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[Fe2(�-O)(tpa)2(OH)(H2O)]3� reacts with H2O2 in aceto-
nitrile at �40 �C forming a transient diferric peroxo
intermediate (�max � 700 nm, � � 1800 dm3 mol�1 cm�1),
which then reacts with a second H2O2 molecule to give
[FeIIIFeIV(�-O)2(tpa)2]

3�.

Non-heme diiron redox enzymes have been one of the “hot
topics” of bioinorganic chemistry for the past decade. Their
common mechanistic feature is the formation of a diiron()
peroxo complex, which then transforms into a high-valent di-
iron species responsible for the oxidative action of an enzyme.1–4

The actual need for modeling such a process on simple diiron
complexes has been recently stated.1,2 The only well character-
ized structural and functional models for the high-valent diiron
species are FeIIIFeIV(µ-O)2 diamond core complexes with tpa
and its derivatives, formed from corresponding FeIII

2-complexes
and H2O2 at low temperature.2,5–7 A relatively long-lived peroxo
complex has been observed as an intermediate in the formation
of FeIIIFeIV(µ-O)2(6-Me3-tpa)2

3� (6-Me3-tpa = tris(6-methyl-2-
pyridylmethyl)amine),8 with the general scheme similar to the
peroxide shunt of diiron non-heme enzymes.1–3 In this paper,
we communicate the direct observation of a transient model
diferric peroxo complex quickly converting into a high-valent
species.

Mixing of [FeIII
2(µ-O)(tpa)2(OH)(H2O)]3� and H2O2 solutions

in acetonitrile at �40.0 ± 0.1 �C under pseudo-first order
conditions (10-fold or larger excess of H2O2) produces kinetic
traces (Fig. 1), which are well fit by two exponential functions
yielding wavelength-independent sequential rate constants k�obs

and k�obs.‡ Treatment of the data by IS-2 Rapid Kinetics Soft-
ware (Hi-Tech) using the A→B→C model gave electronic spec-
tra of the three species involved (Fig. 1). The initial and final
spectra agree well with those reported for [FeIII

2(µ-O)(tpa)2-
(OH)(H2O)]3� and [FeIIIFeIV(µ-O)2(tpa)2]

3�, correspondingly.5,7

The spectrum of the intermediate B(peroxo) has a broad maxi-
mum at about 700 nm (ε = 1800 dm3 mol�1 cm�1), which is very
similar to the Hperoxo intermediate of methane monooxygenase
(λmax = 700 nm, ε = 1800 dm3 mol�1 cm�1) 4 and the peroxo
intermediate of a mutant ribonucleotide reductase (λmax = 700
nm, ε = 1500 dm3 mol�1 cm�1).9 Such a band is characteristic of
FeIII

2(µ-peroxo) complexes 10,11 and is referred to LMCT.12 A
similar FeIII

2(µ-O)(µ-O2)(6-Me3-tpa)2
2� complex has been

reported, which converts into [FeIIIFeIV(µ-O)2(6-Me3-tpa)2]
3�

upon the addition of one equiv. of acid.8 Thus, the species
Bperoxo is most probably [FeIII

2(µ-OH)(µ-O2)(tpa)2]
3� or [FeIII

2-
(µ-O2)(tpa)2(OH)(H2O)]3�. It can be also a mixture of these
and other diferric peroxo complexes.10 The rate constant k�obs

corresponds to the formation of Bperoxo, and k�obs to the trans-
formation of Bperoxo into the FeIIIFeIV-species. Concentration
dependences for the constants k�obs and k�obs allow us to pro-
pose a mechanistic scheme for these two consecutive steps
(Scheme 1).

† Supplementary data available: plots of kinetic data. For direct elec-
tronic access see http://www.rsc.org/suppdata/dt/1999/3335/, otherwise
available from BLDSC (No. SUP 57624, 4 pp.) or the RSC Library. See
Instructions for Authors, 1999, Issue 1 (http://www.rsc.org/dalton).

