building block of the anionic chains of complex 4 consists of a $\mathrm{Pb}_{3} \mathrm{I}_{10}$ unit as in 1. The triangle $\mathrm{Pb} 1, \mathrm{~Pb}^{\prime}, \mathrm{Pb} 2$ is almost equilateral $\left(\mathrm{Pb} 1 \cdots \mathrm{~Pb} 2432,1(1), \mathrm{Pb} 1 \cdots \mathrm{~Pb}^{\prime} 425.5(1)\right.$ $\mathrm{pm})$. The ligands I1 are triply bridging ($\mathrm{Pb}-\mu_{3}-\mathrm{I} 319.8-339.7(1)$ pm); I2 and I3 act as μ-bridging ligands ($\mathrm{Pb}-\mu$-I 325.7-329.6(1) $\mathrm{pm} ; \mathrm{Pb}-\mu-\mathrm{I}-\mathrm{Pb} 80.39-82.88(4)^{\circ}$) within the $\mathrm{Pb}_{3} \mathrm{I}_{10}$ units and I 4 links two trinuclear fragments ($\mathrm{Pb} 1-\mathrm{I} 4321.96$ (6) pm; $\mathrm{Pb}-\mathrm{I} 4-\mathrm{Pb}$ 180°). Owing to its position on the twofold axis, I2 is situated within the Pb_{3} plane, while I3 deviates by $18.9(3) \mathrm{pm}$, which is

Fig. 3 Crystal structure of the $\left[\mathrm{Pb}_{10} \mathrm{I}_{28}\right]^{8-}$ anion in complex 3. Selected distances (± 0.1) and angles (± 0.03): Pb1- I 1320.3 ; $\mathrm{Pb} 1-\mathrm{I} 2323.2$; $\mathrm{Pb} 1-$ I3 296.2; Pb2-I1 357.0; Pb2-I4 318.4; Pb3-I1 364.0; Pb3-I2 351.5; Pb3I3 346.5; Pb3-I7 296.0 and $\mathrm{Pb} 1 \cdots \mathrm{Pbl}^{\prime \prime} 374.4 \mathrm{pm}$; I1- $\mathrm{Pb} 1-\mathrm{I} 283.01$; $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 1^{\prime}$ 170.24; I1-Pb3-I2 73.15; I1-Pb3-I7 162.33; I3-Pb3-I4 158.39; $\mathrm{Pb} 1-\mathrm{I} 1-\mathrm{Pb} 2$ 93.59; $\mathrm{Pb} 1-\mathrm{I} 3-\mathrm{Pb} 386.59$ and $\mathrm{Pb} 3-\mathrm{I} 3-\mathrm{Pb} 3-$ 173.19°.
significantly less than in $\mathbf{1 , 2}$ or $\mathbf{3}$. The Pb_{3} planes in the polymeric anion of 4 are parallel (inversion center on I4) with a difference in height of $505.0(4) \mathrm{pm}$. Compound 4 is structurally related to the recently published iodoplumbate $\left[\mathrm{Me}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right.$ $\left.\mathrm{NMe}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}\right]^{4}$ which also features a one-dimensional polymer based on the $\mathrm{Pb}_{3} \mathrm{I}_{11}$ unit. These anions differ in the connectivity of the building blocks: using the labelling scheme of 4 , in $\left[\mathrm{Me}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMe}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}\right]$ the atoms I4 and I6 link the $\mathrm{Pb}_{3} \mathrm{I}_{10}$ units leading to zigzag chains.

The complex $\left[\mathrm{Pr}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NPr}_{3}\right]_{2}\left[\mathrm{~Pb}_{7} \mathrm{I}_{18}\right] 5$ can be isolated as small, yellow platelets after addition of diethyl ether to a solution of $\mathrm{PbI}_{2}, \mathrm{NaI}$ and $\left[\mathrm{Pr}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NPr}_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ in DMF. Fig. 5 shows a fragment of the crystal structure (space group $P 2_{1} / n$), which consists of a two-dimensional polymeric network spreading along [010] and [101] directions. The building blocks of this network are $\mathrm{Pb}_{7} \mathrm{I}_{22}$ fragments as observed as discrete $\left[\mathrm{Pb}_{7} \mathrm{I}_{22}\right]^{8-}$ anions in 2.

