Synthesis and structural characterisation of ruthenium and osmium carbonyl clusters containing organomercurials

Fung-Sze Kong and Wing-Tak Wong *
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China. E-mail: wtwong@hkucc.hku.hk

Received 6th April 1999, Accepted 15th June 1999

Abstract

Reaction of the activated cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$ with $\left[\mathrm{PhHgS}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right]$ afforded two new $\mathrm{Os}-\mathrm{Hg}$ clusters cis-$\left[\mathrm{Os}(\mathrm{CO})_{4}\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)(\mu-\mathrm{Hg})\right\}_{2}\right] \mathbf{1}$ and $\left[\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}\left(\mu_{4}-\mathrm{Hg}\right)\right] \mathbf{2}$ in 25 and 30% yields, respectively. Cluster 1 consists of two $\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)(\mu-\mathrm{Hg})\right\}$ subunits bonded to a central $\mathrm{Os}(\mathrm{CO})_{4}$ moiety in a cis configuration. Cluster $\mathbf{2}$ comprises two skewed $\mathrm{Os}-\mathrm{Hg}$ metal butterflies sharing a common wingtip Hg atom. Treatment of the same organomercurial with $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$ produced the cluster compound cis- $\left[\mathrm{Ru}(\mathrm{CO})_{4}\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu-\eta^{3}-\mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)(\mu-\mathrm{Hg})\right\}_{2}\right] \mathbf{3}(48 \%)$. This has a metal skeleton similar to that of $\mathbf{2}$ with the $\left\{\mathrm{S}_{\left.\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\} \text { ligand moiety bonding to the ruthenium atoms in a } \mu-\eta^{3} \text { fashion. Treatment of }\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]}\right.$ with $[\mathrm{PhHg}(\mathrm{mbt})](\mathrm{Hmbt}=2$-mercaptobenzothiazole $)$ afforded $\left[\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{mbt}\right)\right\}_{2}\left(\mu_{4}-\mathrm{Hg}\right)\right] 4(35 \%)$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{mbt}\right)\left(\mu-\eta^{2}-\mathrm{Hg}(\mathrm{mbt})\right] \mathbf{5}(20 \%)\right.$. Cluster 4 is very similar to 2, but the $\mathrm{S}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$ ligand is replaced by the mbt ligand, while 5 consists of an Os_{3} triangle having one edge spanned by both $\left[\mu-\eta^{2}-\mathrm{mbt}\right]$ and $\left[\mu-\eta^{2}-\mathrm{Hg}(\mathrm{mbt})\right]$ moieties. The reaction of $\left[\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{15}\right]$ and $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ with another class of organomercurial (diphenylthiocarbazono) phenylmercury reagent $\left[\mathrm{PhHgL}^{\prime}\right]\left[\mathrm{L}^{\prime}=\mathrm{SC}(\mathrm{N}=\mathrm{NPh})(=\mathrm{NNHPh})\right]$ containing a $\mathrm{N}=\mathrm{N}$ functionality under thermal conditions produced $\left[\left\{\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{14}\left(\mu-\eta^{2}-\mathrm{SPh}\right)\right\}_{2}\left(\mu_{4}-\mathrm{Hg}\right)\right] 6(26 \%)$ and $\left[\left\{\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{14}\left(\mu-\eta^{2}-\mathrm{L}^{\prime}\right)\right\}_{2}\left(\mu_{4}-\mathrm{Hg}\right)\right] 7$ (34%) and $\left[\mathrm{Ru}_{2}(\mathrm{CO})_{4} \mathrm{Ph}\left\{\mu-\eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{Ph}\right\}\left(\mu_{2}-\mathrm{S}\right)\left(\mu-\eta^{2}-\mathrm{L}^{\prime}\right)\right] 8(15 \%),\left[\mathrm{Ru}(\mathrm{CO})_{4}\{\mathrm{C}(\mathrm{O}) \mathrm{Ph}\}\left\{\mu-\eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{Ph}\right\}\left(\mu_{2}-\mathrm{S}\right)\left(\mu-\eta^{2}-\mathrm{L}^{\prime}\right)\right]$ $9(15 \%)$ and $\left[\left\{\mathrm{Ru}(\mathrm{CO})_{2} \mathrm{Ph}_{2}\left(\mu-\eta^{2}-\mathrm{L}^{\prime}\right)\right] \mathbf{1 0}(45 \%)\right.$, respectively. In clusters $\mathbf{6}$ and 7, two $\left\{\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{14}\right\}$ subunits linked by a common wingtip mercury atom, are bonded with both $\mu-\eta^{2}-S P h$ in 6 and $\mu-\eta^{2}-L^{\prime}$ in 7 . However, in the case of complexes $\mathbf{8 , 9}$ and $\mathbf{1 0}$, only binuclear ruthenium carbonyl complexes formed instead of the expected formation of mixed-metal clusters. Complexes $\mathbf{1 - 1 0}$ result from the cleavage of both $\mathrm{Hg}-\mathrm{C}$ and $\mathrm{Hg}-\mathrm{S}$ bonds in the parent organomercury species. All these complexes have been fully characterized by both spectroscopic and crystallographic techniques.

Introduction

Mercury atoms are good 'linkers' in a variety of mixed-metal clusters, ${ }^{1-5}$ and this is manifested in their ability to participate in a range of multicentre metal-metal bonds. This may involve the addition of Hg -ligand fragments into a cluster framework or the incorporation of naked Hg atoms or aggregates of Hg atoms into an extended framework. The rich structural chemistry exhibited by osmium-mercury mixed-metal carbonyl clusters has attracted our attention. In preparing these types of mixed-metal cluster compounds, we use the activated clusters $\left[\mathrm{M}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right](\mathrm{M}=\mathrm{Ru}$ or Os$)$ and the carbido cluster $\left[\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{15}\right]$ in our approach. The use of these complexes as the building blocks in heterometallic clusters as well as in the synthesis of high nuclearity clusters has been well established. ${ }^{6,7}$ The generality of a facile $\mathrm{Hg}-\mathrm{C}$ bond cleavage for aliphatic and aromatic organomercury species upon reaction with triosmium metal clusters has been well demonstrated. ${ }^{6}$ However, the reactivity of osmium carbonyl clusters with mercury complexes containing an $\mathrm{Hg}-\mathrm{S}$ bond has not been thoroughly investigated. In this article we present new results involving this kind of organomercurials with ruthenium and osmium complexes. We describe the preparation of new ruthenium/osmium-mercury carbonyl clusters generated from the reaction of $\left[\mathrm{M}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left.(\mathrm{NCMe})_{2}\right](\mathrm{M}=\mathrm{Ru}$ or Os$),\left[\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{15}\right]$ and $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ with mercury reagents containing $\mathrm{Hg}-\mathrm{C}$ and $\mathrm{Hg}-\mathrm{S}$ bonds, namely [PhHgL] [$\mathrm{L}=\mathrm{S}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$ or 2-mercaptobenzothiazole] and [$\left.\mathrm{PhHgL}^{\prime}\right]\left[\mathrm{L}^{\prime}=\mathrm{SC}(\mathrm{N}=\mathrm{NPh})(=\mathrm{NNHPh})\right]$ which both contain $\mathrm{Hg}-\mathrm{C}$ and $\mathrm{Hg}-\mathrm{S}$ bonds.

Results and discussion

Synthesis and crystal structures of $c i s-\left[\mathrm{Os}(\mathrm{CO})_{4}\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}{ }^{-}\right.\right.$ $\left.\left.\left(\mu-\eta^{2}-\mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)(\mu-\mathrm{Hg})\right\}_{2}\right] 1$ and $\left[\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}_{2}-\right.$ $\left.\left(\mu_{4}-\mathrm{Hg}\right)\right] 2$
Treatment of the activated cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$ with 1 equivalent of $\left[\mathrm{PhHgS}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 2 h afforded two new Os-Hg clusters $\mathbf{1}$ and $\mathbf{2}$ in 25 and 30% yields, respectively (Scheme 1). A small amount of metallic mercury has also been isolated. ${ }^{1} \mathrm{H}$ NMR spectroscopy (Table 1) showed that both of the pyridyl moieties bonded to the cluster through a sulfur atom and that no orthometallation occurred. To establish the molecular structures of clusters $\mathbf{1}$ and 2, single crystal X-ray analyses were carried out on these compounds.
The molecular structure of cluster $\mathbf{1}$ is depicted in Fig. 1, and selected bond lengths and angles are given in Table 2. The molecule possesses a non-crystallographic two-fold axis. Cluster 1 comprises a central $\mathrm{Os}(\mathrm{CO})_{4}$ fragment bonded to two $\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)(\mu-\mathrm{Hg})\right\}$ butterflies in a trans configuration. The geometry around $\mathrm{Os}(1)$ is octahedrally distorted and the $(\mathrm{O}) \mathrm{C}-\mathrm{Os}-\mathrm{C}(\mathrm{O})$ angles range between $96(1)$ and $101(1)^{\circ}$. The central $\mathrm{Hg}(1)-\mathrm{Os}(7)$ [2.677(2) \AA] and $\mathrm{Hg}(2)-\mathrm{Os}(7)$ [2.686(2) \AA] distances, are significantly shorter than the $\mathrm{Hg}-\mathrm{Os}$ distances of the $\left\{\mathrm{Os}_{3}(\mu-\mathrm{Hg})\right\}$ units: $\mathrm{Hg}(1)-\mathrm{Os}(1)$ [2.850(2) \AA], $\mathrm{Hg}(1)-\mathrm{Os}(2)[2.797(2) \AA], \mathrm{Hg}(2)-\mathrm{Os}(4)[2.788(2) \AA]$ and $\mathrm{Hg}(2)-$ $\mathrm{Os}(5)[2.849(2) \AA]$. This is reasonable if one regards the $\mathrm{Os}-\mathrm{Hg}_{-}$ Os bridges as a three-centre-two-electron bond. The situation is similar to that found in cis- $\left[\mathrm{Os}(\mathrm{CO})_{4}\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\right.\right.\right.$

