Armando J. L. Pombeiro,*a Maria Teresa A. R. S. Costa, Yu Wang and John F. Nixon

Received 2nd August 1999, Accepted 7th September 1999

The first mixed phosphirene–dinitrogen and phosphirene–diazenide complexes mer-[ReCl(N₂)(PPhCPh=CPh)L₃] (L = PMe₂Ph 1a or PMePh₂ 1b) and [ReBr(NNPh)₂(PPhCPh=CPh)₂(PPh₃)] 2 have been prepared by treatment of the corresponding thf solutions of trans-[ReCl(N₂)L₄] or [ReBr₃(NNPh)(PPh₃)₂] with PPhCPh=CPh. Their redox properties have been investigated by cyclic voltammetry in an aprotic medium, at a platinum electrode, and the electrochemical E_L and P_L parameters estimated for the phosphirene ligand indicating that its overall electron donor/acceptor properties are similar to those of PMePh₂.

Introduction

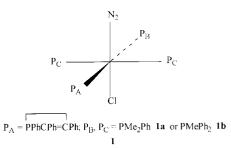
The chemistry of phosphirene and phosphirane ring systems has been reviewed 1,2 and also more recently discussed with other phosphorus containing heterocycles.³ The phosphirene ring is characterised by a significant positive charge at phosphorus and two bent intracyclic P-C bonds corresponding to the bonding combination of π (phosphinidene) and π^* alkyne orbitals. A transition metal-ligand fragment can either coordinate to the phosphorus lone-pair electrons or insert into one of the P–C bonds *via* a transient η^2 -(P–C) complex. Several complexes have been synthesised directly in the co-ordination sphere of metals or made from the preformed heterocycle.4-7 Interestingly palladium catalysed alkyne insertions of phosphirenes ligated to [W(CO)₅]^{8,9} are known and CO can also be incorporated into the ring of phosphirene complexes¹⁰ at high temperature. These reactions no doubt involve transient four-membered metallacycles and in support of this several 14electron fragments of the type ML_2 (M = Ni or Pt) readily react with the P-C bonds of phosphirenes and phosphiranes, 11-14 and subsequently with CO under mild conditions.

In spite of this rich co-ordination chemistry, the electron σ -donor and π -acceptor characters of the phosphirenes have not yet been investigated in detail. In addition, mixed complexes of phosphirenes with dinitrogen (N₂) or potentially derived ligands, such as diazenides (NNR), have not been reported to date although organophosphine complexes with such nitrogen ligands are widely known ^{15,16} and present a versatile chemistry which is of current and growing interest.

In attempting to address these points, we have investigated the reactivity of triphenylphosphirene PPhCPh=CPh, with the dinitrogen and the phenyldiazenide complexes trans-[ReCl-(N₂)L₄] (L = PMe₂Ph or PMePh₂) and [ReBr₃(NNPh)(PPh₃)₂], respectively, since these types of complexes are particularly promising synthetic starting materials in co-ordination chemistry of nitrogen ligands. ^{15–19} We have obtained from these reactions the first dinitrogen and diazenide complexes with a phosphirene co-ligand, mer-[ReCl(N₂)(PPhCPh=CPh)-L₃] (L = PMe₂Ph 1a or PMePh₂ 1b) and [ReBr(NNPh)₂-(PPhCPh=CPh)₂(PPhCPh=CPh)₃] 2, respectively and have investigated their redox behaviour which allowed us to quantify the net electron donor/acceptor ability of the triphenylphosphirene

ligand by estimating, for the first time, its electrochemical $E_{\rm L}$ and $P_{\rm L}$ ligand parameters.