The formation of the transient intermediate Bperoxo is deceler-
ated by water and accelerated by hydrogen peroxide. Plots of
kinetic data k�obs

�1 vs. [H2O] at constant [H2O2] and k�obs
�1 vs.

Fig. 1 Spectra of the initial complex [Fe2(µ-O)(tpa)2(OH)(H2O)]3�

(2.5 × 10�4 mol dm�3) (�), transient species Bperoxo (�) and [FeIIIFeIV-
(µ-O)2(tpa)2]

3� (�) calculated from kinetic data. [H2O2]o = 2.5 × 10�3

mol dm3 (after mixing).

Scheme 1

http://dx.doi.org/10.1039/a904626g


3336 J. Chem. Soc., Dalton Trans., 1999,  3335–3336

[H2O2]
�1 at constant [H2O] are straight lines with practically the

same intercept. (SUP 57624) Such behavior suggests the form-
ation of another intermediate (A1), which exists in equilibrium
with the starting complex [FeIII

2(µ-O)(tpa)2(OH)(H2O)]3� and
converts irreversibly into Bperoxo. Spectral kinetic data (Fig. 1)
show that the intermediate A1 does not accumulate in the reac-
tion mixture to an appreciable amount, and that the reaction
[FeIII

2(µ-O)(tpa)2(OH)(H2O)]3�→A1 is the rate-limiting step.
The simplest model to account for the observations is shown

in Scheme 1.§

k�obs =
k1(k2/k�1)[H2O2]

(k2/k�1)[H2O2] � [H2O]

The constant k1 = 0.5 ± 0.1 s�1 corresponds to the rate of the
H2O molecule dissociation in [FeIII

2(µ-O)(tpa)2(OH)(H2O)]3�.
The ratio k2/k�1 = 6 ± 2 reflects the larger nucleophilicity of
H2O2 compared to H2O (α-effect).13 The dissociative mechan-
ism is common for FeIII olated aqua species due to the labiliz-
ing effect of the OH� ligand.14 A similar action can be expected
from the O2� ligand. Thus, the intermediate A1 probably is
[FeIII

2(µ-O)(tpa)2(η
1-OH)]3� or [FeIII

2(µ-O)(µ-OH)(tpa)2]
3�.15 It

can react with H2O2 to form [FeIII
2(µ-O)(tpa)2(OH)(H2O2)]

3�,
which then converts into [FeIII

2(µ-O2)(µ-OH)(tpa)2]
3� or

[FeIII
2(µ-O2)(tpa)2(OH)(H2O)]3� by proton transfers. The

apparent ε of Bperoxo (calculated from kinetic data) does not
significantly depend on water concentration up to [H2O]/
[H2O2] = 40. It confirms the presence of a practically irrevers-
ible stage in the formation of the peroxo intermediate. Peroxide
is apparently a much better ligand for FeIII than oxide or
hydroxide, as stable FeIII(O2

2�)-complexes can form even in
aqueous solution.16

The observed pseudo-first order rate constant (k�obs) of the
following transformation Bperoxo→[FeIIIFeIV(µ-O)2(tpa)2]

3� does
not depend on [H2O], but is proportional to [H2O2].

k�obs = k3[H2O2]

The graph k�obs vs. [H2O2] is a straight line with a practically
zero intercept and a slope of k3 = 10 ± 2 dm3 mol�1 s�1, corres-
ponding to a second-order rate constant for the reaction
between Bperoxo and H2O2 (SUP 57624). The reaction is appar-
ently a redox process with tentative overall stoichiometry:

2[FeIII
2(µ-O2)(µ-OH)(tpa)2]

3� � H2O2 →
 2[FeIIIFeIV(µ-O)2(tpa)2]

3� � O2 � 2H2O

It should be noted that the presence of a reductant is essen-
tial for the action of native ribonucleotide reductase, presum-
ably in order to reduce the FeIII

2-peroxo intermediate to the
high-valent FeIIIFeIV intermediate X.3 In the model system
studied here, H2O2 is the most probable reductant.