Table 1 Spectroscopic data for compounds 1-10

Compound	$\mathrm{IR}, v(\mathrm{CO})^{a} / \mathrm{cm}^{-1}$	${ }^{1} \mathrm{H}$ NMR, ${ }^{\text {b }} \delta(J / \mathrm{Hz})$	$\mathrm{MS}^{c}(\mathrm{~m} / \mathrm{z})$
1	$\begin{aligned} & \text { 2099m, 2086w, 2068s, 2051vs, 2018vs, } \\ & 1989 \mathrm{~s} \end{aligned}$	$8.81(2 \mathrm{H}, \mathrm{d}, J=4.3$, aryl H), $7.93(2 \mathrm{H}, \mathrm{d}, J=7.7$, aryl H), 7.59 ($2 \mathrm{H}, \mathrm{m}$, aryl H), 7.18 ($2 \mathrm{H}, \mathrm{m}$, aryl H)	2627 (2628)
2	2095m, 2055s, 2018s, 1989m	$\begin{aligned} & 8.43(2 \mathrm{H}, \mathrm{~m}, \operatorname{aryl~H}), 7.83(2 \mathrm{H}, \mathrm{~m}, \operatorname{aryl} \mathrm{H}), 7.53(2 \mathrm{H}, \mathrm{~m}, \operatorname{aryl} \mathrm{H}), \\ & 7.11(2 \mathrm{H}, \mathrm{~m}, \operatorname{aryl} \mathrm{H}) \end{aligned}$	2125 (2125)
3	$\begin{aligned} & 2080 \mathrm{~m}, 2069 \mathrm{~m}, 2057 \mathrm{~m}, 2037 \mathrm{~s}, 2023 \mathrm{~m}, \\ & 1987 \mathrm{~s} \end{aligned}$	$8.49(2 \mathrm{H}, \mathrm{d}, J=5.3$, aryl H), $7.45(4 \mathrm{H}, \mathrm{m}, \operatorname{aryl} \mathrm{H}), 7.07(2 \mathrm{H}, \mathrm{m}$, aryl H)	1948 (1948)
4	2111w, 2099m, 2060vs, 2022s, 1993 (sh)	$7.59(2 \mathrm{H}, \mathrm{d}, J=8.1$, aryl H), $7.37(2 \mathrm{H}, \mathrm{d}, J=8.0$, aryl H), 7.25 $(2 \mathrm{H}, \mathrm{t}, J=7.7, \operatorname{aryl} \mathrm{H}), 7.16(2 \mathrm{H}, \mathrm{t}, J=7.1,8.3$, aryl H)	2237 (2237)
5	2109s, 2060vs, 2026vs, 2001s	$7.94(1 \mathrm{H}, \mathrm{d}, J=8.1$, aryl H$), 7.67(1 \mathrm{H}, \mathrm{d}, J=7.9$, aryl H), 7.62 $(1 \mathrm{H}, \mathrm{d}, J=7.9$, aryl H), $7.51(1 \mathrm{H}, \mathrm{d}, J=8.0$, aryl H), $7.37(1 \mathrm{H}, \mathrm{t}$, $J=7.1,7.7$, aryl H), $7.30(1 \mathrm{H}, \mathrm{t}, J=7.4,7.7$, aryl H$), 7.20(1 \mathrm{H}$, $\mathrm{t}, J=7.3,7.9$, aryl H$), 7.10(1 \mathrm{H}, \mathrm{t}, J=7.4,7.6$, aryl H)	1384 (1384)
6	$\begin{aligned} & 2105 \mathrm{~m}, 2072 \mathrm{vs}, 2059 \mathrm{vs}, 2032 \mathrm{~s}, 2020 \mathrm{~s} \text {, } \\ & 2001 \mathrm{~s}, 1962 \mathrm{w} \end{aligned}$	$\begin{aligned} & 7.55(4 \mathrm{H}, \mathrm{~d}, J=8.1, \text { aryl } \mathrm{H}), 7.93(4 \mathrm{H}, \mathrm{t}, J=7.7 \text {, aryl H}), 7.22 \\ & (2 \mathrm{H}, \mathrm{t}, J=7.1, \operatorname{aryl~H}) \end{aligned}$	3125 (3125)
7	2099s, 2070vs, 2055w, 2022m, 2010m, 2003m, 1989m, 1943w	$10.76(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.54(8 \mathrm{H}, \mathrm{d}, J=7.8$, aryl H$), 7.37(10 \mathrm{H}, \mathrm{m}$, $\operatorname{aryl} \mathrm{H}), 7.22(6 \mathrm{H}, \mathrm{t}, J=7.2)$	3426 (3426)
8	$\begin{aligned} & 2064 \mathrm{~m}, 2045 \mathrm{~s}, 2001 \mathrm{~m}, 1978 \mathrm{~m} \quad[\mathrm{C}=\mathrm{O} \\ & (\mathrm{KBr}) 1563 \mathrm{~m}] \end{aligned}$	$9.15(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.10(2 \mathrm{H}, \mathrm{d}, J=7.9$, aryl H$), 7.78(2 \mathrm{H}, \mathrm{d}$, $J=7.1$, aryl H), $7.56(7 \mathrm{H}, \mathrm{m}$, aryl H$), 7.42(2 \mathrm{H}, \mathrm{t}, J=7.2$, aryl H), $7.22(7 \mathrm{H}, \mathrm{m}$, aryl H)	788 (788)
9	$\begin{aligned} & \text { 2064w, 2053vs, 1999s [C=O (KBr) } \\ & \text { 1561m] } \end{aligned}$	$11.75(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.26(2 \mathrm{H}, \mathrm{m}$, aryl H$), 8.01(2 \mathrm{H}, \mathrm{d}, J=8.2$, $\operatorname{aryl} \mathrm{H}), 7.86(2 \mathrm{H}, \mathrm{d}$, aryl H$), 7.77(2 \mathrm{H}, \mathrm{d}, J=7.2$, aryl H), 7.55 ($12 \mathrm{H}, \mathrm{m}$, aryl H)	811 (811)
10	2053s, 2039m, 1976m	$8.90(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.34(4 \mathrm{H}, \mathrm{m}$, aryl H$), 7.20(6 \mathrm{H}, \mathrm{t}, J=7.7$, aryl H), $7.47(20 \mathrm{H}, \mathrm{m}$, aryl H)	980 (980)

Scheme 1 (i) $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temp.; (ii) $\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temp.
$\left.\mathrm{CH}=\mathrm{CHPh})(\mu-\mathrm{Hg})\}_{2}\right]^{6 b}$ Similar shortenings of $\mathrm{M}-\mathrm{Hg}$ bonds have been observed in cis- $\left[\mathrm{Ru}(\mathrm{CO})_{4}\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{C} \equiv \mathrm{CMe}_{3}\right)\right.\right.$ -$\left.(\mu-\mathrm{Hg})\}_{2}\right],{ }^{4}$ where the difference in the corresponding distances was about $0.16 \AA$. The intramolecular $\mathrm{Hg} \cdots \mathrm{Hg}$ distance ($3.95 \AA$) and the $\mathrm{Hg}(1)-\mathrm{Os}(7)-\mathrm{Hg}(2)$ angle [94.73(7)] both indicate very little interaction between the two cis- $\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mu-\eta)^{3}-\right.$ $\left.\left.\mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)(\mu-\mathrm{Hg})\right\}$ fragments. Such $\mathrm{Hg} \cdots \mathrm{Hg}$ interactions were also observed in cis-[Os(CO) $4_{4}\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right)-\right.$ $\left.(\mu-\mathrm{Hg})\}_{2}\right]^{6 b}\left[\mathrm{Hg} \cdots \mathrm{Hg} 3.700(1) \AA\right.$ and $\left.\mathrm{Hg}-\mathrm{Os}-\mathrm{Hg} 87.09(6)^{\circ}\right]$ and cis- $\left[\mathrm{Ru}(\mathrm{CO})_{4}\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{C} \equiv \mathrm{CMe}_{3}\right)(\mu-\mathrm{Hg})\right\}_{2}\right]^{4}(\mathrm{Hg} \cdots \mathrm{Hg}$ $3.55 \AA$ and $\left.\mathrm{Hg}-\mathrm{Ru}-\mathrm{Hg} 84^{\circ}\right)$. We can presume that, in general,
the shorter the $\mathrm{Hg} \cdots \mathrm{Hg}$ distance, the smaller the $\mathrm{Hg}-\mathrm{M}-\mathrm{Hg}$ angles and, hence, the larger the interactions between the two Hg subunits. $\mathrm{Hg}(1)$ and $\mathrm{Hg}(2)$ form a slightly distorted trigonal planar geometry which involves six osmium atoms: Os(1), $\mathrm{Os}(2), \mathrm{Os}(3), \mathrm{Os}(4), \mathrm{Os}(5)$ and $\mathrm{Os}(6)$. Within each osmium triangle, metal-metal bond distances vary significantly between 2.845(3) and 2.934(3) A. In particular, the mercury-bridged $\mathrm{Os}(1)-\mathrm{Os}(2)$ and $\mathrm{Os}(4)-\mathrm{Os}(5)$ bonding edges are longer than those unsupported Os-Os bonds by a mean distance of $0.06 \AA$. This may suggest an excess of electrons on the four atoms $\mathrm{Os}(1), \mathrm{Os}(2), \mathrm{Os}(4)$ and $\mathrm{Os}(5)$.

Fig. 1 A perspective drawing of the molecular structure of $\mathbf{1}$.

Table 2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 1

$\mathrm{Hg}(1)-\mathrm{Os}(1)$	$2.850(2)$	$\mathrm{Hg}(1)-\mathrm{Os}(2)$	$2.797(2)$
$\mathrm{Hg}(2)-\mathrm{Os}(4)$	$2.788(2)$	$\mathrm{Hg}(2)-\mathrm{Os}(5)$	$2.849(2)$
$\mathrm{Hg}(1)-\mathrm{Os}(7)$	$2.677(2)$	$\mathrm{Hg}(2)-\mathrm{Os}(7)$	$2.686(2)$
$\mathrm{Os}(1)-\mathrm{Os}(2)$	$2.914(2)$	$\mathrm{Os}(1)-\mathrm{Os}(3)$	$2.852(3)$
$\mathrm{Os}(2)-\mathrm{Os}(3)$	$2.855(3)$	$\mathrm{Os}(4)-\mathrm{Os}(5)$	$2.933(3)$
$\mathrm{Os}(4)-\mathrm{Os}(6)$	$2.866(3)$	$\mathrm{Os}(5)-\mathrm{Os}(6)$	$2.845(3)$
$\mathrm{Os}(1)-\mathrm{S}(1)$	$2.38(1)$	$\mathrm{Os}(2)-\mathrm{S}(1)$	$2.39(1)$
$\mathrm{Os}(4)-\mathrm{S}(2)$	$2.41(1)$	$\mathrm{Os}(5)-\mathrm{S}(2)$	$2.40(1)$
$\mathrm{S}(1)-\mathrm{C}(25)$	$1.75(4)$	$\mathrm{S}(2)-\mathrm{C}(31)$	$1.80(4)$
$\mathrm{Hg}(1) \cdots \mathrm{Hg}(2)$	$3.951(1)$		
$\mathrm{Hg}(1)-\mathrm{Os}(7)-\mathrm{Hg}(2)$	$94.73(7)$	$\mathrm{Os}(1)-\mathrm{Hg}(1)-\mathrm{Os}(7)$	$145.10(8)$
$\mathrm{Os}(2)-\mathrm{Hg}(1)-\mathrm{Os}(7)$	$151.46(8)$	$\mathrm{Os}(1)-\mathrm{Hg}(1)-\mathrm{Os}(2)$	$62.12(6)$
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	$59.25(6)$	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	$59.34(6)$
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$	$61.41(6)$	$\mathrm{Hg}(1)-\mathrm{Os}(1)-\mathrm{Os}(2)$	$58.04(6)$
$\mathrm{Hg}(1)-\mathrm{Os}(2)-\mathrm{Os}(1)$	$59.83(6)$	$\mathrm{Os}(4)-\mathrm{Hg}(2)-\mathrm{Os}(7)$	$158.72(9)$
$\mathrm{Os}(5)-\mathrm{Hg}(2)-\mathrm{Os}(7)$	$137.32(9)$	$\mathrm{Os}(4)-\mathrm{Hg}(2)-\mathrm{Os}(5)$	$62.71(6)$
$\mathrm{Os}(4)-\mathrm{Os}(5)-\mathrm{Os}(6)$	$59.45(6)$	$\mathrm{Os}(5)-\mathrm{Os}(4)-\mathrm{Os}(6)$	$58.74(6)$
$\mathrm{Os}(4)-\mathrm{Os}(6)-\mathrm{Os}(5)$	$61.81(6)$	$\mathrm{Hg}(2)-\mathrm{Os}(4)-\mathrm{Os}(5)$	$59.67(6)$
$\mathrm{Hg}(2)-\mathrm{Os}(5)-\mathrm{Os}(4)$	$57.62(6)$		

The solid-state structure of cluster $\mathbf{1}$ indicates that the two butterflies, and subsequently the two ligand moieties, are arranged in a transoid manner. The central $\mathrm{Os}(\mathrm{CO})_{4}$ linkage is most probably derived from a partial degradation of the parent $\mathrm{Os}_{3}(\mathrm{CO})_{10}$ metal core of the starting material $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $(\mathrm{NCMe})_{2}$]. Similar examples involving an $\mathrm{Os}(\mathrm{CO})_{4}$ linkage have been previously found in cis-[Os $(\mathrm{CO})_{4}\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{CH}=\right.\right.$ $\left.\mathrm{CHPh})(\mu-\mathrm{Hg})\}_{2}\right]^{6 b} \quad\left[\mathrm{Os}_{3}\left\{\mu-\mathrm{AuOs}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)\right\}(\mu-\mathrm{Cl})(\mathrm{CO})_{10}\right]^{8}$ and $\left[\mathrm{Hg}\left\{\mathrm{Fe}(\mathrm{CO})_{4}(\mu-\mathrm{Hg}) \mathrm{Fe}_{3}(\mu-\mathrm{COMe})(\mathrm{CO})_{10}\right\}_{2}\right] .{ }^{9}$ In all cases, the mechanism of formation of the coordinatively unsaturated $\mathrm{M}(\mathrm{CO})_{4}$ fragments is still unknown, but is presumably derived from the fragmentation of the parent trinuclear metal core.