Results and discussion


Chemical studies

Treatment of a thf solution of trans-[ReCl(N_2)L₄] (L = PMe₂Ph or PMePh₂) with PPhCPh=CPh, in a stoichiometric amount, for ca. 2–3 d, leads to the formation of the corresponding mixed dinitrogen-phosphirene complexes mer-[ReCl(N_2)-(PPhCPh=CPh)L₃] (L = PMe₂Ph 1a or PMePh₂ 1b) via replacement of one of the phosphine ligands by the phosphirene, eqn. (1). Although N_2 is often the most labile ligand

trans-[ReCl(N₂)L₄] + PPhCPh=CPh
$$\longrightarrow$$

mer-[ReCl(N₂)(PPhCPh=CPh)L₃] + L (1)

in transition metal dinitrogen complexes, in this reaction it is retained as was observed previously by us ^{17a} in the formation of *mer*-[ReCl(N₂)(CNMe)(PMe₂Ph)₃] on treatment of *trans*-[ReCl(N₂)(PMe₂Ph)₄] with CNMe.

Complexes **1a** and **1b** were isolated (*ca.* 40–50% yields) as a pale orange or a dark yellow solid, respectively, having strong IR bands readily assigned to $v(N\equiv N)$ at 1944–1930 cm⁻¹, lying within the range of frequencies (1950–1920 cm⁻¹) displayed by other N₂ complexes of related electron-rich rhenium centres, typified by mer-[ReCl(N₂)(CNMe)(PMe₂Ph)₃]^{17a} or mer-[Re(S₂PPh₂)(N₂)(PMe₂Ph)₃],²⁰ in which N₂ is trans to a strong electron-donor anionic co-ligand and behaves as an effective π -electron acceptor. This is also a feature of our complexes **1a** and **1b** (see below) which accounts for the

^a Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. E-mail: pombeiro@alfa.ist.utl.pt

^b School of Chemistry, Physics and Environmental Science, University of Sussex, Brighton, UK BN1 9QJ. E-mail: J.Nixon@sussex.ac.uk

stabilization of their $Re-N_2$ bond which is preserved during the reaction

The meridional arrangement of the phosphines (P_B and P_C) in complex 1, with the phosphirene ligand (P_A) trans to one of them (P_B) (see I), implies that the N_2 and the Cl ligands are mutually trans and is clearly indicated by the [ABC₂] patterns exhibited by their ³¹P-{¹H} NMR spectra.

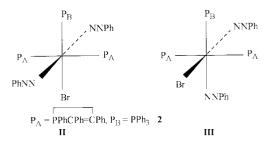
The phosphirene-³¹P resonance (P_A at δ -119.71 **1a** or -131.10 **1b** relative to H₃PO₄) occurs at a lower field than that observed for the "free" ligand (δ –186.37) and lies within the expected range 5,6 for terminal phosphorus-co-ordination without cleavage of the ring (a shift to a much lower field should occur⁶ for ring opening). The fine structure for complex 1a consists of a doublet $[{}^{2}J(P_{A}P_{B}) = 253.8 \text{ Hz}]$ of broad triplets $[^{2}J(P_{A}P_{C}) = 24 \text{ Hz}]$, in agreement with the patterns observed for the trans-phosphine $[P_B \text{ at } \delta -28.54 \text{ as a doublet, } {}^2J(P_BP_A) =$ 253.1, of triplets, ${}^{2}J(P_{B}P_{C}) = 17.5$ Hz] and the *cis*-phosphines [2P_C at δ -28.39 as a triplet, ${}^2J(P_CP_B) \approx {}^2J(P_CP_A) \approx 22$ Hz]. A more simplified ³¹P-{¹H} NMR pattern is observed for 1b (in CDCl₃) in view of the lack of resolution of the cis couplings: P_A and P_B appear simply as doublets $[^2J(P_AP_B) \approx 240 \text{ Hz}]$ (the latter at δ -30.83), whereas 2P_C resonate as a broad singlet at δ -26.70.