In complex 5 each of these fragments shares its eight terminal iodo ligands (I6-I9) with four neighboring anions, leading to doubly and triply bridging co-ordination of all I atoms. Since no terminal ligands are present, the co-ordination of the triply bridging atoms I1 and I2 ($\left.\mathrm{Pb}-\mu_{3}-\mathrm{I} 323.7-334.3(1) \mathrm{pm}\right)$ is more symmetrical than in $\mathbf{1 - 4}$, where trans influences of the strong terminal $\mathrm{Pb}-\mathrm{I}$ bonds lead to elongation of the $\mathrm{Pb}-\mu_{3}-\mathrm{I}$ distances. In contrast to I1 and I2, I3 co-ordinates to the Pb atoms with two short bonds and one long bond ($\mathrm{Pb} 3-\mathrm{I} 3$ 322.1(1), Pb4-I3 324.9(1), $\left.\mathrm{Pb} 1-\mathrm{I} 3356.1(1) \mathrm{pm}, \mathrm{Pb} 1-\mathrm{I} 3-\mathrm{Pb} 4152.38(3)^{\circ}\right)$. The latter results in a weak trans influence on the $\mathrm{Pb} 1-\mathrm{I} 4$ bond (310.8(1) pm), which is the shortest $\mathrm{Pb}-\mathrm{I}$ distance in $\mathbf{5}$. All other I atoms (I5-I9) act as μ bridges with $\mathrm{Pb}-\mathrm{I}$ distances ranging from 313.6 to $329.9(1) \mathrm{pm}$. As in 2 the Pb_{3} planes $(\mathrm{Pb} \cdots \mathrm{Pb}$ 420.29-427.86(9), $\mathrm{Pb} 3 \cdots \mathrm{~Pb} 4392.69(6) \mathrm{pm})$ within one $\mathrm{Pb}_{7} \mathrm{I}_{22}$ unit of 5 are related by inversion centers occupied by Pb 4 . They are parallel with a height difference of $69.8(4) \mathrm{pm}$. As in most of the iodoplumbates characterized so far (for exceptions see ref. 8), all Pb atoms in 5 are co-ordinated by six iodo ligands in a distorted octahedral fashion. Within the $\mathrm{Pb}_{7} \mathrm{I}_{22}$ units, the PbI_{6} octahedra share common faces, linking to neighboring units being achieved through common edges of PbI_{6} octahedra. The two-dimensional anionic nets in 5 slightly deviate from planarity (deviation of Pb 1 from the idealized plane 133 pm) and are stacked along [101] with the diammonium cations located between the anionic layers (Fig. 6).

Conclusion

The crystal structures of complexes $\mathbf{1 - 5}$, $\left[\mathrm{Me}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right.$ $\left.\mathrm{NMe}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathrm{I}_{10}\right]$ and $\left[\mathrm{Me}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMe}_{3}\right]_{3}\left[\mathrm{~Pb}_{3} \mathrm{I}_{9}\right]_{2}{ }^{4}$ can all be dis-

Fig. 4 Fragment of the polymeric anion structure of complex 4. Selected distances and angles: $\mathrm{Pb} 1-\mathrm{I} 1$ 336.6(1); $\mathrm{Pb} 1-\mathrm{I} 2$ 329.6(1); $\mathrm{Pb} 1-\mathrm{I} 3$ 327.3(1); $\mathrm{Pb} 1-\mathrm{I} 4$ 321.96(6); $\mathrm{Pb} 1-\mathrm{I} 6307.9(2)$; $\mathrm{Pb} 1-\mathrm{I} 1^{\prime} 319.8(1) ; \mathrm{Pb} 2-\mathrm{I} 1339.7(1) ; \mathrm{Pb} 2-\mathrm{I} 3$ 325.7(1); $\mathrm{Pb} 2-\mathrm{I} 5$ 306.2(2) and $\mathrm{Pb} 1 \cdots \mathrm{~Pb} 2432.1(1) \mathrm{pm} ; \mathrm{I} 1-\mathrm{Pb}-\mathrm{I} 1^{\prime}$ 84.41(3); $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 2$ 80.48(3); $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 6175.67(5)$; $\mathrm{I} 2-\mathrm{Pb} 1-\mathrm{I} 3158.39(4)$; $\mathrm{I} 1-\mathrm{Pb} 2-\mathrm{I} 1{ }^{\prime}$ 80.99(4); $\mathrm{I} 1-\mathrm{Pb} 2-\mathrm{I} 5171.86(4)$; $\mathrm{Pb} 1-\mathrm{I} 3-\mathrm{Pb} 282.88(3)$ and $\mathrm{Pb} 1-\mathrm{I} 4-\mathrm{Pb} 1^{\prime \prime} 180^{\circ}$.