Dark red crystals of $\mathbf{2}$ suitable for structural analysis were obtained by standing an n-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution mixture overnight under ambient conditions. An ORTEP drawing of 2 is illustrated in Fig. 2 and some important bond parameters are given in Table 3. The molecular structure reveals a heptametal-

Table 3 Selected bond lengths ((\AA) and angles (${ }^{\circ}$) for complex 2

$\mathrm{Hg}(1)-\mathrm{Os}(2)$	$2.882(2)$	$\mathrm{Hg}(1)-\mathrm{Os}(3)$	$2.880(3)$
$\mathrm{Hg}(1)-\mathrm{Os}(5)$	$2.882(2)$	$\mathrm{Hg}(1)-\mathrm{Os}(6)$	$2.885(3)$
$\mathrm{Os}(2)-\mathrm{Os}(3)$	$2.897(2)$	$\mathrm{Os}(5)-\mathrm{Os}(6)$	$2.902(2)$
$\mathrm{Os}(1)-\mathrm{Os}(2)$	$2.862(3)$	$\mathrm{Os}(1)-\mathrm{Os}(3)$	$2.854(3)$
$\mathrm{Os}(4)-\mathrm{Os}(5)$	$2.853(3)$	$\mathrm{Os}(4)-\mathrm{Os}(6)$	$2.851(3)$
$\mathrm{Os}(2)-\mathrm{S}(1)$	$2.40(1)$	$\mathrm{Os}(3)-\mathrm{S}(1)$	$2.39(1)$
$\mathrm{Os}(5)-\mathrm{S}(2)$	$2.38(1)$	$\mathrm{Os}(6)-\mathrm{S}(2)$	$2.39(1)$
$\mathrm{S}(1)-\mathrm{C}(21)$	$1.77(5)$	$\mathrm{S}(2)-\mathrm{C}(26)$	$1.89(5)$
$\mathrm{Os}(2)-\mathrm{Hg}(1)-\mathrm{Os}(3)$	$60.36(6)$	$\mathrm{Os}(5)-\mathrm{Hg}(1)-\mathrm{Os}(6)$	$60.43(6)$
$\mathrm{Hg}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	$59.78(6)$	$\mathrm{Hg}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$	$59.86(6)$
$\mathrm{Hg}(1)-\mathrm{Os}(5)-\mathrm{Os}(6)$	$59.83(6)$	$\mathrm{Hg}(1)-\mathrm{Os}(6)-\mathrm{Os}(5)$	$59.74(6)$
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	$59.42(6)$	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	$60.90(6)$
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$	$59.68(6)$	$\mathrm{Os}(4)-\mathrm{Os}(5)-\mathrm{Os}(6)$	$59.38(7)$
$\mathrm{Os}(5)-\mathrm{Os}(4)-\mathrm{Os}(6)$	$61.16(6)$	$\mathrm{Os}(4)-\mathrm{Os}(6)-\mathrm{Os}(5)$	$59.46(6)$

lic $\mathrm{Os}-\mathrm{Hg}$ metal cluster framework, consisting of two metal butterflies $[\mathrm{Os}(1), \mathrm{Os}(2), \mathrm{Os}(3)$ and $\mathrm{Hg}(1)]$ and $[\mathrm{Os}(4)$, $\mathrm{Os}(5)$, $\mathrm{Os}(6)$ and $\mathrm{Hg}(1)]$ sharing a common wingtip $\mathrm{Hg}(1)$ atom. The two HgOs_{2} planes are slightly twisted. The skewing is inferred from a non-bonding interaction between the carbonyl ligands on $\mathrm{Os}(2)$ and $\mathrm{Os}(3)$ and on $\mathrm{Os}(5)$ and $\mathrm{Os}(6)$. In this context, the geometry around the Hg could be described as pseudo-linear and the dihedral angle between the $\mathrm{Hg}-\mathrm{Os}(2)-\mathrm{Os}(3)$ and Hg_{-} $\mathrm{Os}(5)-\mathrm{Os}(6)$ planes is 155.04°. Although the solid-state structure of $\mathbf{2}$ revealed a cisoid configuration, we cannot discard the possibility of other structures such as a transoid arrangement present in solution. It has been shown that the energy barrier to such a rotation is rather low. ${ }^{10}$ As in cluster $\mathbf{1}$, the mercurybridged $\mathrm{Os}(2)-\mathrm{Os}(3)[2.897(2) \AA$ And $\operatorname{Os}(5)-\operatorname{Os}(6)[2.902(2) \AA]$ edges of the two osmium triangles are substantially elongated. The average Os-Os distance in $\mathbf{2}[2.870(1) \AA$ is shorter than that in $\mathbf{1}[2.977(8) \AA]$ but is almost identical to that in $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right]\left[2.877(3) \AA{ }^{1}\right]^{11}$ Thus, the overall coordination number around mercury is not a critical factor in determining the bond lengths in this family of complexes, but depends on the overall electronegativity of the group attached to it.

Fig. 2 A perspective drawing of the molecular structure of 2.
 in $\mathrm{Hg}-\mathrm{C}$ and $\mathrm{Hg}-\mathrm{S}$ bond cleavage of the reactant $[\mathrm{PhHg}-$ $\mathrm{S}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$]. Their $\mu-\eta^{2}$ bonding mode is reflected from four sets of peaks in the ${ }^{1} \mathrm{H}$ NMR spectra. As a whole, the organic moieties bridge along the hinged Os-Os edge as three-electron donors to the cluster valence shell. In essence, the structural properties of the triosmium metal domain in clusters $\mathbf{1}$ and $\mathbf{2}$ were similar to those found in $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)(\mathrm{CO})_{9}\right]^{12}$ with the nitrogen atom involved in coordination to the cluster framework. This indicates remarkable rigidity in the metal framework.

Synthesis and crystal structure of $c i s-\left[\operatorname{Ru}(C O)_{4}\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu-\eta^{3}-\right.\right.\right.$ $\left.\left.\left.\mathrm{SC}_{5} \mathrm{H}_{4} \mathbf{N}\right)(\mu-\mathrm{Hg})\right\}_{2}\right] 3$

The organomercury complex $\left[\mathrm{PhHgS}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right]$ was allowed to react with the activated ruthenium carbonyl cluster $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left.(\mathrm{NCMe})_{2}\right]$ to yield the cluster cis-[Ru(CO) $\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\eta^{3}-\mathrm{SC}_{5}{ }^{-}\right.\right.$ $\left.\left.\left.\mathrm{H}_{4} \mathrm{~N}\right)(\mu-\mathrm{Hg})\right\}_{2}\right] 3$ as the sole product (Scheme 1). Similar to complex 1, X-ray analysis of $\mathbf{3}$ shows that it contains a central $' \mathrm{Ru}(\mathrm{CO})_{4}$ ' fragment bound to two $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu-\eta^{3}-\mathrm{SC}_{5} \mathrm{H}_{4} \mathrm{~N}\right)(\mu-\right.$ Hg)] butterflies in a trans conformation (Fig. 3). Table 4 lists some selected bond lengths and angles. The $\left\{\mathrm{S}_{\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)}\right.$ \} ligand moiety coordinated to the metal core through a nitrogen and sulfur atoms in 3 is coordinated differently from 1 and 2 because the nitrogen atom of the pyridyl ligand is coordinated to the third ruthenium atom $[\mathrm{Ru}(1)-\mathrm{N}(1) 2.21(2) \AA, \mathrm{Ru}(7)-\mathrm{N}(2)$ $2.20(2) \AA]$. The $\left\{\mathrm{S}_{\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)}\right)$ ligand is essentially orthogonal to the ruthenium triangle [dihedral angle 88.05°], which acts as a face capping, five-electron donor. The central $\mathrm{Hg}(1)-\mathrm{Ru}(4)$ [2.638(3) \AA] and $\mathrm{Hg}(2)-\operatorname{Ru}(4)$ [2.671(3) \AA] bond distances are also significantly shorter than the two asymmetric edges bridging the $\mathrm{Hg}-\mathrm{Ru}$ bonds [average 2.821(2) A], observed in 1. The $\mathrm{Hg}(1)-\mathrm{Ru}(4)-\mathrm{Hg}(2)$ bond angle is unusually small [81.62(8) $\left.{ }^{\circ}\right]$.

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 3

$\mathrm{Hg}(1)-\mathrm{Ru}(4)$	$2.638(3)$	$\mathrm{Hg}(2)-\mathrm{Ru}(4)$	$2.671(3)$
$\mathrm{Hg}(1)-\mathrm{Ru}(2)$	$2.780(3)$	$\mathrm{Hg}(1)-\mathrm{Ru}(3)$	$2.779(3)$
$\mathrm{Hg}(2)-\mathrm{Ru}(5)$	$2.796(3)$	$\mathrm{Hg}(2)-\mathrm{Ru}(6)$	$2.806(3)$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.793(3)$	$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.781(4)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.935(3)$	$\mathrm{Ru}(5)-\mathrm{Ru}(6)$	$2.916(3)$
$\mathrm{Ru}(5)-\mathrm{Ru}(7)$	$2.794(3)$	$\mathrm{Ru}(6)-\mathrm{Ru}(7)$	$2.790(3)$
$\mathrm{Ru}(2)-\mathrm{S}(1)$	$2.369(8)$	$\mathrm{Ru}(3)-\mathrm{S}(1)$	$2.378(8)$
$\mathrm{Ru}(5)-\mathrm{S}(2)$	$2.377(8)$	$\mathrm{Ru}(6)-\mathrm{S}(2)$	$2.362(8)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.21(2)$	$\mathrm{Ru}(7)-\mathrm{N}(2)$	$2.20(2)$
$\mathrm{S}(1)-\mathrm{C}(23)$	$1.71(3)$	$\mathrm{S}(2)-\mathrm{C}(32)$	$1.74(3)$
$\mathrm{Hg}(1)-\cdots \mathrm{Hg}(2)$	$3.470(2)$		
$\mathrm{Hg}(1)-\mathrm{Ru}(4)-\mathrm{Hg}(2)$	$81.62(8)$	$\mathrm{Ru}(2)-\mathrm{Hg}(1)-\mathrm{Ru}(4)$	$147.86(9)$
$\mathrm{Hg}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$58.11(7)$	$\mathrm{Hg}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$58.14(7)$
$\mathrm{Hg}(2)-\mathrm{Ru}(5)-\mathrm{Ru}(6)$	$58.80(7)$	$\mathrm{Hg}(2)-\mathrm{Ru}(6)-\mathrm{Ru}(5)$	$58.48(7)$
$\mathrm{Ru}(3)-\mathrm{Hg}(1)-\mathrm{Ru}(4)$	$146.89(9)$	$\mathrm{Ru}(2)-\mathrm{Hg}(1)-\mathrm{Ru}(3)$	$63.75(7)$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$58.03(8)$	$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$63.55(9)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	$58.42(8)$	$\mathrm{Ru}(4)-\mathrm{Hg}(2)-\mathrm{Ru}(5)$	$151.60(8)$
$\mathrm{Ru}(4)-\mathrm{Hg}(2)-\mathrm{Ru}(6)$	$145.26(8)$	$\mathrm{Ru}(5)-\mathrm{Hg}(2)-\mathrm{Ru}(6)$	$62.73(7)$
$\mathrm{Ru}(5)-\mathrm{Ru}(6)-\mathrm{Ru}(7)$	$58.60(8)$	$\mathrm{Ru}(5)-\mathrm{Ru}(7)-\mathrm{Ru}(6)$	$62.95(8)$
$\mathrm{Ru}(6)-\mathrm{Ru}(5)-\mathrm{Ru}(7)$	$58.45(8)$		

The intramolecular $\mathrm{Hg}(1) \cdots \mathrm{Hg}(2)$ distance is $3.470(2) \AA$. The shortening of this non-bonding distance suggests that there may be a significant $\mathrm{Hg}(1)-\mathrm{Hg}(2)$ interaction, causing an unusually small bond angle of $81.62(8)^{\circ}$ between the two mercury atoms.

Synthesis and crystal structures of $\left[\left\{\mathrm{Os}_{3}(\mathbf{C O})_{10}\left(\mu-\eta^{2}-\mathrm{mbt}\right)\right\}_{2}-\right.$ $\left.\left(\mu_{4}-\mathrm{Hg}\right)\right] 4$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{mbt}\right)\left\{\mu-\eta^{2}-\mathrm{Hg}(\mathrm{mbt})\right\}\right] 5$

To test the general $\mathrm{Hg}-\mathrm{C}$ and $\mathrm{Hg}-\mathrm{S}$ bond cleavage observed for $\left[\mathrm{PhHgS}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right]$, we have investigated the reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$ with another class of organomercury

Fig. 3 A perspective drawing of the molecular structure of $\mathbf{3}$.