The ¹H NMR spectrum of complex **1a** is also consistent with the meridional arrangement of the phosphines, since the resonance of the methyl protons of the unique phosphine $P_B(CH_3)_2Ph$ is a doublet $[^2J(HP_B)=7.6~Hz]$ at δ 1.26, whereas the resonance of the two *trans* $P_C(CH_3)_2Ph$ phosphines occurs as two triplets (at δ 1.66 and 1.62), each of them as a result of virtual coupling to the two P_C nuclei $[\frac{1}{2}]^2J(HP_C) + ^4J(HP_C)| \approx 2.9~Hz]$. Such a type of resonance pattern associated with the meridional arrangement of PMe_2Ph ligands has been recognized ^{17a,21} for other complexes.

The phenyldiazenide complex [ReBr₃(NNPh)(PPh₃)₂] also reacts with the phosphirene, in refluxing thf for 2 d, leading to the formation of the orange complex [ReBr(NNPh)₂-(PPhCPh=CPh)₂(PPh₃)] **2**, eqn. (2), which precipitated (*ca.* 20%)

$$[ReBr_{3}(NNPh)(PPh_{3})_{2}] \xrightarrow{PPhCPh=CPh} \\ [ReBr(NNPh)_{2}(PPhCPh=CPh)_{2}(PPh_{3})] \quad (2)$$

$$\mathbf{2}$$


yield) as the first product on concentration of the solution and addition of pentane. From the mother-liquor it was possible to isolate (in *ca.* the same yield) another product, already identified ¹⁹ as [ReBr₂(NNPh)₂(PPh₃)₂], which does not contain any phosphirene ligand.

The formation of these products is unexpected, involving the formal replacement of a bromide by a diazenide ligand and, in the case of **2**, also metal reduction (possibly by PPh₃ producing Ph₃PBr₂) and further displacement of bromide and phosphine by phosphirene. The mechanisms for these conversions are unknown, but they conceivably occur *via* the formation of bromide and diazenide bridges between two metal centres. The starting diazenide complex [ReBr₃(NNPh)(PPh₃)₂] is known ¹⁹ to undergo reduction reactions with isocyanides to form products of the type [ReBr₂(NNPh)(CNR)(PPh₃)₂] (R = Me or C_6H_4Cl-4), [ReBr₂(NNPh)(CNMe)₂(PPh₃)] or [ReBr(NNPh)(CNMe)₂(PPh₃)₂], but, in contrast to the present case, there is no increase in the number of diazenide ligands.

The IR spectrum (KBr pellet) of [ReBr(NNPh)₂-(PPhCPh=CPh)₂(PPh₃)] **2** displays two bands at 1660 and 1560 cm⁻¹, assigned to $\nu(NN)$ of the phenyldiazenide ligand, which are within the range observed ¹⁹ for related diazenide complexes such as the parent one (1700 and 1575 cm⁻¹) and [ReCl(NNPh)₂(PPh₃)₂] (1540 and 1510 cm⁻¹) and the presence of the diazenide ligands is confirmed by elemental analysis. It seems likely that one NNPh presents a doubly bent geometry

(one-electron donor) whereas the other one should be singly bent (three-electron donor) in order to provide the complex with the inert gas electron configuration. Such an arrangement of phenyldiazenide conformations was shown ¹⁹ by an X-ray study on [ReBr₂(NNPh)₂(PPh₃)₂], the other isolated product (see above) of the attempted reaction of the parent diazenide with the phosphirene.

Complex **2** appears to exist in solution in two isomeric forms, both having equivalent phosphirene ligands, such as **II** and **III** (although isomerism resulting from different relative conformations of the two types of diazenide ligands ²² cannot be ruled out), as indicated by its ³¹P-{¹H} NMR spectrum (CDCl₃) which consists of two similar sets of resonances, with a slight predominance of one of them. In each set the resonance of the phosphirene-phosphorus nuclei (2P_A) occurs as a doublet [²J(P_AP_B) = 13.8 Hz] at a chemical shift (δ – 144.43 or – 147.85 relative to H₃PO₄) that, as for complexes **1a** and **1b**, is typical for phosphorus-co-ordination without ring rupture, whereas the phosphine-phosphorus (P_B) resonance is the expected triplet (with the same coupling constant and half the intensity of the above doublet) at δ 5.68 or 3.63.