Fig. 5 Fragments of the polymeric anion structure of complex 5. Selected distances (± 0.1) and angles (± 0.03): $\mathrm{Pb} 1-\mathrm{I} 1323.8 ; \mathrm{Pb} 1-\mathrm{I} 2$ 326.9; $\mathrm{Pb} 1-\mathrm{I} 3$ 356.1; Pb2-I1 331.2; Pb2-I4 321.3; Pb2-I8 318.4; Pb3-I1 323.7; Pb3-I2 326.9; Pb3-I3 322.1; Pb3-I7 317.6; Pb4-I3 324.9; Pb1 . . Pb2 420.3 and $\mathrm{Pb} 3 \cdots \mathrm{~Pb} 4392.7 \mathrm{pm}$; $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 2$ 84.16; $\mathrm{I} 1-\mathrm{Pb} 1-\mathrm{I} 378.25$; $\mathrm{I} 1-\mathrm{Pb} 2-\mathrm{I} 478.85$; $\mathrm{I} 1-\mathrm{Pb} 2-\mathrm{I} 8174.24$; $\mathrm{I} 3-\mathrm{Pb} 4-\mathrm{I} 788.71 ; \mathrm{Pb} 1-\mathrm{I} 1-\mathrm{Pb} 279.82 ; \mathrm{Pb} 1-\mathrm{I} 3-\mathrm{Pb} 3$ 78.06 and $\mathrm{Pb} 1-\mathrm{I} 3-\mathrm{Pb} 4152.38^{\circ}$.

Fig. 6 View approximately along [101] on the iodoplumbate layers in complex 5 .
cussed in terms of $\left[\mathrm{Pb}_{3} \mathrm{I}_{10}\right]^{4-}$ subunits. This pattern supports the hypothesis that oligonuclear iodoplumbate complexes are present in solution. In the solid state the $\left[\mathrm{Pb}_{3} \mathrm{I}_{10}\right]^{4-}$ anions are organized to various oligomeric or polymeric structures, depending on size, shape and charge of the counter ions used for crystallization. The selective synthesis of $\mathbf{1 - 3}$ containing the same diammonium cation clearly demonstrates the sensitivity of the $\mathrm{Pb}^{2+} / \mathrm{I}^{-} /$cation system to small changes in crystallization
conditions. This sensitivity is consistent with the lability of the $\mathrm{Pb}-\mathrm{I}$ bond