Table 5 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 4

$\mathrm{Hg}(1)-\mathrm{Os}(1)$	$2.861(3)$	$\mathrm{Hg}(1)-\mathrm{Os}(2)$	$2.903(3)$
$\mathrm{Hg}(1)-\mathrm{Os}(4)$	$2.865(3)$	$\mathrm{Hg}(1)-\mathrm{Os}(5)$	$2.895(3)$
$\mathrm{Os}(1)-\mathrm{Os}(2)$	$2.897(3)$	$\mathrm{Os}(4)-\mathrm{Os}(5)$	$2.908(3)$
$\mathrm{Os}(1)-\mathrm{Os}(3)$	$2.871(3)$	$\mathrm{Os}(2)-\mathrm{Os}(3)$	$2.865(3)$
$\mathrm{Os}(4)-\mathrm{Os}(6)$	$2.866(4)$	$\mathrm{Os}(5)-\mathrm{Os}(6)$	$2.868(4)$
$\mathrm{Os}(1)-\mathrm{S}(1)$	$2.38(2)$	$\mathrm{Os}(2)-\mathrm{S}(1)$	$2.38(2)$
$\mathrm{Os}(4)-\mathrm{S}(3)$	$2.41(1)$	$\mathrm{Os}(5)-\mathrm{S}(3)$	$2.42(1)$
$\mathrm{S}(1)-\mathrm{C}(41)$	$1.74(5)$	$\mathrm{S}(3)-\mathrm{C}(48)$	$1.73(6)$
$\mathrm{Os}(1)-\mathrm{Hg}(1)-\mathrm{Os}(2)$	$60.34(8)$	$\mathrm{Os}(4)-\mathrm{Hg}(1)-\mathrm{Os}(5)$	$60.63(7)$
$\mathrm{Hg}(1)-\mathrm{Os}(1)-\mathrm{Os}(2)$	$60.55(8)$	$\mathrm{Hg}(1)-\mathrm{Os}(2)-\mathrm{Os}(1)$	$59.11(8)$
$\mathrm{Hg}(1)-\mathrm{Os}(4)-\mathrm{Os}(5)$	$60.19(7)$	$\mathrm{Hg}(1)-\mathrm{Os}(5)-\mathrm{Os}(4)$	$59.18(7)$
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	$59.76(1)$	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	$59.58(7)$
$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$	$60.66(7)$	$\mathrm{Os}(4)-\mathrm{Os}(5)-\mathrm{Os}(6)$	$59.48(8)$
$\mathrm{Os}(5)-\mathrm{Os}(4)-\mathrm{Os}(6)$	$59.57(8)$	$\mathrm{Os}(4)-\mathrm{Os}(6)-\mathrm{Os}(5)$	$60.94(8)$

compounds $[\mathrm{PhHg}(\mathrm{mbt})]$ ($\mathrm{Hmbt}=2$-mercaptobenzothiazole) to afford $\left[\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{mbt}\right)\right\}_{2}\left(\mu_{4}-\mathrm{Hg}\right)\right] 4$ and $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left.\left(\mu-\eta^{2}-\mathrm{mbt}\right)\left\{\mu-\eta^{2}-\mathrm{Hg}(\mathrm{mbt})\right\}\right] 5$ in 35 and 20% yields, respectively. IR spectroscopy [$v(\mathrm{CO})$] indicates that the metal framework of cluster $\mathbf{4}$ is quite similar to that of 2 (Table 1). For complex 5 two set of signals, indicative of four aryl protons, appeared in the ${ }^{1} \mathrm{H}$ NMR spectrum showing a different environment for two ligand moieties. We believe that $\mathrm{Hg}-\mathrm{C}$ and $\mathrm{Hg}-\mathrm{S}$ bond cleavage had occurred. In order to establish the molecular structures of clusters 4 and 5, X-ray analyses were carried out.

The ORTEP drawings of clusters $\mathbf{4}$ and $\mathbf{5}$ are depicted in Figs. 4 and 5, respectively, while selected bond lengths and angles are listed in Tables 5 and 6, respectively. As expected, cluster 4 has the same metal framework as cluster 2 , which consists of two metal butterflies sharing a common wingtip Hg atom. There are two asymmetric units present in the molecule. As a consequence of $\mathrm{Hg}-\mathrm{C}$ and $\mathrm{Hg}-\mathrm{S}$ bond cleavage, only the mbt moiety is coordinated to the osmium triangle. In this context, the average dihedral angles of the two butterflies, the twist angle about the central Hg atom, and the average $\mathrm{Os}-\mathrm{Os}$ bond distance in cluster 4 are $105.23,39.91^{\circ}$ and $2.88 \AA$, respectively. Consequently, it is reasonable to assume that both clusters adopt a skewed cisoid configuration in their solid-state structures.

Table 6 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 5

$\mathrm{Hg}(1)-\mathrm{Os}(2)$	$2.774(1)$	$\mathrm{Hg}(1)-\mathrm{Os}(3)$	$2.7996(9)$
$\mathrm{Os}(2)-\mathrm{Os}(3)$	$2.925(1)$	$\mathrm{Os}(1)-\mathrm{Os}(2)$	$2.884(1)$
$\mathrm{Os}(1)-\mathrm{Os}(3)$	$2.872(1)$	$\mathrm{Hg}(1)-\mathrm{S}(1)$	$2.423(5)$
$\mathrm{Os}(2)-\mathrm{S}(3)$	$2.418(5)$	$\mathrm{Os}(3)-\mathrm{S}(3)$	$2.421(5)$
$\mathrm{S}(1)-\mathrm{C}(11)$	$1.73(2)$	$\mathrm{S}(3)-\mathrm{C}(18)$	$1.78(2)$
$\mathrm{Os}(2)-\mathrm{Hg}(1)-\mathrm{Os}(3)$	$63.32(3)$	$\mathrm{Hg}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	$58.77(3)$
$\mathrm{Hg}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$	$57.91(2)$	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	$59.26(3)$
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	$61.09(3)$	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$	$59.65(3)$
$\mathrm{Os}(2)-\mathrm{S}(3)-\mathrm{Os}(3)$	$74.4(1)$	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{S}(3)$	$52.8(1)$
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{S}(3)$	$52.9(1)$		

The metal core of $\mathbf{5}$ comprises a butterfly framework where the $\mathrm{Os}(2)-\mathrm{Os}(3)$ edge and the $\mathrm{Os}(1)$ and $\mathrm{Hg}(1)$ atoms form the hinge and the wingtips of the butterfly. In addition, the $\mathrm{Os}(2)-\mathrm{Os}(3)$ edge is doubly bridged by an mbt and an $\mathrm{Hg}(\mathrm{mbt})$ moiety, as shown in Fig. 5. The Os-Os vector, doubly-bridged by a bridgehead sulfur atom and an Hg atom $[\mathrm{Os}(2)-\mathrm{Os}(3)$ $2.925(1) \AA$], is slightly longer than the two unsupported Os-Os bonds [Os(1)-Os(2) 2.884(1) and $\mathrm{Os}(1)-\mathrm{Os}(3) 2.872(1) \AA$]. This lengthening may be due to the larger size of the sulfur and Hg atoms. Churchill and Lachewycz ${ }^{13}$ have shown that a larger bridgehead atom has a larger lengthening effect on the bridged metal-metal bond. The dihedral angle between the metal butterfly is 141.31°. The salient feature of 5 reveals that one of the $\mathrm{Hg}(\mathrm{mbt})$ moieties has undergone $\mathrm{Hg}-\mathrm{S}$ bond cleavage upon coordinating to the cluster framework, while the second $\mathrm{Hg}(\mathrm{mbt})$ moiety remains intact on the cluster. Similar coordination modes have been found in $\left[\mathrm{Ru}_{3}(\mu-\mathrm{HgBr})\left(\mu_{3}-\right.\right.$ $\operatorname{ampy})(\mathrm{CO})_{9}$] [Hampy $=2$-amino-6-methylpyridine] in which the ligand ampy and an HgBr moiety bridge across the same $\mathrm{Ru}-\mathrm{Ru}$ edge. ${ }^{14}$

Synthesis and crystal structures of $\left[\left\{\mathrm{Os}_{5} \mathrm{C}(\mathbf{C O})_{14}\left(\mu-\eta^{2}-\mathrm{SPh}\right)\right\}_{2}-\right.$ $\left.\left(\mu_{4}-\mathrm{Hg}\right)\right] 6$ and $\left[\left\{\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{14}\left(\mu-\eta^{2}-\mathrm{SC}(\mathrm{N}=\mathrm{NPh})_{2}\right)\right\}_{2}\left(\mu_{4}-\mathrm{Hg}\right)\right] 7$

The reaction of $\left[\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{15}\right]$ with $[\mathrm{PhHgSC}(\mathrm{N}=\mathrm{NPh})$ (=NNHPh)] in refluxing CHCl_{3} afforded two new $\mathrm{Os}-\mathrm{Hg}$ clusters 6 and 7 in 26% and 34% yields, respectively (Scheme 2). The

Fig. 4 A perspective drawing of the molecular structure of 4 .
${ }^{1} \mathrm{H}$ NMR signals due to the organic moieties of both complexes are fully consistent with their structures. The mass spectra exhibit molecular ion envelopes which agree with the formulae of the compounds, with ion peaks corresponding to CO losses also detected. The signals due to protons of the phenyl rings are observed in the range $\delta 7.22-7.93$ while a broad signal at $\delta 10.76$ in 7 is assigned to the NH protons of the dithizonate ions.

Brown crystals of $\mathbf{6}$ and red crystals of 7 suitable for a diffraction analysis were obtained by slow evaporation of these compounds in n-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. Perspective views of the molecular structures of complexes $\mathbf{6}$ and 7 are shown in Figs. 6 and 7, respectively, and relevant bond parameters in Tables 7 and 8, respectively. Cluster 7 was formulated initially as $\left[\left\{\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{14}\left(\mu-\eta^{2}-\mathrm{L}^{\prime}\right)\right\}_{2}\left(\mu_{4}-\mathrm{Hg}\right)\right]\left[\mathrm{L}^{\prime}=\mathrm{SPh}\right.$, $\mathrm{SC}(\mathrm{N}=\mathrm{NPh})(=\mathrm{NNHPh})]$ based on spectroscopic evidence. This was further confirmed by single X-ray analysis. Notably, the cluster cores of $\mathbf{6}$ and 7 are the same. In each case, two pentanuclear $\mathrm{Os}_{5} \mathrm{C}$ units are linked by two edge-related osmium atoms to a central mercury atom. For each half of the molecule, the Hg atom asymmetrically bridges the 'hinge' bond of the bridged butterfly. The mercury bridges in the complexes are asymmetric, where $\mathrm{Hg}(1)-\mathrm{Os}(1)$ and $\mathrm{Hg}(1)-\mathrm{Os}(2)$ distances are $2.7703(8)$ and $3.0450(8) \AA$, in 6 (Fig. 6) and $2.7472(9)$ and $3.029(1) \AA$ in 7 (Fig. 7), respectively. Along one open edge of this capped butterfly is a bridging SPh and $\mathrm{SC}(\mathrm{N}=\mathrm{NPh})-$ ($=\mathrm{NNHPh}$) in 6 and 7 respectively, which are similar to that observed in the related clusters $\left[\left\{\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{14}(\mu-\mathrm{Cl})\right\}_{2} \mathrm{Hg}_{2} \mathrm{Cl}_{2}\right]^{15}$ and $\left[\mathrm{Ru}_{5} \mathrm{C}(\mathrm{CO})_{14}\left(\mu-\mathrm{AuPPh}_{3}\right)(\mu-\mathrm{Br})\right] .^{16}$ The presence of the mer-

Table 7 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 6

$\mathrm{Hg}(1)-\mathrm{Os}(1)$	$2.7703(8)$	$\mathrm{Hg}(1)-\mathrm{Os}(2)$	$3.0450(8)$
$\mathrm{Os}(1)-\mathrm{Os}(2)$	$2.946(1)$	$\mathrm{Os}(1)-\mathrm{Os}(3)$	$2.849(1)$
$\mathrm{Os}(1)-\mathrm{Os}(5)$	$2.849(1)$	$\mathrm{Os}(2)-\mathrm{Os}(3)$	$2.883(1)$
$\mathrm{Os}(2)-\mathrm{Os}(5)$	$2.880(1)$	$\mathrm{Os}(3)-\mathrm{Os}(4)$	$2.925(1)$
$\mathrm{Os}(4)-\mathrm{Os}(5)$	$2.922(1)$	$\mathrm{Os}(1)-\mathrm{C}(15)$	$2.09(2)$
$\mathrm{Os}(1)-\mathrm{S}(1)$	$2.463(5)$	$\mathrm{Os}(4)-\mathrm{S}(1)$	$2.490(5)$
$\mathrm{S}(1)-\mathrm{C}(16)$	$1.81(2)$		
$\mathrm{Os}(1)-\mathrm{Hg}(1)-\mathrm{Os}(2)$	$60.65(2)$	$\mathrm{Hg}(1)-\mathrm{Os}(1)-\mathrm{Os}(2)$	$64.29(2)$
$\mathrm{Hg}(1)-\mathrm{Os}(2)-\mathrm{Os}(1)$	$55.06(2)$	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	$59.65(3)$
$\mathrm{Os}(1)-\mathrm{Os}(1)-\mathrm{Os}(5)$	$59.57(3)$	$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{Os}(5)$	$89.43(3)$
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	$58.50(3)$	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(5)$	$58.55(3)$
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Os}(5)$	$88.15(3)$	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(4)$	$75.21(3)$
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Os}(4)$	$89.05(3)$	$\mathrm{Os}(1)-\mathrm{S}(1)-\mathrm{Os}(4)$	$90.7(2)$

cury metal atom causes a lengthening of this Os-Os edge, hence the $\mathrm{Os}(1)-\mathrm{Os}(2)$ bond lengths in $\mathbf{6}[2.946(1) \AA]$ and 7 [2.912(1) \AA A are the longest bonded $\mathrm{Os}-\mathrm{Os}$ distances in the structure. The average bond length of the other $\mathrm{Os}-\mathrm{Os}$ bonds is within the range normally recorded for the precursor, $\left[\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{15}\right]^{17}$ [2.88(2) and 2.85(3) \AA]. The carbido-carbon remains at the centre of the 'bridged butterfly'. As in related carbide-centred clusters, ${ }^{16,18}$ there are small differences in the Os-C(carbide) distance. The formation of 6 in this reaction is rather unusual because it involves the formation of a $\mathrm{Ph}-\mathrm{S}$ moiety either before or after the assembly of the heterometallic cluster. Since we do

Fig. 5 A perspective drawing of the molecular structure of 5 .