Electrochemical studies

The anodic behaviours of complexes **1a**, **1b** and **2** were investigated by cyclic voltammetry, at a platinum-wire electrode, in 0.2 M [NBu₄][BF₄]–CH₂Cl₂. Each of the dinitrogen complexes presents a first reversible single-electron anodic wave at $^{\rm I}E_{1/2}^{\rm ox}=0.19$ (**1a**) or 0.27 (**1b**) V vs. SCE, assigned to the Re^I \longrightarrow Re^{II} oxidation, which is followed by a second irreversible one, at a higher potential($^{\rm II}E_{\rm p}^{\rm ox}=1.25$ **1a** or 1.35 V **1b**) involving the Re^{II} \longrightarrow Re^{III} oxidation with N₂ loss.

For mer-[ReCl(N₂)(PPhCPh=CPh)(PMePh₂)₃] **1b** the value of $^{1}E_{12}^{ox}$ is identical to that observed for the parent complex trans-[ReCl(N₂)(PMePh₂)₄] (0.27 V, measured under identical experimental conditions), whereas for the PMe₂Ph analogues, **1a** is oxidized at a higher potential than the parent N₂ complex (0.13 V), thus indicating that the phosphirene ligand behaves as a net electron σ donor minus π -acceptor ligand identical to PMePh₂ but weaker than PMe₂Ph. Hence, the values of the electrochemical E_L^{23} and P_L^{24} parameters (which constitute a measure of such a ligand character) for the phosphirene should be identical to those of PMePh₂, *i.e.* 0.37 V vs. NHE ²³ and -0.43 V, respectively [the latter estimated from the observed ²³ linear correlation between those two parameters, *i.e.* P_L = 1.17, E_L -0.86].

The measured values of the oxidation potential for complexes $\mathbf{1a}$ and $\mathbf{1b}$ (0.43 and 0.52 V vs. NHE, respectively) are in very good agreement with those (0.44 and 0.51 V vs. NHE, respectively) predicted by using the Lever eqn. (3)²³ in which

$$E = S_{\rm M} (\Sigma E_{\rm L}) + I_{\rm M} \quad (V \text{ vs. NHE})$$
 (3)

 $\Sigma E_{\rm L}$ is the sum of the $E_{\rm L}$ values for all the ligands, $S_{\rm M}$ and $I_{\rm M}$ are dependent on the redox metal couple, spin state and stereochemistry ($S_{\rm M}=0.76$ and $I_{\rm M}=-0.95$ V vs. NHE for Re^I/Re^{II} sites),^{23b} thus confirming our estimate of the $E_{\rm L}$ parameter for the phosphirene ligand and the additive character of this parameter for complexes $\bf 1a$ and $\bf 1b$.

Also in accord with this expression, the oxidation potentials of complexes ${\bf 1a}$ and ${\bf 1b}$ and related ones follow the order of $E_{\rm L}$ for the phosphorus variable ligand in the following way: trans-[ReCl(N₂){P(OMe)₃}₄] ($E_{1/2}^{\rm ox}=0.42~{\rm V},^{18a}~E_{\rm L}=0.42~{\rm V}~vs.$ NHE 23a) > trans-[ReCl(N₂)(PMePh₂)₄], ${\bf 1b}$ ($E_{1/2}^{\rm ox}=0.27~{\rm V},~E_{\rm L}=0.37~{\rm V}~vs.$ NHE 23a) or trans-[ReCl(N₂)(Ph₂PCH₂CH₂PPh₂)₂] ($E_{1/2}^{\rm ox}=0.28~{\rm V},^{18a}~E_{\rm L}=0.36~{\rm V}~vs.$ NHE 23a) > ${\bf 1a}$ [$E_{1/2}^{\rm ox}=0.19~{\rm V},~E_{\rm L}$ (PMe₂Ph) = $0.34~{\rm V}~vs.$ NHE, $^{23a}~E_{\rm L}$ (PPhCPh=CPh) = $0.37~{\rm V}~vs.$ NHE] > trans-[ReCl(N₂)(PMe₂Ph)₄] ($E_{1/2}^{\rm ox}=0.13~{\rm V},~E_{\rm L}=0.34~{\rm V}~vs.$ NHE] > trans-[ReCl(N₂)(PMe₂Ph)₄] ($E_{1/2}^{\rm ox}=0.13~{\rm V},~E_{\rm L}=0.34~{\rm V}~vs.$ NHE] 23a).