Experimental

Preparations

$\left[\mathrm{Bu}_{3} \mathbf{N}\left(\mathbf{C H}_{2}\right)_{4} \mathbf{N B u}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathbf{I}_{10}\right] \mathbf{1}$. The compounds $\mathrm{PbI}_{2}(230 \mathrm{mg}$, $0.50 \mathrm{mmol})$, $\mathrm{NaI}(188 \mathrm{mg}, 1.25 \mathrm{mmol})$ and $\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}-\right.$ $\left.\mathrm{NBu}_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}(358 \mathrm{mg}, 0.50 \mathrm{mmol})$ were dissolved in DMF $(5 \mathrm{ml})$. Diethyl ether (25 ml) was condensed into the clear yellow solution. Over the course of two weeks, yellow platelets of $1 \cdot \mathrm{DMF} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$ crystallized together with colorless needles of $\mathrm{NaI} \cdot 3 \mathrm{DMF}$, which can be removed by washing with ethanol ($330 \mathrm{mg}, 70 \%$) (Found: C, 25.2; H, 4.7; N, 2.7. $\mathrm{C}_{56} \mathrm{H}_{124} \mathrm{I}_{10} \mathrm{~N}_{4}$ $\mathrm{Pb}_{3} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$ requires C, $25.2 ; \mathrm{H}, 4.7$; $\mathrm{N}, 2.5 \%$).
$\left[\mathrm{Bu}_{3} \mathbf{N}\left(\mathrm{CH}_{2}\right)_{4} \mathbf{N B u}_{3}\right]_{4}\left[\mathrm{~Pb}_{7} \mathbf{I}_{22}\right]$ 2. The compounds $\mathrm{PbI}_{2}(230 \mathrm{mg}$, $0.50 \mathrm{mmol}), \mathrm{NaI}(86 \mathrm{mg}, 0.57 \mathrm{mmol})$ and $\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}-\right.$ $\left.\mathrm{NBu}_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}(205 \mathrm{mg}, 0.29 \mathrm{mmol})$ were dissolved in DMF (5 $\mathrm{ml})$. After addition of THF $(10 \mathrm{ml})$ to the clear, yellow solution, diethyl ether (25 ml) was slowly added by condensation. Complex $\mathbf{2}$ crystallizes as yellow rods ($320 \mathrm{mg}, 75 \%$) (Found: C, 22.4; $\mathrm{H}, 4.4 ; \mathrm{N}, 2.1 . \mathrm{C}_{112} \mathrm{H}_{248} \mathrm{I}_{22} \mathrm{~N}_{8} \mathrm{~Pb}_{7}$ requires C, 22.6; H, 4.2; N , 1.9\%).
$\left[\mathrm{Bu}_{3} \mathbf{N}\left(\mathrm{CH}_{2}\right)_{4} \mathbf{N B u}_{3}\right]_{4}\left[\mathrm{~Pb}_{10} \mathbf{I}_{28}\right]$ 3. The compounds $\mathrm{PbI}_{2}(230 \mathrm{mg}$, $0.50 \mathrm{mmol}), \mathrm{NaI}(60 \mathrm{mg}, 0.40 \mathrm{mmol})$ and $\left[\mathrm{Bu}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}\right.$

Table 1 Crystallographic data of complexes 1-5

	$1 \cdot \mathrm{DMF} \cdot 0.5 \mathrm{Et}_{2} \mathrm{O}$	2	3	4	5
Formula	$\mathrm{C}_{61} \mathrm{H}_{136} \mathrm{I}_{10} \mathrm{~N}_{5} \mathrm{O}_{1.5} \mathrm{~Pb}_{3}$	$\mathrm{C}_{122} \mathrm{H}_{248} \mathrm{I}_{22} \mathrm{~N}_{8} \mathrm{~Pb}_{7}$	$\mathrm{C}_{112} \mathrm{H}_{248} \mathrm{I}_{28} \mathrm{~N}_{8} \mathrm{~Pb}_{10}$	$\mathrm{C}_{22} \mathrm{H}_{56} \mathrm{I}_{10} \mathrm{~N}_{4} \mathrm{~Pb}_{3}$	$\mathrm{C}_{46} \mathrm{H}_{104} \mathrm{I}_{18} \mathrm{~N}_{4} \mathrm{~Pb}_{7}$
M	2854.32	5949.31	7332.28	2267.28	4447.86
Crystal system	Triclinic	Monoclinic	Tetragonal	Monoclinic	Monoclinic
Space group	$P \overline{1}$ (no. 2)	$P 2_{1} / n$ (no. 14)	$P \overline{4} 2 c$ (no. 112)	C2/c (no. 15)	$P 2{ }_{1} / n$ (no. 14)
a / pm	1533.91(9)	1673.0(2)	2291.16(9)	2088.9(2)	1191.4(1)
b / pm	1692.0(1)	2682.3(3)	2291.16(9)	1327.6(1)	2811.2(4)
c/pm	2067.4(1)	2049.6(2)	1852.03(7)	1842.3(2)	1536.8(2)
$a 1^{\circ}$	72.963(5)				
$\beta 1{ }^{\circ}$	70.719(5)	105.87(1)		101.25(1)	110.248(9)
$\gamma /{ }^{\circ}$	74.467(4)				
U/ $10^{6} \mathrm{pm}^{3}$	4754.8(5)	8847(2)	9722.1(7)	5011.1(8)	4829(1)
T/K	210(2)	200(2)	193(2)	193(2)	293(2)
Z	2	2	2	4	2
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.994	2.233	2.505	3.005	3.059
$\mu\left(\mathrm{Mo}-\mathrm{K} \alpha\right.$)/ cm^{-1}	85.8	105.1	131.1	162.3	179.4
2θ range ${ }^{\circ}$	3-48	3-48	3-50	3-48	3-46
Reflections measured	19324	32340	39676	14017	10801
Unique reflections [$R_{\text {int }}$]	14940 [0.023]	13110 [0.039]	8541 [0.038]	3844 [0.050]	6723 [0.031]
Observed reflections, $I>2 \sigma(I)$	11658	9337	7772	3388	5261
Parameters	696	393	357	124	340
$R 1$ (observed reflections)	0.047	0.040	0.028	0.056	0.032
$w R 2$ (all reflections)	0.125	0.102	0.063	0.138	0.068
Flack parameter x	-	-	-0.005(4)	-	-

