Synthesis and crystal structures of tellurium complexes containing imidophosphinate ligands

David J. Birdsall,^a Josef Novosad,^b Alexandra M. Z. Slawin^a and J. Derek Woollins *^a

^a Department of Chemistry, University of St Andrews, St Andrews, Fife, UK KY16 9ST. E-mail: J.D. Woollins@st-andrews.ac.uk

^b Department of Chemistry, Masaryk University, Czech Republic

Received 10th September 1999, Accepted 22nd December 1999

The synthesis of TeL₂ complexes for a variety of imidophosphinate ligands $[R_2(E)PNP(E)R'_2]^-$ (E = S or Se) is described. The crystal structures of five examples are reported. Generally the complexes adopt square planar geometries but in one case [R = Et, R' = OPh] two-coordinate geometry is observed. It appears that electronic effects are more important in controlling geometry than steric effects. Two examples of five-coordinate TeL(C₆H₄OCH₃)Cl₂ complexes have also been prepared and structurally characterised.

The coordination chemistry of $[R_2(E)PNP(E')R_2]^-$ (E = S or Se) ligands has been widely investigated and reviewed.¹⁻⁹ The first substantial investigation into the coordination chemistry of $[HN{P(S)Ph_2}_2]$ was reported in 1978 and since that time this ligand, in particular, has been coordinated with alkali metals and many of the transition metals⁸ though, with the exception of tin, main group coordination chemistry has been largely ignored. Work in which $R_2P(E)NP(E)R_2$ systems have been complexed to tellurium containing species have yielded a few complexes with a variety of geometries around the Te centre.^{10–13} It is interesting to note the ability of Te^{II} to adopt two- or four-coordinate geometries. The availability of sterically and electronically tunable S/Se donor ligands led us to investigate the coordination chemistry of a range of imidophosphinate ligands with sulfur or selenium donors with tellurium. The new compounds have been characterised spectroscopically and in several cases by X-ray crystallography.

Experimental

General

Infrared spectra were recorded from KBr discs on a Perkin-Elmer system 2000 spectrometer; ³¹P NMR spectra on a JEOL FX90Q operating at 36.21 MHz; ¹H, ¹³C and ³¹P NMR spectra on Bruker instruments operating at 250, 62.9 and 101.3 MHz respectively and referenced to TMS or 85% H₃PO₄. Fast atom bombardment mass spectra were obtained by the Swansea mass spectrometery service.

Syntheses

TeCl₃(C₆H₄OCH₃) and Te(tu)₄Cl₂·2H₂O were synthesised by literature methods.^{14,15} The ligands, ^{*i*}Pr₂P(S)NHP(S)'Pr₂, Et₂-P(S)NHP(S)(OPh)₂, (C₆H₁₁)₂P(S)NHP(S)(C₆H₁₁)₂, (EtO)₂P(S)-NHP(S)(OPh)₂, Et₂P(S)NHP(S)Ph₂, ^{*i*}Pr₂P(S)NHP(S)Ph₂ and ^{*i*}Pr₂P(Se)NHP(Se)'Pr₂ were prepared using modifications of standard synthetic procedures.^{9,16,17}

Te[N(i **Pr**₂**PS**)₂]₂ **1.** KO'Bu (0.037 g, 0.319 mmol) and i **Pr**₂-P(S)NHP(S) i **Pr**₂ (0.1 g, 0.319 mmol) were stirred in methanol (10 ml) and Te(tu)₄Cl₂·2H₂O (0.087 g 0.160 mmol) in 5 ml of methanol was added. The yellow-orange solution was stirred for 30 min. The product, a yellow precipitate, was collected

by filtration. Yield 0.115 g, 0.153 mmol, 96%. Microanalysis calculated for $C_{24}H_{56}N_2P_4S_4Te: C 38.3$; H 7.5; N 3.7. Observed: C 38.1; H 7.2; N 3.4%. ³¹P-{¹H} NMR (CDCl₃): δ 58.7. FTIR (KBr disc, cm⁻¹): ν (PNP) 1232 (s), 768 (m); ν (PS) 535 (w). FAB + ve MS: *m/z* 751 corresponds to Te[N(ⁱPr₂PS)₂]₂.