An increase in the oxidation potential of the two dinitrogen complexes ${\bf 1a}$ and ${\bf 1b}$ corresponds to a decrease of the net electron donor ability of the phosphorus ligands and is also followed by an increase of $\nu(N\equiv N)$ which reflects the lowering of the π -electron release from the metal to the N_2 ligand. Moreover, the ${}^{\rm I}E_{1/2}^{\rm ox}$ and $\nu(N\equiv N)$ data for complexes ${\bf 1a}$ and ${\bf 1b}$ fit reasonably the linear correlation between these parameters recognised ${}^{\rm 18a}$ for a series of other rhenium(I) complexes with the common Cl–Re– N_2 axis.

The diazenide complex [ReBr(NNPh)₂(PPhCPh=CPh)₂-(PPh₃)] **2** also exhibits, by cyclic voltammetry, a single-electron reversible anodic wave which, however, occurs at $E_{1/2}^{ox} = 0.95$ V vs. SCE, a value much higher than those of the above Re^I-dinitrogen complexes, in agreement with the higher metal oxidation state for the former complex. In accord, the oxidation potential of **2** is not so anodic as that exhibited by its parent complex [ReBr₃(NNPh)(PPh₃)₂], having a higher metal oxidation state, which displays an irreversible oxidation wave at $E_n^{ox} = 1.49$ V vs. SCE.

 $E_{\rm p}^{\rm ox}$ = 1.49 V vs. SCE. The above electrochemical results, which are indicative that the phosphirene as a ligand behaves as a net electron donor/acceptor similar to PMePh₂ and is also compatible with N₂ co-ordination, suggest that a novel phosphirene-based nitrogen-fixation chemistry conceivably can be developed, paralleling that known ¹⁵ for dinitrogen-phosphine complexes.

Experimental

Solvents were dried and degassed by using standard techniques. All reactions were performed under an inert atmosphere (N₂). Triphenylphosphirene,²⁵ trans-[ReCl(N₂)L₄] (L = PMe₂Ph or PMePh₂)^{18b} and [ReBr₃(NNPh)(PPh₃)₂]¹⁹ were prepared according to published methods.

Infrared spectra were recorded on a Perkin-Elmer 683 spectrophotometer and NMR spectra on a Varian Unity 300 MHz or a Bruker AMX 500 MHz (or 80 MHz) spectrometer; δ values are in ppm relative to SiMe₄ (¹H) or to H₃PO₄ (³¹P). Abbreviations: s = singlet, d = doublet, t = triplet, br = broad, dt = doublet of triplets, dbrt = doublet of broad triplets.

The electrochemical experiments were carried out either on an EG&G PAR 173 potentiostat/galvanostat and an EG&G PARC 175 Universal programmer or on an HI-TEK DT 2101 potentiostat/galvanostat and an HI-TEK PP RI waveform generator. Cyclic voltammetry studies were undertaken in a two-compartment three-electrode cell, at a platinum wire working electrode, probed by a Luggin capillary connected to a silver-wire pseudo-reference electrode; a platinum or tungsten auxiliary electrode was employed. The first anodic wave in the cyclic voltammograms of the complexes 1a and 1b has $\Delta E_{\rm p}$ of ca. 100 mV, $i_p(\text{anodic})/i_p(\text{cathodic})$ close to one, and the current function $i_pC^{-1}v^{-1/2}$ (C = concentration, v = scan rate) without appreciable variation in the 50–1000 mV s⁻¹ scan rate range, thus following the usual criteria for a single-electron reversible process. The oxidation potentials of the complexes were measured by cyclic voltammetry in 0.2 mol dm⁻³ [NBu₄][BF₄]-CH₂Cl₂, and are quoted, unless stated otherwise, relative to the SCE (saturated calomel electrode) by using the $[Fe(\eta^5-C_5H_5)_2]^{0/+}$ couple (0.55 V vs. SCE) as an internal reference. The values of the oxidation potentials relative to