$\left.\mathrm{NBu}_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}(143 \mathrm{mg}, 0.20 \mathrm{mmol})$ were dissolved in DMF $(4 \mathrm{ml})$. Layering the yellow solution with toluene or ethanol (20 ml) gave orange-red crystals of $\mathbf{3}(286 \mathrm{mg}, 78 \%$) (Found: C, 18.3; H, 3.3; N, 1.6. $\mathrm{C}_{122} \mathrm{H}_{248} \mathrm{I}_{28} \mathrm{~N}_{8} \mathrm{~Pb}_{10}$ requires C, 18.3; H, 3.4; N, 1.5\%).
[$\left.\mathrm{Me}_{3} \mathbf{N}\left(\mathrm{CH}_{2}\right)_{5} \mathbf{N M e}_{3}\right]_{2}\left[\mathrm{~Pb}_{3} \mathbf{I}_{10}\right]$ 4. A suspension of $\mathrm{PbI}_{2}(460$ $\mathrm{mg}, 1.00 \mathrm{mmol})$, $\mathrm{NaI}(75 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\left[\mathrm{Me}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5}-\right.$ $\left.\mathrm{NMe}_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}(239 \mathrm{mg}, 0.50 \mathrm{mmol})$ in DMF (50 ml) was stirred at $100^{\circ} \mathrm{C}$ for 2 h . After removing the undissolved solid by filtration, diethyl ether (50 ml) was slowly condensed into the yellow solution. After a few days small crystals of $\mathbf{4}$ formed as yellow, mainly twinned needles ($58 \mathrm{mg}, 10 \%$) (Found: C, 11.8 ; $\mathrm{H}, 2.7 ; \mathrm{N}, 2.5 . \mathrm{C}_{22} \mathrm{H}_{56} \mathrm{I}_{10} \mathrm{~N}_{4} \mathrm{~Pb}_{3}$ requires $\mathrm{C}, 11.7 ; \mathrm{H}, 2.5 ; \mathrm{N}$, 2.5%). According to the elemental analysis, the solid removed by filtration has the same composition ($340 \mathrm{mg}, 60 \%$) (Found: C, 11.9; H, 2.9; N, 2.4\%).
$\left[\mathrm{Pr}_{3} \mathbf{N}\left(\mathbf{C H}_{2}\right)_{5} \mathbf{N P r}_{3}\right]_{2}\left[\mathrm{~Pb}_{7} \mathbf{I}_{18}\right]$ 5. The compounds $\mathrm{PbI}_{2}(230 \mathrm{mg}$, $0.50 \mathrm{mmol}), \mathrm{NaI}(38 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\left[\mathrm{Pr}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5}{ }^{-}\right.$ $\left.\mathrm{NPr}_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}(81 \mathrm{mg}, 0.25 \mathrm{mmol})$ were dissolved in DMF (5 ml). Diethyl ether (10 ml) was slowly condensed into the clear yellow solution. After several days bundles of small yellow platelets of 5 crystallized ($45 \mathrm{mg}, 16 \%$) (Found: C, 12.6; H, 2.3; N, 1.3. $\mathrm{C}_{46} \mathrm{H}_{104} \mathrm{I}_{18} \mathrm{~N}_{4} \mathrm{~Pb}_{7}$ requires C, 12.4; H, 2.4; N, 1.3%).