The yields of [FeIIIFeIV(µ-O)2(tpa)2]
3� have never been quan-

titative, reaching the maximum of ca. 70% (based on the
reported value ε = 5500 dm3 mol�1 cm�1)6 at 40-fold or more
excess of H2O2, which corresponds to [H2O2]o ≥ 10 mM under
our conditions. The same maximum yield has been reported by
Que’s group with only 1.5-fold excess of H2O2, which corre-
sponds also to ca. 10 mM H2O2.

7 These data can be rationalized
by invoking an independent pathway of Bperoxo decomposition,
which plays a larger role at insufficient absolute (rather than
relative) H2O2 concentrations.

At room temperature the [Fe2(µ-O)(tpa)2(OH)(H2O)]3�

complex causes intense effervescence of the H2O2 acetonitrile
solution. Significant catalatic activity has been reported for
[Fe2(µ-O)(µ-O2CCH3)(tpa)2]

2� in such conditions.17 To deter-
mine, if the excess of H2O2 survives at low temperature, addi-
tional double-mixing experiments were carried out. The 5 mM
H2O2 solution was first mixed with 0.5 mM [Fe2(µ-O)(tpa)2-
(OH)(H2O)]3� solution and then, upon the completion of
apparent spectral changes, with a fresh portion of 0.25 mM
[Fe2(µ-O)(tpa)2(OH)(H2O)]3� solution. Kinetic quantitation
showed that no more than 2 moles of H2O2 per mole of the
Fe2-complex had been consumed in the first mixing. Thus, the

catalatic process in this system is negligible and suppressed at
�40 �C.

In the other series of double-mixing experiments the [Fe2-
(µ-O)(tpa)2(OH)(H2O)]3� solution was first mixed with H2O2

solution, and upon the completion of apparent spectral
changes, with a fresh portion of more concentrated H2O2 solu-
tion. It was found that the ratio H2O2 :Fe2 ≥ 1.5 ± 0.1 was
enough to consume all of the initial diiron complex and prevent
the formation of new Bperoxo in the second mixing. This con-
firms the presence of an irreversible stage in the formation
of Bperoxo and suggests that the starting complex [Fe2(µ-O)-
(tpa)2(OH)(H2O)]3� is not regenerated in the system. The
stoichiometry of the initial interaction between [Fe2(µ-O)-
(tpa)2(OH)(H2O)]3� and H2O2 to give Bperoxo is most probably
1 :1, with some H2O2 consumed in the concomitant formation
of the FeIIIFeIV complex and in a minor catalatic process.

Other kinetic experiments regarding the formation and
reactivity of Fe2O2(H) diamond cores are currently under way.

Acknowledgements

This work was supported by Tufts University.

Notes and references
‡ The initial complex, [Fe2(µ-O)(tpa)2(OH)(H2O)](ClO4)3 was prepared
by a published procedure.5 Hydrogen peroxide, 30% aqueous solution
(ACS certified grade) and acetonitrile (HPLS grade) were purchased
from Fisher. Stopped-flow experiments were carried out by using a
Hi-Tech Scientific (Salisbury, UK) SF-43 cryogenic stopped-flow
apparatus with stainless steel plumbing. Measurements were made at
wavelengths from 360 to 800 nm with 20 nm intervals to get spectral
information.
§ More complicated molecular interpretations can also describe the
observations. However, another simple model, with the fast preequilib-
rium [Fe2(µ-O)(tpa)2(OH)(H2O)]3� � H2O2 A1 � H2O and the rate-
limiting step A1→Bperoxo, can be discounted. It implies that A1 is an
FeIII-peroxo complex, which is formed in substantial amount in the
reaction mixture (the preequilibrium constant Keq = 6 ± 2). Such an
assumption contradicts the spectral changes calculated from kinetic
data.
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