Te[N({C₆H₁₁}₂PS)₂]₂ **2.** KO'Bu (0.037 g, 0.317 mmol) and (C₆H₁₁)₂P(S)NHP(S)(C₆H₁₁)₂ (0.15 g, 0.317 mmol) were stirred in methanol (10 ml) and Te(tu)₄Cl₂·2H₂O (0.085 g 0.159 mmol) in 5 ml of methanol was added. The yellow solution was stirred for 30 min. The product, a yellow precipitate, was collected by filtration. Yield 0.115 g, 0.108 mmol, 67%. Microanalysis calculated for C₄₈H₈₈N₂P₄S₄Te: C 53.8; H 8.2; N 2.6. Observed: C 53.4; H 8.4; N 2.5%. ³¹P-{¹H} NMR (CDCl₃): δ 51.9. FTIR (KBr disc, cm⁻¹): ν(PNP) 1247 (s), 746 (w); ν(PS) 549 (w). FAB + ve MS: *m/z* 1071 corresponds to Te[N({C₆H₁₁}₂PS)₂]₂.

Te[Et₂P(S)NP(S)(OPh)₂]₂ 3. KO'Bu (0.043 g, 0.388 mmol) and Et₂P(S)NHP(S)(OPh)₂ (0.15 g, 0.388 mmol) were stirred in methanol (10 ml) and Te(tu)₄Cl₂·2H₂O (0.104 g 0.194 mmol) in 5 ml of methanol was added. The yellow-orange solution was stirred for 2 h. The volume of solvent was reduced *in vacuo* to approximately $\frac{1}{4}$. The solution was then cooled in a freezer overnight. The product, a bright yellow precipitate, was collected by filtration. Yield 0.072 g, 0.081 mmol, 41%. Microanalysis calculated for C₃₂H₄₀N₂P₄S₄O₄Te: C 42.8; H 4.5; N 3.1. Observed: C 42.4; H 4.6; N 3.1%. ³¹P-{¹H} NMR (CDCl₃): δ 55.1, 43.7, ²J(³¹P-³¹P) unresolved. FTIR (KBr disc, cm⁻¹): ν (PNP) 1187 (s), 773 (m); ν (PS) 665 (m), 581 (m). FAB +ve MS: *m*/z 897 corresponds to Te[Et₂P(S)NP(S)(OPh)₂]₂.

Te[^{**P**}**r**₂**P**(**S**)**NP**(**S**)**Ph**₂]₂ **4.** KO'Bu (0.044 g, 0.392 mmol) and Ph₂P(S)NHP(S)'Pr₂ (0.15 g, 0.392 mmol) were stirred in methanol (10 ml) and Te(tu)₄Cl₂·2H₂O (0.106 g 0.196 mmol) in 5 ml of methanol was added. The yellow-orange solution was stirred for 2 h. The volume of solvent was reduced *in vacuo* to approximately $\frac{1}{4}$. The solution was then cooled in a freezer overnight. The product, a yellow precipitate, was collected by filtration. Yield 0.085 g, 0.096 mmol, 49%. Microanalysis calculated for C₃₆H₄₈N₂P₄S₄Te: C 48.6; H 5.4; N 3.1. Observed: C 48.1; H 5.3; N 3.2%. Two isomers present. ³¹P-{¹H} NMR (CDCl₃): δ 64.3, 63.7, 32.7, 31.8, ²J(³¹P-³¹P) 22.5 Hz. FTIR (KBr disc, cm⁻¹): ν(PNP) 1232 (s), 777 (m); ν(PS) 520 (s). FAB +ve MS: *mlz* 889 corresponds to Te[^{**P**}P₂P(S)NP(S)Ph₂]₂.