Scheme 2 (i) $\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{15}$ in refluxing CHCl_{3}; (ii) $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ in refluxing CHCl_{3}.

Fig. 6 A perspective drawing of the molecular structure of 6 .

Fig. 7 A perspective drawing of the molecular structure of 7.
not observe the conversion of $\mathbf{1}$ to $\mathbf{6}$ under our experimental condition, it is tempting to suggest that the $\mathrm{Ph}-\mathrm{S}$ fragment was formed earlier.

Synthesis of $\left[\mathrm{Ru}_{2}(\mathbf{C O})_{4} \mathrm{Ph}\left\{\mu-\eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{Ph}\right\}\left(\mu_{2}-\mathrm{S}\right)\left(\mu-\eta^{2}-L^{\prime}\right)\right] 8$, $\left[\mathrm{Ru}_{2}(\mathrm{CO})_{4}\{\mathrm{C}(\mathrm{O}) \mathrm{Ph}\}\left\{\mu-\eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{Ph}\right\}\left(\mu_{2}-\mathrm{S}\right)\left(\mu-\eta^{2}-\mathrm{L}^{\prime}\right)\right] 9$ and $\left[\left\{\mathbf{R u}(\mathbf{C O})_{2} \mathbf{P h}\right\}_{2}\left(\mu-\eta^{2}-\mathrm{L}^{\prime}\right)_{2}\right] \mathbf{1 0}$
The reaction of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ with $[\mathrm{PhHg}\{\mathrm{SC}(\mathrm{N}=\mathrm{NPh})(=\mathrm{N}$ $\mathrm{NHPh})\}$] in refluxing chloroform $\left(\mathrm{CHCl}_{3}\right)$ does not yield mixed-metal clusters, which is expected from the reactions involving organomercurials, but leads to the formation of three binuclear ruthenium carbonyl compounds $\left[\mathrm{Ru}_{2}(\mathrm{CO})_{4} \mathrm{Ph}\left\{\mu-\eta^{2}-\right.\right.$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{Ph}\}\left(\mu_{2}-\mathrm{S}\right)\left(\mu-\eta^{2}-\mathrm{L}^{\prime}\right)\right] \quad 8, \quad\left[\mathrm{Ru}_{2}(\mathrm{CO})_{4}\{\mathrm{C}(\mathrm{O}) \mathrm{Ph}\}\left\{\mu-\eta^{2}-\mathrm{C}(\mathrm{O})-\right.\right.$ $\left.\operatorname{Ph}\}\left(\mu_{2}-\mathrm{S}\right)\left(\mu-\eta^{2}-\mathrm{L}^{\prime}\right)\right] 9$ and $\left[\left\{\operatorname{Ru}(\mathrm{CO})_{2} \mathrm{Ph}\right\}_{2}\left(\mu-\eta^{2}-\mathrm{L}^{\prime}\right)_{2}\right] 10$ in 15 , 15 and 45% yields, respectively (Scheme 2). In addition, $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ and mercury metal were also obtained. Complexes 8,9 and 10 were isolated in pure form by preparative thin layer chromatography (TLC) on silica. Only terminal carbonyl activity was observed in the carbonyl absorption region of the solution IR spectra of $\mathbf{8 , 9}$ and $\mathbf{1 0}$ in dichloromethane (Table 1). Moreover, the IR spectra in KBr showed signals at $1563 \mathrm{~cm}^{-1}$

Table 8 Selected bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$ for complex 7

$\mathrm{Hg}(1)-\mathrm{Os}(1)$	$2.7472(9)$	$\mathrm{Hg}(1)-\mathrm{Os}(2)$	$3.029(1)$
$\mathrm{Os}(1)-\mathrm{Os}(2)$	$2.912(1)$	$\mathrm{Os}(1)-\mathrm{Os}(3)$	$2.857(2)$
$\mathrm{Os}(1)-\mathrm{Os}(5)$	$2.865(2)$	$\mathrm{Os}(2)-\mathrm{Os}(3)$	$2.869(2)$
$\mathrm{Os}(2)-\mathrm{Os}(5)$	$2.877(2)$	$\mathrm{Os}(3)-\mathrm{Os}(4)$	$2.928(2)$
$\mathrm{Os}(4)-\mathrm{Os}(5)$	$2.923(2)$	$\mathrm{Os}(1)-\mathrm{C}(15)$	$2.10(2)$
$\mathrm{Os}(1)-\mathrm{S}(1)$	$2.436(5)$	$\mathrm{Os}(4)-\mathrm{S}(1)$	$2.489(6)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.29(3)$	$\mathrm{N}(3)-\mathrm{N}(4)$	$1.27(3)$
$\mathrm{N}(2)-\mathrm{H}(1)$	0.84	$\mathrm{~S}(1)-\mathrm{C}(16)$	$1.74(3)$
$\mathrm{Os}(1)-\mathrm{Hg}(1)-\mathrm{Os}(2)$	$60.32(3)$	$\mathrm{Hg}(1)-\mathrm{Os}(1)-\mathrm{Os}(2)$	$64.64(3)$
$\mathrm{Hg}(1)-\mathrm{Os}(2)-\mathrm{Os}(1)$	$55.04(3)$	$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	$59.63(4)$
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(5)$	$59.72(4)$	$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{Os}(5)$	$88.49(4)$
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	$59.22(4)$	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(5)$	$59.33(4)$
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Os}(5)$	$88.03(4)$	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(4)$	$74.57(4)$
$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Os}(4)$	$90.45(5)$	$\mathrm{Os}(1)-\mathrm{S}(1)-\mathrm{Os}(4)$	$90.7(2)$

(for $\mathbf{8}$) and $1561 \mathrm{~cm}^{-1}$ (for $\mathbf{9}$) which are assigned to the coordinated acyl group. These values are comparable to those of other acyl complexes we reported earlier. ${ }^{19}$ The proton NMR spectra recorded in dichloromethane- d_{2} confirm the presence of the organic ligands and the absence of metal hydrides. The signals

Fig. 8 A perspective drawing of the molecular structure of $\mathbf{8}$.

Table 9 Selected bond lengths ((\AA) and angles $\left({ }^{\circ}\right)$ for complex 8

$\mathrm{Ru}(1)-\mathrm{S}(1)$	$2.4563(9)$	$\mathrm{Ru}(2)-\mathrm{S}(1)$	$2.5406(9)$
$\mathrm{Ru}(1)-\mathrm{S}(2)$	$2.4085(9)$	$\mathrm{Ru}(2)-\mathrm{S}(2)$	$2.466(1)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.190(3)$	$\mathrm{Ru}(1)-\mathrm{C}(30)$	$2.046(4)$
$\mathrm{Ru}(2)-\mathrm{O}(5)$	$2.121(2)$	$\mathrm{Ru}(1)-\mathrm{C}(1)$	$1.906(4)$
$\mathrm{Ru}(1)-\mathrm{C}(2)$	$1.850(4)$	$\mathrm{Ru}(2)-\mathrm{C}(3)$	$1.836(4)$
$\mathrm{Ru}(2)-\mathrm{C}(4)$	$1.866(5)$	$\mathrm{Ru}(2)-\mathrm{C}(24)$	$2.081(4)$
$\mathrm{S}(2)-\mathrm{C}(11)$	$1.768(4)$	$\mathrm{N}(1)-\mathrm{N}(2)$	$1.280(4)$
$\mathrm{N}(3)-\mathrm{N}(4)$	$1.307(4)$	$\mathrm{C}(30)-\mathrm{O}(5)$	$1.260(4)$
$\mathrm{C}(18)-\mathrm{C}(30)$	$1.480(5)$	$\mathrm{N}(4)-\mathrm{H}(21)$	0.84
$\mathrm{Ru}(1)-\cdots \mathrm{Ru}(2)$	$3.362(1)$	$\mathrm{S}(1) \cdots \mathrm{S}(2)$	$3.29(1)$
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{Ru}(2)$	$84.43(3)$	$\mathrm{Ru}(1)-\mathrm{S}(2)-\mathrm{Ru}(2)$	$87.09(3)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{S}(2)$	$85.11(3)$	$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{S}(2)$	$82.16(3)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{C}(2)$	$176.8(1)$	$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	$175.5(1)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$84.58(8)$	$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$79.98(8)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{C}(30)$	$86.15(10)$	$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{C}(30)$	$89.46(10)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{C}(3)$	$95.0(1)$	$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{C}(4)$	$101.1(1)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{C}(24)$	$170.35(10)$	$\mathrm{S}(2)-\mathrm{Ru}(2)-\mathrm{C}(3)$	$96.7(1)$
$\mathrm{S}(2)-\mathrm{Ru}(2)-\mathrm{C}(4)$	$173.7(1)$	$\mathrm{S}(2)-\mathrm{Ru}(2)-\mathrm{C}(24)$	$90.8(1)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{O}(5)$	$82.24(6)$	$\mathrm{S}(2)-\mathrm{Ru}(2)-\mathrm{O}(5)$	$83.52(7)$
$\mathrm{Ru}(1)-\mathrm{C}(30)-\mathrm{O}(5)$	$116.1(2)$	$\mathrm{Ru}(2)-\mathrm{O}(5)-\mathrm{C}(30)$	$124.2(2)$

at $\delta 9.15,11.75$ and 8.90 in complexes $\mathbf{8 , 9}$ and $\mathbf{1 0}$, respectively, are assigned to the NH protons of the dithizonate ion. The FAB mass spectra of $\mathbf{8}, \mathbf{9}$ and $\mathbf{1 0}$ show parent ion peaks at $m / z=788,811$ and 980 , with each showing subsequent and sequential loss of four carbonyl ligands.