NHE (normal hydrogen electrode) were estimated by adding 0.245 V to the corresponding ones quoted relative to SCE.

Syntheses

mer-[ReCl(N₂)(PPhCPh=CPh)(PMe₂Ph)₃] 1a. The compound PPhCPh=CPh (0.105 g, 0.366 mmol) was added to a thf (13 cm³) solution of *trans*-[ReCl(N₂)(PMe₂Ph)₄] (0.294 g, 0.366 mmol) and the system stirred for 3 d giving a pale orange precipitate of complex 1 which was filtered off, washed with thf–hexane and dried *in vacuo*. Further crops of product could be obtained from the mother-liquor upon concentration and addition of hexane (total *ca.* 0.17 g, 50% yield) (Found: C, 55.2; H, 5.1; N, 2.9. Calc. for C₄₄H₄₈ClN₂P₄Re: C, 55.6; H, 5.1; N, 3.0%). IR (Nujol mull): 1944s, 1930s [ν(N≡N), split due to a solid state effect]. ¹H NMR (CD₂Cl₂): δ 8.1–6.8 (m, 30 H, C₆H₅), 1.66 [t, $\frac{1}{2}$]²J(HP_C) + ⁴J(HP_C)| = 2.8, 6 H, P_C(CH₃)₂Ph], 1.62 [t, $\frac{1}{2}$]²J(HP_C) + ⁴J(HP_C)| = 2.9, 6 H, P_C(CH₃)₂Ph] and 1.26 [d, ²J(HP_B) = 7.6 Hz, 6H, P_B(CH₃)₂Ph]. ³¹P-{¹H} NMR (CD₂Cl₂): δ −28.39 [t, ²J(P_CP_B) ≈ ²J(P_CP_A) ≈ 22, 2P_CMe₂Ph], −28.54 [dt, ²J(P_BP_A) = 253.1, ²J(P_BP_C) = 17.5, P_BMe₂Ph] and −119.71 [dbrt, ²J(P_AP_B) = 253.8, ²J(P_AP_C) = 24 Hz, P_APhCPhC=CPh].

mer-[ReCl(N₂)(PPhCPh=CPh)(PMePh₂)₃] **1b.** The compound PPhCPh=CPh (0.057 g, 0.20 mmol) was added to a thf (40 cm³) solution of *trans*-[ReCl(N₂)(PMePh₂)₄] (0.20 g, 0.20 mmol) and the solution stirred for 2 d. Concentration *in vacuo* followed by addition of pentane led to the precipitation of complex **1b** as a dark yellow solid which was filtered off, washed with thf–pentane and dried *in vacuo*. Further product could be obtained from the mother-liquor upon concentration and addition of pentane (total *ca.* 0.080 g, 40% yield). (Found: C, 61.8; H, 4.4; N, 2.4. Calc. for C₅₉H₅₄ClN₂P₄Re: C, 62.3; H, 4.8; N, 2.5%). IR (KBr pellet): 1940s [ν (N=N)]. ¹H NMR (CDCl₃): δ 7.51–6.78 (m, 45 H, C₆H₅), 1.88 [s, br, 3 H, P_B(CH₃)Ph₂] and 1.65 [s, br, 6 H, 2P_C(CH₃)Ph₂]. ³¹P-{¹H}NMR (CDCl₃): δ -26.70 (s, br, 2P_CMePh₂), -30.83 [d, ²J(P_BP_A)≈ 240, P_BMePh₂] and -131.10 [d, ²J(P_AP_B)≈ 240 Hz, P_APhCPh=CPh].