Crystal structure analyses of complexes 1-5

The data collections were performed on Stoe Stadi IV four circle diffractometers $(\mathbf{1}, \mathbf{5})$ and Stoe Ipds imaging plate diffractometers (2, 3, 4) using $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. All intensities were corrected for Lorentz-polarization effects. An empirical absorption correction was applied for $\mathbf{1}$, numerical absorption corrections for 2-5. The structures were solved by direct methods (SHELXS 86^{11}) and refined by full-matrix least squares based on F^{2} using all measured unique reflections (SHELXL 97^{11}). Anisotropic displacement parameters were used for $\mathrm{Pb}, \mathrm{I}, \mathrm{N}$ and in 1, $\mathbf{3}$ and $\mathbf{5}$ also for the C atoms. Hydrogen atoms were included in calculated positions. Other important crystallographic data are summarized in Table 1. Graphical presentations were drawn using SCHAKAL 92^{12} and DIAMOND $2 .{ }^{13}$

CCDC reference number 186/1527.
See http://www.rsc.org/suppdata/dt/1999/2731/ for crystallographic files in .cif format.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We thank Professor D. Fenske for his support.

References

1 H. Krautscheid and F. Vielsack, Angew. Chem., Int. Ed. Engl., 1995, 34, 2035.
2 J. G. Contreras, G. V. Seguel, B. Ungerer, W. F. Maier and F. J. Hollander, J. Mol. Struct., 1983, 102, 295; S. V. Gridunova, E. A. Ziger, V. M. Koshkin, S. V. Lindeman, Yu. T. Struchkov and V. E. Shklover, Dokl. Akad. Nauk SSSR, 1984, 278, 656; H. Miyamae, H. Nishikawa, K. Hagimoto, G. Hihara and M. Nagata, Chem. Lett., 1988, 1907; M. El Essawi, R. Wartchow and H. J. Berthold, Z. Kristallogr., 1996, 212, 163.
3 V. Chakravarthy and A. M. Guloy, Chem. Commun., 1997, 697; A. Poglitch and D. Weber, J. Chem. Phys., 1987, 87, 6373; H. Krautscheid, J.-F. Lekieffre and J. Besinger, Z. Anorg. Allg. Chem., 1996, 622, 1781; H. Krautscheid, F. Vielsack and N. Klaassen, Z. Anorg. Allg. Chem., 1998, 624, 807.

4 H. Krautscheid and F. Vielsack, Z. Anorg. Allg. Chem., 1997, 623, 259.

5 I. B. Koutselas, L. Ducasse and G. C. Papavassiliou, J. Phys. Condens. Matter, 1996, 8, 1217; G. C. Papavassiliou, Mol. Cryst. Liq. Cryst., Sect. A, 1996, 286, 553; T. Ishihara and T. Goto, Proc. Phys., 1988, 36, 72.
6 A. Simon and E. Westerbeck, Angew. Chem., Int. Ed. Engl., 1972, 11, 1105; Z. Anorg. Allg. Chem., 1977, 428, 187; A. Simon, Struct. Bonding (Berlin), 1979, 36, 81; T. P. Martin, H.-J. Stolz, G. Ebbinghaus and A. Simon, J. Chem. Phys., 1979, 70, 1096.

7 S. Pohl, R. Lotz, W. Saak and D. Haase, Angew. Chem., Int. Ed. Engl., 1989, 28, 344.
8 W. Czado and U. Müller, Z. Anorg. Allg. Chem., 1998, 624, 925; H. Krautscheid and F. Vielsack, Z. Anorg. Allg. Chem., 1999, 625, 562.

9 S. Pohl, M. Peters, D. Haase and W. Saak, Z. Naturforsch., Teil B, 1994, 49, 741.
10 A. F. Wells, Structural Inorganic Chemistry, Oxford Science Publications, 5th edn., 1984, p. 915.
11 G. M. Sheldrick, SHELXS 86, SHELXL 97, Programs for Crystal Structure Determinations, University of Göttingen, 1986 and 1997.
12 E. Keller, SCHAKAL 92, A Fortran Program for Graphical Representation of Molecular and Crystallographic Models, Universität Freiburg, 1992.
13 K. Brandenburg, DIAMOND 2, Crystal Impact GbR, Bonn, 1999.

Paper 9/02640A