Red crystals of $\mathbf{8 , 9}$ and $\mathbf{1 0}$ suitable for X-ray analysis were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-cyclohexane or n-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions at room temperature. Perspective drawings of complexes 8, 9 and $\mathbf{1 0}$ are shown in Figs. 8, 9 and 10 respectively, with

Table 10 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 9

$\mathrm{Ru}(1)-\mathrm{S}(1)$	$2.396(2)$	$\mathrm{Ru}(2)-\mathrm{S}(1)$	$2.458(2)$
$\mathrm{Ru}(1)-\mathrm{S}(2)$	$2.461(2)$	$\mathrm{Ru}(2)-\mathrm{S}(2)$	$2.578(2)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.190(6)$	$\mathrm{Ru}(1)-\mathrm{C}(31)$	$2.036(7)$
$\mathrm{Ru}(2)-\mathrm{O}(7)$	$2.116(4)$	$\mathrm{Ru}(1)-\mathrm{C}(1)$	$1.851(8)$
$\mathrm{Ru}(1)-\mathrm{C}(2)$	$1.897(8)$	$\mathrm{Ru}(2)-\mathrm{C}(3)$	$1.866(8)$
$\mathrm{Ru}(2)-\mathrm{C}(4)$	$1.894(7)$	$\mathrm{Ru}(2)-\mathrm{C}(5)$	$2.052(8)$
$\mathrm{C}(1)-\mathrm{O}(1)$	$1.150(10)$	$\mathrm{C}(2)-\mathrm{O}(2)$	$1.133(10)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1.126(10)$	$\mathrm{C}(4)-\mathrm{O}(4)$	$1.135(9)$
$\mathrm{C}(5)-\mathrm{O}(5)$	$1.226(9)$	$\mathrm{C}(31)-\mathrm{O}(7)$	$1.276(7)$
$\mathrm{C}(5)-\mathrm{C}(25)$	$1.53(1)$	$\mathrm{C}(19)-\mathrm{C}(31)$	$1.472(10)$
$\mathrm{S}(1)-\mathrm{C}(12)$	$1.766(8)$	$\mathrm{N}(1)-\mathrm{N}(2)$	$1.280(7)$
$\mathrm{N}(3)-\mathrm{N}(4)$	$1.324(9)$	$\mathrm{N}(4)-\mathrm{H}(21)$	1.11
$\mathrm{Ru}(1) \cdots \cdots \mathrm{Ru}(2)$	$3.382(1)$	$\mathrm{S}(1)-\cdots \mathrm{S}(2)$	$3.30(1)$
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{Ru}(2)$	$88.33(6)$	$\mathrm{Ru}(1)-\mathrm{S}(2)-\mathrm{Ru}(2)$	$84.29(6)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{S}(2)$	$85.56(6)$	$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{S}(2)$	$81.80(6)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{C}(2)$	$176.0(3)$	$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	$176.7(2)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$79.5(1)$	$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$85.0(1)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{C}(31)$	$88.6(2)$	$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{C}(31)$	$85.8(2)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{C}(3)$	$99.1(2)$	$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{C}(4)$	$171.6(2)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{C}(5)$	$87.7(2)$	$\mathrm{S}(2)-\mathrm{Ru}(2)-\mathrm{C}(3)$	$94.2(2)$
$\mathrm{S}(2)-\mathrm{Ru}(2)-\mathrm{C}(4)$	$99.2(2)$	$\mathrm{S}(2)-\mathrm{Ru}(2)-\mathrm{C}(5)$	$169.3(2)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$81.7(1)$	$\mathrm{S}(2)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$82.2(1)$
$\mathrm{Ru}(1)-\mathrm{C}(31)-\mathrm{O}(7)$	$116.4(5)$	$\mathrm{Ru}(2)-\mathrm{O}(7)-\mathrm{C}(31)$	$124.1(4)$

selected bond lengths and angles given in Tables 9, 10, and 11 respectively. One molecule of water and cyclohexane, as the solvent of crystallization, was present in the asymmetric units of 9 and 10, respectively. As in Figs. 8 and 9, the Ru atoms are bridged diaxially by an acyl group, $\left[\mu-\eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{Ph}\right]$, and bridged diequatorially by a sulfido group, [$\mathrm{SC}(\mathrm{N}=\mathrm{NPh})(=\mathrm{NNHPh})$]. The lone pair of the oxygen atom bond to $\operatorname{Ru}(2)$ forming a $\mu-\eta^{2}$

Fig. 9 A perspective drawing of the molecular structure of 9.

Table 11 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 10

$\mathrm{Ru}(1)-\mathrm{S}(1)$	$2.431(1)$	$\mathrm{Ru}(2)-\mathrm{S}(1)$	$2.485(1)$
$\mathrm{Ru}(1)-\mathrm{S}(2)$	$2.572(1)$	$\mathrm{Ru}(2)-\mathrm{S}(2)$	$2.427(1)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.137(4)$	$\mathrm{Ru}(2)-\mathrm{N}(8)$	$2.203(4)$
$\mathrm{Ru}(1)-\mathrm{C}(1)$	$1.888(5)$	$\mathrm{Ru}(1)-\mathrm{C}(2)$	$1.872(5)$
$\mathrm{Ru}(1)-\mathrm{C}(18)$	$2.118(5)$	$\mathrm{Ru}(2)-\mathrm{C}(3)$	$1.87(5)$
$\mathrm{Ru}(2)-\mathrm{C}(4)$	$1.874(6)$	$\mathrm{Ru}(2)-\mathrm{C}(24)$	$2.112(5)$
$\mathrm{S}(1)-\mathrm{C}(11)$	$1.78(5)$	$\mathrm{S}(2)-\mathrm{C}(36)$	$1.773(5)$
$\mathrm{N}(1)-\mathrm{N}(2)$	$1.281(5)$	$\mathrm{N}(3)-\mathrm{N}(4)$	$1.322(5)$
$\mathrm{N}(5)-\mathrm{N}(6)$	$1.311(5)$	$\mathrm{N}(7)-\mathrm{N}(8)$	$1.286(5)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.440(6)$	$\mathrm{N}(4)-\mathrm{C}(12)$	$1.406(6)$
$\mathrm{N}(5)-\mathrm{C}(30)$	$1.414(6)$	$\mathrm{N}(8)-\mathrm{C}(37)$	$1.434(5)$
$\mathrm{N}(4)-\mathrm{H}(46)$	0.84	$\mathrm{~N}(5)-\mathrm{H}(45)$	0.84
$\mathrm{Ru}(1) \cdots \mathrm{Ru}(2)$	$3.713(1)$	$\mathrm{S}(1) \cdots \mathrm{S}(2)$	$3.25(1)$
$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{Ru}(2)$	$97.95(4)$	$\mathrm{Ru}(1)-\mathrm{S}(2)-\mathrm{Ru}(2)$	$95.73(4)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{S}(2)$	$80.86(4)$	$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{S}(2)$	$82.73(4)$
$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{C}(1)$	$95.5(1)$	$\mathrm{S}(1)-\mathrm{Ru}(1)-\mathrm{C}(2)$	$178.4(1)$
$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{C}(3)$	$91.5(2)$	$\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{C}(24)$	$86.5(1)$
$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{C}(1)$	$90.8(2)$	$\mathrm{S}(2)-\mathrm{Ru}(1)-\mathrm{C}(18)$	$171.9(1)$
$\mathrm{S}(2)-\mathrm{Ru}(2)-\mathrm{C}(4)$	$95.0(2)$	$\mathrm{S}(2)-\mathrm{Ru}(2)-\mathrm{C}(24)$	$91.5(1)$

acyl bridge along the $\mathrm{Ru} \cdots \mathrm{Ru}$ line. A phenyl group is coordinated to $\mathrm{Ru}(2)$ which resulted from the cleavage of an $\mathrm{Hg}-\mathrm{C}$ bond in the organomercurial. The plane of the aryldiazo ligand was parallel to the $\mathrm{Ru} \cdots \mathrm{Ru}$ line, which occupies an η^{2} bridging site with $\mathrm{Ru}(1)-\mathrm{C}(30)[2.046(4) \AA]$ and $\mathrm{Ru}(2)-\mathrm{O}(5)$ $[2.121(2) \AA]$ in $\mathbf{8}$ and $\mathrm{Ru}(1)-\mathrm{C}(31)[2.036(7) \AA]$ and $\mathrm{Ru}(2)-\mathrm{O}(7)$ [2.116(4) \AA] in 9 . The $\mathrm{Ru}_{2} \mathrm{~S}_{2}$ core is not planar, but bent in a butterfly fashion which results in a fold angle of 131.87° in $\mathbf{8}$ and 9 . This bending results in a mean $\mathrm{Ru}-\mathrm{Ru}$ separation of 3.37 \AA in both complexes, which is comparable to the non-bonding distance observed in $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}(\mu-\mathrm{OMe})_{3} \mathrm{Ru}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]-$ $\left[\mathrm{BPh}_{4}\right]^{20}$ [3.005(2) Å]. Subsequent reductive elimination of benzene is usually favoured, as soon as a hydride ligand is avail-
able. However, in the absence of such a hydride ligand in $\mathbf{9}$, a migratory CO insertion takes place to yield the terminal acyl group, $[\mathrm{C}(\mathrm{O}) \mathrm{Ph}]$. The PhCO ligand is formed by $\mathrm{Hg}-\mathrm{Ph}$ bond cleavage and Ph migration to CO . Similar observations are also found in $\left[\mathrm{Os}_{3}(\mu-\mathrm{Ph})(\mu-\mathrm{PhCO})\left(\mu_{3}-\mathrm{Se}\right)_{2}(\mathrm{CO})_{8}\right]^{21}$ and $\left[\mathrm{Ru}_{3}-\right.$ $\left.\left\{\mu-\eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{Ph}\right\}\left\{\mu_{3}-\eta^{2}-\mathrm{P}(\mathrm{Ph})\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}(\mathrm{CO})_{9}\right]^{22} \quad$ The sulfido, $[\mathrm{SC}(\mathrm{N}=\mathrm{NPh})(=\mathrm{NNHPh})]$ and $\left[\mu-\eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{Ph}\right]$ moieties act as four-, five- and three-electron donors, respectively, which result in a total 36 CVE in both complexes and are in agreement with the Condensed Polyhedra Method for binuclear complexes with no metal-metal bonds. ${ }^{23}$

As mentioned before, the molecular structures of $\mathbf{8}$ and $\mathbf{9}$ are different in a CO insertion at $\mathrm{Ru}(2)-\mathrm{Ph}$. It is of interest to know whether the addition of CO would lead to the formation of complex 9 from 8. Thus, a stream of CO gas was bubbled through a solution of $\mathbf{8}$ at room temperature. IR and spot TLC monitoring indicated the quantitative formation of $\mathbf{9}$, accompanied with unreacted starting material. Therefore $\mathbf{8}$ appears to be an intermediate in the formation of $\mathbf{9}$ by Ru-assisted insertion of a CO molecule into the $\mathrm{Ru}-\mathrm{Ph}$ moiety. By contrast, heating of complex 9 in refluxing n-hexane for 4 h resulted in no visible change as indicated by IR and spot TLC monitoring. Therefore, complex $\mathbf{9}$ is thermally stable up to the refluxing temperature of n-hexane without molecular rearrangements or decomposition.

X-Ray analysis of $\mathbf{1 0}$ revealed that the structure consists of two $\mathrm{Ru}(\mathrm{CO})_{2}$ fragments which are held together by two $\left[\mu-\eta^{2}\right.$ $\mathrm{SC}(\mathrm{N}=\mathrm{NPh})(=\mathrm{NNHPh})_{2}$] moieties, bonded through a sulfur and nitrogen $[\mathrm{N}(1)-\mathrm{Ru}(1) 2.137(4) \AA$ and $\mathrm{N}(8)-\mathrm{Ru}(2) 2.203(4)$ \AA] in syn arrangements with respect to the $\mathrm{Ru}_{2} \mathrm{~S}_{2}$ plane. The central $\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{Ru}(2)-\mathrm{S}(2)$ is not planar, but adopts an envelope conformation which is folded at an angle of 163.48° with respect to the $\mathrm{S}(1) \cdots \mathrm{S}(2)$ line. The ligands are essentially planar and syn-coordinated to the ruthenium-sulfur rhombus

Fig. 10 A perspective drawing of the molecular structure of $\mathbf{1 0}$.
array (dihedral angles 96.8 and 79.29°). The intermetallic distance of $\mathbf{1 0}(3.71 \AA)$ is too long to indicate any significant interactions between the two ruthenium atoms (cf. average $\mathrm{Ru}-\mathrm{Ru}$ $2.85(4) \AA$ in $\left.\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]^{24}\right)$. A phenyl group was unexpectedly coordinated which the ruthenium atoms that originated from the cleavage of an $\mathrm{Hg}-\mathrm{C}$ bond in $[\mathrm{PhHgSC}(\mathrm{N}=\mathrm{NPh})-$ $(=\mathrm{NNHPh})$], as in complex 8. The $\mathrm{Ru}-\mathrm{C}(\mathrm{Ph})$ bond in both complexes has a mean distance of $2.11(5) \AA$, which is similar to that in $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Ru}(\mathrm{NO})\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)\right]^{25}[2.10(5)$ A].

Recently, we have reported that the reaction of the mercurial complex, $[\mathrm{PhHg}\{\mathrm{SC}(\mathrm{N}=\mathrm{NPh})(=\mathrm{NNHPh})\}]$ with an activated triosmium carbonyl cluster $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$, formed a pair of binuclear osmium carbonyl isomers $\left[\left\{\mathrm{Os}(\mathrm{CO})_{2} \mathrm{Ph}\right\}_{2}\left(\mu-\eta^{2}-\right.\right.$ $\left.\left.L^{\prime}\right)_{2}\right]^{26}$ which was isostructural with $\mathbf{1 0}$. However, no analogous complexes of $\mathbf{8}$ and $\mathbf{9}$ were observed in this reaction. Presumably this is due to a higher kinetic stability of Os complexes, which makes CO insertion more difficult.