[ReBr(NNPh)₂(PPhCPh=CPh)₂(PPh₃)] 2. The compound PPhCPh=CPh (60 mg, 0.21 mmol) was added to a suspension of [ReBr₃(NNPh)(PPh₃)₂] (0.20 g, 0.19 mmol) in thf (60 cm³) and the system heated to reflux during 2 d forming a dark orange solution which was then concentrated in vacuo until ca. 10 cm³. Pentane was added and complex 2 precipitated as an orange solid which was filtered off, washed with a mixture of thf and pentane, dried in vacuo and recrystallised from CH₂Cl₂-Et₂O (ca. 0.050 g, 20% yield) (Found: C, 63.1; H, 4.1; N, 3.9. Calc. for C₇₀H₅₅BrN₄P₃Re·0.25CH₂Cl₂: C, 63.3; H, 4.2; N, 4.2%). IR (KBr pellet): 1660m, 1560m [v(NN)]. ¹H NMR (CDCl₃): δ 7.71–6.64 (m, C₆H₅). ³¹P-{¹H} NMR (CDCl₃) (2 isomers, the ³¹P resonances of the dominant one being given in italics): $\delta 5.68$ and 3.63 [t, ${}^2J(P_BP_A) = 14$, P_BPh_3], -144.43 and -147.85 [d, ${}^{2}J(P_{B}P_{A}) = 14$ Hz, $P_{A}PhCPh=CPh$]. Concentration in vacuo of the mother-liquor, followed by addition of pentane, led to precipitation of the known 19 complex [ReBr₂(NNPh)₂-(PPh₃)₂] as a red crystalline solid which was filtered off, washed with Et₂O and dried in vacuo (ca. 15% yield).

Acknowledgements

This work has been partially supported by the PRAXIS XXI programme, the Junta Nacional de Investigação Científica e Tecnológica (JNICT) and the Foundation for Science and Technology (FCT) (Portugal), and the Treaty of Windsor programme (The Portuguese Council of Rectors/The British Council).

References

- 1 F. Mathey, Chem. Rev., 1990, 90, 997.
- 2 F. Mathey and M. Regitz, Comprehensive Heterocyclic Chemistry, Pergamon, Oxford, 1996.
- 3 K. B. Dillon, F. Mathey and J. F. Nixon, *Phosphorus: The Carbon Copy*, Wiley, New York, 1998.
- 4 F. Mercier, B. Deschamps and F. Mathey, *J. Am. Chem. Soc.*, 1989, 111, 9098
- 5 A. Marinetti, F. Mathey, J. Fischer and A. Mitschler, J. Am. Chem. Soc., 1982, 104, 4484.
- 6 A. Marinetti and F. Mathey, J. Am. Chem. Soc., 1985, 107, 4700.
- 7 S. S. Al-Juaid, D. Carmichael, P. B. Hitchcock, S. Lochschmidt, A. Marinetti, F. Mathey and J. F. Nixon, J. Chem. Soc., Chem. Commun., 1988, 1156.
- 8 A. Marinetti and F. Mathey, Tetrahedron Lett., 1987, 28, 5021.
- A. Espinosa Ferao, B. Deschamps and F. Mathey, *Bull. Soc. Chim. Fr.*, 1993, 130, 695.
- 10 A. Marinetti, J. Fischer and F. Mathey, J. Am. Chem. Soc., 1985, 107, 5001.
- 11 D. Carmichael, P. B. Hitchcock, J. F. Nixon, F. Mathey and A. Pidcock, *J. Chem. Soc.*, *Chem. Commun.*, 1986, 762.
- 12 D. Carmichael, P. B. Hitchcock, A. Marinetti, F. Mathey and J. F. Nixon, *J. Chem. Soc.*, *Dalton Trans.*, 1991, 905.
- 13 F. A. Ajulu, D. Carmichael, P. B. Hitchcock, F. Mathey, M. F. Meidine, J. F. Nixon, L. Ricard and M. L. Riley, J. Chem. Soc., Chem. Commun., 1992, 750.
- 14 D. Carmichael, P. B. Hitchcock, F. Mathey, J. F. Nixon and L. Ricard, *J. Chem. Soc.*, *Dalton Trans.*, 1993, 1811.
- 15 M. Hidai and Y. Mizobe, Chem. Rev., 1995, 95, 1115; J. Chatt, J. R. Dilworth and R. L. Richards, Chem. Rev., 1978, 78, 589;
 D. J. Evans, R. A. Henderson and B. E. Smith, in Bioinorganic Catalysis, ed. J. Reedijk, Marcel Dekker, New York, 1993, p. 89;
 G. J. Leigh, Acc. Chem. Res., 1992, 25, 177; R. L. Richards, in Biology and Biochemistry of Nitrogen Fixation, eds. M. J. Dilworth and A. R. Glenn, Elsevier, Amsterdam, 1991, p. 58; A. J. L.