Conclusion

We have observed previously that the reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}\right.$ $\left.(\mu-\mathrm{H})_{2}\right]$ with organomercury compounds possessing a nucleophilic $-\mathrm{C}=\mathrm{C}$ - functionality yields a series of osmium-mercury cluster complexes having the following structures: (1) two OsHg mixed-metal butterflies sharing a central wingtip mercury atom, and (2) a central $\mathrm{Os}(\mathrm{CO})_{4}$ fragment with two ciscoordinated metal butterflies. ${ }^{6 b}$ Clusters 1-4, $\mathbf{6}$ and $\mathbf{7}$ are analogous complexes which demonstrated that the Hg atom could act as a 'linker'. Cluster 5 contains ligand and Hg -ligand moieties that share the same edge of the $\mathrm{Os}-\mathrm{Os}$ bond. The reaction of $\left[\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{15}\right]$ with $[\mathrm{PhHgSC}(\mathrm{N}=\mathrm{NPh})(=\mathrm{NNHPh})]$
resulted in clusters 6 and 7 where two $\left\{\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{14}\right\}$ moieties were linked by a mercury atom. However, in the case of ruthenium carbonyl complexes, this reaction resulted in binuclear ruthenium carbonyl complexes 8-10 with no metal-metal bonds instead of the usual mixed-metal clusters.

Experimental

All reactions and manipulations were carried out under an inert atmosphere using standard Schlenk techniques. Solvents were freshly purified by standard procedures prior to use. All chemicals, except where stated, were obtained commercially and used as received. The complexes $\left[\mathrm{PhHgS}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right]^{27}$ and $[\mathrm{PhHg}$ $(\mathrm{mbt})]^{28}$ were prepared by literature methods. IR spectra were recorded on a Bio-Rad FTS-7 IR spectrometer, using 0.5 mm calcium fluoride solution cells. The proton NMR spectra were recorded on a Bruker DPX 300 NMR spectrometer using $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and referenced to $\mathrm{SiMe}_{4}(\delta 0)$. Mass spectra were recorded on a Finnigan MAT 95 instrument by fast atom bombardment techniques, using m-nitrobenzyl alcohol as the matrix solvent. Routine purification of products was carried out in air by thin layer chromatography (TLC) on plates coated with Merck Kieselgel $60 \mathrm{GF}_{254}$.

Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$ with $\left[\mathrm{PhHgS}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right]$

A yellow solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right](500 \mathrm{mg}, 0.536$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred with 1 equivalent of $[\mathrm{PhHgS}-$ $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$] ($208 \mathrm{mg}, 0.54 \mathrm{mmol}$) under N_{2}. The colour gradually turned red and powdery mercury was also deposited. Stirring was continued until all starting materials were consumed (TLC monitoring, ca. 2 h). The reaction mixture was then
filtered to remove the very fine powder of mercury and the filtrate was evaporated in vacuo. The residue was finally redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{ca} .2 \mathrm{~cm}^{3}\right)$ and separated by preparative TLC using n-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7: 3 \mathrm{v} / \mathrm{v})$ as the eluent to afford two bands with $R_{\mathrm{f}} c a .0 .7$ and 0.55 , which were extracted from silica to yield yellow complex 1 ($352 \mathrm{mg}, 0.134 \mathrm{mmol}, 25 \%$) and orange complex $2(341 \mathrm{mg}, 0.161 \mathrm{mmol}, 30 \%$) respectively (Found: C, 15.41; H, 0.30; N, 1.09. Calc. for $\mathrm{C}_{34} \mathrm{H}_{8} \mathrm{Hg}_{2} \mathrm{~N}_{2} \mathrm{O}_{24}$ $\mathrm{Os}_{7} \mathrm{~S}_{2} 1$: C, $15.42 ; \mathrm{H}, 0.30 ; \mathrm{N}, 1.07 \%$. Found: C, $16.98 ; \mathrm{H}, 0.37$; N, 1.30. Calc. for $\mathrm{C}_{30} \mathrm{H}_{8} \mathrm{HgN}_{2} \mathrm{O}_{20} \mathrm{Os}_{6} \mathrm{~S}_{2}$ 2: C, 16.96; H, 0.38 ; N, 1.32\%).

Reaction of $\left[\mathrm{Ru}_{3}(\mathbf{C O})_{10}(\mathbf{N C M e})_{2}\right]$ with $\left[\mathrm{PhHgS}\left(\mathrm{C}_{5} \mathbf{H}_{4} \mathrm{~N}\right)\right]$

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of freshly prepared $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$ ($85 \mathrm{mg}, 0.128 \mathrm{mmol}$), $\left[\mathrm{PhHgS}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right](49 \mathrm{mg}, 0.128 \mathrm{mmol})$ was added at room temperature. The reaction mixture gradually changed from pale yellow to red upon addition. Reactions were completed after stirring for 1 h , as monitored by TLC and IR. The reaction solution was concentrated in vacuo and the residue redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\right.$ ca. $2 \mathrm{~cm}^{3}$) and separated by TLC using n-hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1 \mathrm{v} / \mathrm{v})$. This afforded $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ and a red complex $3(119.51 \mathrm{mg}, 0.061 \mathrm{mmol}$, 48%) with $R_{\mathrm{f}} c a .0 .5$ as the sole product (Found: C, 19.69; $\mathrm{H}, 0.42 ; \mathrm{N}, 1.47$. Calc. for $\mathrm{C}_{32} \mathrm{H}_{8} \mathrm{Hg}_{2} \mathrm{~N}_{2} \mathrm{O}_{22} \mathrm{Ru}_{7} \mathrm{~S}_{2}$ 2: C, 19.74; H, $0.41 ; \mathrm{N}, 1.44 \%$).

Reaction of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$ with $[\mathrm{PhHgS}(\mathrm{mbt})]$
 $(\mathbf{H m b t}=2$-mercaptobenzothiazole $)$

A yellow solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right](500 \mathrm{mg}, 0.536$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred with 1 equivalent of $[\mathrm{PhHg}(\mathrm{mbt})]$ ($239 \mathrm{mg}, 0.54 \mathrm{mmol}$) under N_{2}. The colour gradually turned orange-red and powdery mercury was deposited. Stirring was continued until all starting materials were consumed (TLC monitoring, $c a .1 .5 \mathrm{~h}$). The reaction mixture was then filtered to remove the very fine powder of mercury and the filtrate was evaporated in vacuo. The residue was finally redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(c a .2 \mathrm{~cm}^{3}\right)$ and separated by preparative TLC using n-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 2 \mathrm{v} / \mathrm{v})$ as the eluent to afford two bands with $R_{\mathrm{f}} c a .0 .8$ and 0.65 , which were extracted from silica to yield orange complex $4(419 \mathrm{mg}, 0.188 \mathrm{mmol}, 35 \%)$ and yellow complex 5 ($149 \mathrm{mg}, 0.107 \mathrm{mmol}, 20 \%$), respectively (Found: C, 18.29; H, 0.40; N, 1.25. Calc. for $\mathrm{C}_{34} \mathrm{H}_{8} \mathrm{HgN}_{2} \mathrm{O}_{20^{-}}$ $\mathrm{Os}_{6} \mathrm{~S}_{4}$ 4: C, 18.26; H, 0.36; N, 1.25. Found: C, 20.75; H, $0.89 ; \mathrm{N}$, 2.04. Calc. for $\mathrm{C}_{24} \mathrm{H}_{12} \mathrm{HgN}_{2} \mathrm{O}_{10} \mathrm{Os}_{3} \mathrm{~S}_{4}$ 5: C, 20.75; H, 0.86 ; N, 2.02\%).

Thermolysis of cluster 5

Cluster 5 ($100 \mathrm{mg}, 0.072 \mathrm{mmol}$) was refluxed in CHCl_{3} under an inert atmosphere. The reaction was monitored by TLC and IR and completed after about 6 h . The solvent was then removed in vacuo and redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$. TLC purification (eluent: n-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1 \mathrm{v} / \mathrm{v})$) afforded $4(58 \mathrm{mg}, 0.026$ mmol, 36%) and unreacted starting material $5(5 \mathrm{mg}, 0.004$ mmol, 5\%).

Reaction of $\left[\mathrm{Os}_{5} \mathbf{C}(\mathrm{CO})_{15}\right]$ with $[\mathrm{PhHgSC}(\mathrm{N}=\mathrm{NPh})(=\mathrm{NNHPh})]$

$\left[\mathrm{Os}_{5} \mathrm{C}(\mathrm{CO})_{15}\right](500 \mathrm{mg}, 0.361 \mathrm{mmol})$ and $[\mathrm{PhHgSC}(\mathrm{N}=\mathrm{NPh})-$ ($=\mathrm{NNHPh}$)] ($191 \mathrm{mg}, 0.361 \mathrm{mmol}$) were stirred at reflux in $\mathrm{CHCl}_{3}(150 \mathrm{ml})$ for 12 h after all starting materials had been consumed. The colour gradually turned from yellow to reddish brown. After reduction in volume, the filtrate was separated by preparative TLC on silica with an eluent of n-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 2 \mathrm{v} / \mathrm{v})$ to give two bands which were extracted from silica to yield red complex 6 ($R_{\mathrm{f}} c a .0 .85,294$ $\mathrm{mg}, 0.094 \mathrm{mmol}, 26 \%)$ and purple complex 7 (R_{f} ca. $0.55,420$ $\mathrm{mg}, 0.123 \mathrm{mmol}, 34 \%$) (Found: C, 16.14; H, 0.33 . Calc. for $\mathrm{C}_{42} \mathrm{H}_{10} \mathrm{HgO}_{28} \mathrm{Os}_{10} \mathrm{~S}_{2}$ 6: C, 16.11; H, 0.32. Found: C, 19.67;

H, $0.60 ; \mathrm{N}, 3.28$. Calc. for $\mathrm{C}_{56} \mathrm{H}_{20} \mathrm{HgN}_{8} \mathrm{O}_{28} \mathrm{Os}_{10} \mathrm{~S}_{2} 7$: C, 19.65; H, 0.58; N, 3.28\%).

Reaction of $\left[\mathrm{Ru}_{3}(\mathbf{C O})_{12}\right]$ with $[\mathbf{P h H g S C}(\mathbf{N}=\mathbf{N P h})(=\mathbf{N N H P h})]$

$\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right](639 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $[\mathrm{PhHgSC}(\mathrm{N}=\mathrm{NPh})$ (=NNHPh)] ($530 \mathrm{mg}, 1.0 \mathrm{mmol}$) were dissolved in $50 \mathrm{~cm}^{3}$ of CHCl_{3} and the dark red solution allowed to reflux for 3 h . The reaction mixture was then filtered to remove the very fine powder of mercury and excess solvent was removed under reduced pressure, yielding a deep brown residue. This residue was then dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subject to preparative TLC on silica using n-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($1: 1 \mathrm{v} / \mathrm{v}$) as eluent. Other than the traces of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$, two orange and one red bands with $R_{\mathrm{f}} c a .0 .85,0.7$ and 0.5 , respectively were obtained and characterized as $\mathbf{8}(118 \mathrm{mg}$, $0.15 \mathrm{mmol}, 15 \%), 9(122 \mathrm{mg}, 0.15 \mathrm{mmol}, 15 \%)$ and $\mathbf{1 0}(442$ $\mathrm{mg}, 0.456 \mathrm{mmol}, 45 \%$), respectively (Found: C, 46.01 ; H, 2.69; N, 7.17. Calc. for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Ru}_{2} \mathrm{~S}_{2}$ 8: C, 45.98; $\mathrm{H}, 2.68$; $\mathrm{N}, 7.15$. Found: C, $45.80 ; \mathrm{H}, 2.60 ; \mathrm{N}, 6.90$. Calc. for $\mathrm{C}_{31} \mathrm{H}_{23^{-}}$ $\mathrm{N}_{4} \mathrm{O}_{7} \mathrm{Ru}_{2} \mathrm{~S}_{2}$ 9: C, 45.82 ; H, 2.59; N, 6.90. Found: C, 51.38 ; H, 3.45; N, 11.43. Calc. for $\mathrm{C}_{42} \mathrm{H}_{34} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Ru}_{2} \mathrm{~S}_{2}$ 10: C, 51.37 ; H, 3.47; N, 11.41\%).