- Pombeiro, in *New Trends in the Chemistry of Nitrogen Fixation*, eds. J. Chatt, L. M. Câmara Pina and R. L. Richards, Academic Press, New York, 1980, ch. 6, p. 153; R. A. Henderson, G. J. Leigh and C. J. Pickett, *Adv. Inorg. Chem.*, 1983, **27**, 197.
- 16 D. Sutton, Chem. Rev., 1993, 93, 995; B. F. G. Johnson, B. L. Haymore and J. R. Dilworth, in Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 2, ch. 13.3, p. 99.
- 17 (a) A. J. L. Pombeiro, P. B. Hitchcock and R. L. Richards, J. Chem. Soc., Dalton Trans., 1987, 319; (b) A. J. L. Pombeiro, P. B. Hitchcock and R. L. Richards, Inorg. Chim. Acta, 1983, 76, L225; (c) M. F. N. N. Carvalho, A. J. L. Pombeiro, U. Schubert, O. Orama, G. J. Pickett and R. L. Richards, J. Chem. Soc., Dalton Trans., 1985, 2079; (d) M. F. N. N. Carvalho and A. J. L. Pombeiro, J. Organomet. Chem., 1990, 384, 121.
- 18 (a) G. J. Leigh, R. H. Morris, C. J. Pickett and D. R. Stanley, J. Chem. Soc., Dalton Trans., 1981, 800; (b) J. Chatt, J. R. Dilworth and G. J. Leigh, ibid., 1973, 612.
- 19 M. T. A. R. S. da Costa, J. R. Dilworth, M. T. Duarte, J. J. R. Fraústo da Silva, A. M. Galvão and A. J. L. Pombeiro, J. Chem. Soc., Dalton Trans., 1998, 2405.
- 20 J. Chatt, R. H. Crabtree, J. R. Dilworth and R. L. Richards, J. Chem. Soc., Dalton Trans., 1974, 2358.
- 21 A. J. L. Pombeiro, J. Chatt and R. L. Richards, J. Organomet. Chem., 1980, 190, 297.
- 22 T. Nicholson, N. de Vries, A. Davison and A. G. Jones, *Inorg. Chem.*, 1989, 28, 3813.
- 23 A. B. P. Lever, *Inorg. Chem.*, (a) 1990, **29**, 1271; (b) 1991, **30**, 1980.
- 24 J. Chatt, C. T. Kan, G. J. Leigh, C. J. Pickett and D. R. Stanley, J. Chem. Soc., Dalton Trans., 1980, 2032.
- 25 S. Lochschmidt, F. Mathey and A. Schmidpeter, *Tetrahedron Lett.*, 1986, 27, 2365.

Paper 9/06238F