Carbonylation of complex 8 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Complex 8 ($20 \mathrm{mg}, 0.025 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 ml) and the orange solution stirred at room temperature for 6 h . The solvent was removed under reduced pressure and the only product isolated by TLC, using n-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1, \mathrm{v} / \mathrm{v})$ as the eluent, was $9\left(R_{\mathrm{f}}=0.85,15 \mathrm{mg}, 0.02 \mathrm{mmol}, 75 \%\right)$ accompanied by a small amount of unreacted $\mathbf{8}\left(R_{\mathrm{f}}=0.7,3 \mathrm{mg}, 0.003\right.$ mmol, 15%).

Thermolysis of complex 9

Complex 9 ($20 \mathrm{mg}, 0.025 \mathrm{mmol}$) was dissolved in n-hexane (30 $\mathrm{ml})$. The orange solution was refluxed under a dinitrogen atmosphere. Using IR spectroscopic monitoring, no visible change was observed after 4 h .

Crystallography

All pertinent crystallographic data and other experimental details are summarized in Table 12. Intensity data were collected at ambient temperature on either a Rigaku AFC7R diffractometer (complexes 1, $\mathbf{2}$ and $\mathbf{3}$) or a MAR research image plate scanner (complexes 4-10) equipped with graphite-crystal monochromated Mo-K α radiation ($\lambda=0.71073 \AA$) using $\omega-2 \theta$ and ω scan types, respectively. The diffracted intensities were corrected for Lorentz and polarization effects. Absorption correction by φ-scan techniques was done for $\mathbf{1 , 2}$ and $\mathbf{3}$. However, for complexes 4-10, an approximate absorption correction by interimage scaling was also applied. Scattering factors were taken from ref. 29(a) and anomalous dispersion effects ${ }^{29 b}$ were included in F_{c}. The structures were solved by direct methods (SIR 88^{30} for 10; SIR $92{ }^{31}$ for 4, 5; SHELX86 ${ }^{32}$ for 1-3 and 6-9) and expanded by Fourier-difference techniques (DIRDIF94). ${ }^{33}$ The solutions were refined by full-matrix least-squares analysis on F. For all structures, the heavy atoms Hg , Os and S were refined anisotropically. Attempts to refine all the atoms anisotropically were made, however, in structures 1-4 and 7, but led negative anisotropic displacement parameters. Therefore some non-hydrogen atoms were refined isotropically. Hydrogen atoms were generated in their ideal positions, except $\mathrm{N}(\mathrm{H})$ which were located from a difference Fourier synthesis and included in the structure factor calculations but not refined. Calculations were performed on a SiliconGraphics computer, using the program package TEXSAN. ${ }^{34}$

CCDC reference number 186/1521.
See http://www.rsc.org/suppdata/dt/1999/2497/ for crystallographic files in .cif format.
Table 12 Summary of crystal data and data collection parameters for compounds 1-10

	1	2	3	4	5	6	7•0.5 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	8	9. $\mathrm{H}_{2} \mathrm{O}$	$10 \cdot \mathrm{C}_{6} \mathrm{H}_{12}$
Empirical formula	$\begin{aligned} & \mathrm{C}_{34} \mathrm{H}_{8} \mathrm{Hg}_{2}- \\ & \mathrm{N}_{2} \mathrm{O}_{24} \mathrm{Os}_{7} \mathrm{~S}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{30} \mathrm{H}_{8} \mathrm{HgN}_{2} \mathrm{O}_{20^{-}} \\ & \mathrm{Os}_{6} \mathrm{~S}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{32} \mathrm{H}_{8} \mathrm{Hg}_{2} \mathrm{~N}_{2} \mathrm{O}_{22}- \\ & \mathrm{Ru}_{7} \mathrm{~S}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{34} \mathrm{H}_{8} \mathrm{HgN}_{2} \mathrm{O}_{20^{-}} \\ & \mathrm{Os}_{6} \mathrm{~S}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{24} \mathrm{H}_{8} \mathrm{HgN}_{2} \mathrm{O}_{10^{-}} \\ & \mathrm{Os}_{3} \mathrm{~S}_{4} \end{aligned}$	$\mathrm{C}_{42} \mathrm{H}_{10} \mathrm{HgO}_{28} \mathrm{Os}_{10} \mathrm{~S}_{2}$	$\begin{aligned} & \mathrm{C}_{57} \mathrm{Cl}_{2} \mathrm{H}_{22} \mathrm{HgN}_{8}- \\ & \mathrm{O}_{28} \mathrm{Os}_{10} \mathrm{~S}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{5^{-}} \\ & \mathrm{Ru}_{2} \mathrm{~S}_{2} \end{aligned}$	$\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{Ru}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{48} \mathrm{H}_{46} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{Ru}_{2} \mathrm{~S}_{2}$
M	2625.14	2122.30	1945.21	2234.47	1383.76	3129.23	3504.45	783.78	829.81	1065.20
Crystal system	Triclinic	Monoclinic	Orthorhombic	Monoclinic	Monoclinic	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic	Triclinic
Space group	$P \overline{1}$ (no. 2)	$P 2_{1} / n$ (no. 14)	Pbca (no. 61)	$P 2_{1} / n$ (no. 14)	$C 2 / c$ (no. 15)	Pbcn (no. 60)	Pbcn (no. 60)	$C 2 / c$ (no. 15)	$C 2 / c$ (no. 15)	$P \overline{1}$ (no. 2)
al̊	12.662(1)	11.465(4)	18.062(5)	27.790(1)	45.922(1)	30.751(1)	25.209(1)	22.904(1)	22.924(1)	11.601(1)
b/Å	14.943(1)	24.612(5)	32.879(5)	9.216(1)	9.233(1)	13.957(1)	17.109(1)	10.221(1)	10.417(1)	12.608(1)
clA	15.317(1)	18.167(4)	16.155(6)	36.730(1)	14.858(1)	13.227(1)	18.252(1)	26.948(1)	28.349(1)	17.852(1)
$a{ }^{\circ}$	106.66(1)	-	-	-	-	-	-	-	-	80.26(1)
$\beta 1{ }^{\circ}$	107.62(1)	107.81(2)	-	100.53(1)	93.88(1)	-	-	103.65(1)	100.01(1)	73.73(1)
$\gamma /{ }^{\circ}$	99.47(1)	-	-	-	-	-	-	-	-	71.21(1)
$U I \AA^{3}$	2543.9(5)	4880(2)	9594(4)	9248.6(9)	6285.3(7)	5676.9(5)	7872.1(6)	6130.4(7)	6666.7(7)	2364.1(4)
Z	2	4	8	8	8	4	4	8	8	2
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{cm}^{-1}$	235.82	188.41	86.96	199.81	172.87	251.24	182.04	11.67	10.83	7.79
T/K	298	298	298	298	298	298	298	298	298	298
No. reflections collected	21690	6955	6927	39915	24814	37971	29145	23216	22671	14273
No. unique reflections	7991	6574	6793	12406	5916	5591	6692	5775	5899	7994
No. observed reflections $[I>1.5 \sigma(I)]$	5048	3948	3089	5790	4250	3718	3537	4110	4358	5896
R^{a}	0.082	0.089	0.067	0.085	0.062	0.054	0.059	0.035	0.053	0.042
$R^{\prime \prime}$	0.090	0.084	0.055	0.084	0.070	0.053	0.048	0.035	0.061	0.050
${ }^{a} R=\Sigma\| \| F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| /\left\|F_{\mathrm{c}}\right\| \cdot{ }^{b} R^{\prime}=\left[\Sigma w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} / \Sigma w F_{\mathrm{o}}{ }^{2}\right]^{\frac{1}{2}}$.										

Acknowledgements

We gratefully acknowledge financial support from the Hong Kong Research Grants Council and the University of Hong Kong. F.-S. K. acknowledges the receipt of a postgraduate studentship administered by the University of Hong Kong.

References

1 M. Ferrer, A. Perales, O. Rossel and M. Seco, J. Chem. Soc., Chem. Comтип., 1990, 1447
2 L. N. Zakharov, Y. T. Struchkov, S. N. Titova, V. T. Bychkov, G. A. Domrachev and G. A. Razumaez, Cryst. Struct. Commun., 1980, 9, 549.
3 A. Bianchini and L. J. Farrugia, Organometallics, 1992, 11, 540.
4 E. Rosenberg, D. Ryckman, I. N. Hsu and R. W. Gellert, Inorg. Chem., 1986, 25, 194.
5 L. H. Gade, Angew. Chem., Int. Ed. Engl., 1993, 32, 24.
6 (a) Y. K. Au and W. T. Wong, J. Chem. Soc., Dalton Trans., 1995, 1389; (b) Y. K. Au and W. T. Wong, J. Chem. Soc., Dalton Trans., 1996, 899; (c) Y. K. Au and W. T. Wong, Inorg. Chem., 1997, 36, 2092.

7 J. W. S. Hui and W. T. Wong, J. Chem. Soc., Dalton Trans., 1997, 2445; J. W. S. Hui and W. T. Wong, J. Chem. Soc., Dalton Trans., 1998, 2065.
8 C. Cathey, J. Lewis, P. R. Raithby and M. C. Ramirez de Arellano, J. Chem. Soc., Dalton Trans., 1994, 3331.

9 A. Bianchini and L. J. Farrugia, Organometallics, 1992, 11, 540.
10 S. Hajela, B. M. Novak and E. Rosenberg, Organometallics, 1989, 8, 468.

11 M. R. Churchill and B. G. Deboer, Inorg. Chem., 1977, 16, 878.
12 A. J. Deeming, K. I. Hardcastle and M. Karim, Inorg. Chem., 1992, 31, 4792.
13 M. R. Churchill and R. A. Lachewycz, Inorg. Chem., 1979, 18, 3261.
14 P. L. Andreu, J. A. Cabeza, A. Llamazares and V. Riera, J. Organomet. Chem., 1991, 420, 431.

15 B. F. G. Johnson, W. L. Kwik, J. Lewis, P. R. Raithby and V. P Saharan, J. Chem. Soc., Dalton Trans., 1991, 1037.

16 B. F. G. Johnson, J. Lewis, S. W. Sankey, K. Wong, M. McPartlin and W. J. H. Nelson, J. Organomet. Chem., 1980, 191, C3.
17 P. F. Jackson, B. F. G. Johnson, J. Lewis and J. N. Nicholls, J. Chem. Soc., Chem. Commun., 1980, 564.
18 J. S. Bradley, R. L. Pruett, E. Hill, G. B. Ansell, M. E. Leonowicz and M. A. Modrick, Organometallics, 1982, 1, 748
19 S. M. Lee and W. T. Wong, J. Cluster Sci., 1996, 7, 37.
20 R. O. Gould, T. A. Stephenson and D. A. Tocher, J. Organomet. Chem., 1984, 263, 375.
21 A. J. Arce, P. Arrojo, A. J. Deeming and Y. de Sanctis, J. Chem. Soc., Chem. Commun., 1991, 1491.
22 N. Lugan, G. Lavigne and J. J. Bonnet, Inorg. Chem., 1986, 25, 9.
23 D. M. P. Mingos, J. Chem. Soc., Chem. Commun., 1982, 706.
24 M. R. Churchill, F. J. Hollander and J. P. Hutchison, Inorg. Chem., 1977, 16, 2655.
25 M. R. Burns and J. L. Hubbard, J. Am. Chem. Soc., 1994, 116, 9514.
26 F. S. Kong and W. T. Wong, unpublished results.
27 A. Castineiras, W. Hiller, J. Strahle, J. Bravo, J. S. Casas, M. Gayoso and J. Sordo, J. Chem. Soc., Dalton Trans., 1986, 1945.
28 J. Bravo, J. S. Casas, M. Castano, M. Gayoso, Y. P. Mascarenhas, A. Sanchez, C. de. O. P. Santos and J. Sordo, Inorg. Chem., 1985, 24, 3435.

29 D. T. Cromer and J. T. Waber, International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, (a) Table 22B; (b) Table 2.3.1.

30 M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Crystallogr., 1989, 22, 389.

31 A. Altomare, M. C. Burla, M. Camalli, M. Cascarano, G. Giacovazzo, A. Guagliardi and G. Polidori, SIR 92, J. Appl. Crystallogr., 1994, 27, 435.
32 G. M. Sheldrick, SHELXS 86, Program for Crystal Structure Solution, Acta Crystallogr., Sect. A, 1990, 46, 467.
33 DIRDIF94: B. T. Beurskens, G. Admiroal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Isrel and J. M. M. Smits, Technical Report of the Crystallography Laboratory, University of Nijmegen, 1994.

34 TEXSAN, Crystal Structure Analysis Package, Molecular Structure Corporation, 1985 and 1992.