J. Chem. Soc., *Dalton Trans.*, 2000, 435–439 435

Te[Et₂P(S)NP(S)Ph₂]₂ 5. KO'Bu (0.040 g, 0.425 mmol) and Et₂P(S)NHP(S)Ph₂ (0.15 g, 0.425 mmol) were stirred in methanol (10 ml) and Te(tu)₄Cl₂·2H₂O (0.114 g, 0.212 mmol) in 5 ml of methanol was added. The yellow solution was stirred for 2 h. The volume of solvent was reduced *in vacuo* to approximately $\frac{1}{4}$. The solution was then cooled in a freezer overnight. The product, a yellow precipitate, was collected by filtration. Yield 0.095 g, 0.114 mmol, 65%. Microanalysis calculated for C₃₂H₄₀N₂P₄S₄Te: C 46.2; H 4.8; N 3.3. Observed: C 45.7; H 4.9; N 2.8%. Two isomers present. ³¹P-{¹H} NMR (CDCl₃): δ 53.7, 53.3, 33.9, 32.7, ²J(³¹P-³¹P) unresolved. FTIR (KBr disc, cm⁻¹): ν (PNP) 1250 (s), 753 (m); ν (PS) 653 (w), 558 (w). FAB +ve MS: *mlz* 834 corresponds to Te[Et₂P(S)NP(S)Ph₂]₂.

Te[(EtO)₂P(S)NP(S)(OPh)₂]₂ 6. KO'Bu (0.028 g, 0.240 mmol) and (EtO)₂P(S)NHP(S)(OPh)₂ (0.10 g, 0.239 mmol) were stirred in methanol (10 ml) and Te(tu)₄Cl₂·2H₂O (0.065 g 0.120 mmol) in 5 ml of methanol was added. The yellow-orange solution was stirred for 2 h. The volume of solvent was reduced *in vacuo* to approximately 1/2. The product, a bright yellow precipitate, was collected by filtration. Yield 0.082 g, 0.085 mmol, 72%. Microanalysis calculated for C₃₂H₄₀N₂P₄S₄O₈Te: C 39.9; H 4.2; N 2.9. Observed: C 40.0; H 4.3; N 1.8%. ³¹P-{¹H} NMR (CDCl₃): δ 65.0, 43.0, ²J(³¹P-³¹P) unresolved. FTIR (KBr disc, cm⁻¹): ν(PNP) 1184 (s), 768 (m); ν(PS) 553 (w). FAB +ve MS: *m*/z 542 corresponds to Te(EtO)₂P(S)NP(S)(OPh)₂.

Te[**N**(**'Pr₂PSe)₂**]₂ **7.** KO'Bu (0.043 g, 0.369 mmol) and ⁱPr₂-P(Se)NHP(Se)ⁱPr₂ (0.15 g, 0.369 mmol) were stirred in methanol (10 ml) and Te(tu)₄Cl₂·2H₂O (0.099 g 0.185 mmol) in 5 ml of methanol was added. The yellow-orange solution was stirred for 3 h. The volume of solvent was reduced *in vacuo* to approximately $\frac{1}{4}$. The product, a yellow precipitate, was collected by filtration. Yield 0.107 g, 0.114 mmol, 62%. Microanalysis calculated for C₂₄H₅₆N₂P₄Se₄Te: C 30.7; H 5.9; N 2.9. Observed: C 30.3; H 5.9; N 2.9%. ³¹P-{¹H} NMR (CDCl₃): δ 58.7, ¹J(⁷⁷Se-³¹P) 528 Hz. FTIR (KBr disc, cm⁻¹): ν(PNP) 1231 (s), 761 (w); ν(PSe) 484 (s). FAB + ve MS: *m*/*z* 534 corresponds to TeN(ⁱPr₂PS)₂.

Te(C₆H₄OCH₃)[N(Pr₂PS)₂]Cl₂ **8.** KO'Bu (0.054 g, 0.482 mmol) and 'Pr₂P(S)NHP(S)'Pr₂ (0.15 g, 0.480 mmol) were stirred in methanol (10 ml) and TeCl₃(C₆H₄OCH₃) (0.162 g 0.480 mmol) in 3 ml of methanol was added. The yellow solution was stirred for 30 min. The product, a bright yellow precipitate, was collected by filtration. Yield 0.215 g, 0.348 mmol, 73%. Microanalysis calculated for C₁₉H₃₅NP₂S₂TeCl₂O: C 36.9; H 5.8; N 2.2. Observed: C 36.7; H 5.4; N 1.3%. ³¹P-{¹H} NMR (CDCl₃): δ 62.0. FTIR (KBr disc, cm⁻¹): ν(PNP) 1236 (s), 761 (m); ν(PS) 523 (w), ν(TeS) 325 (w). FAB +ve MS: *mlz* 584 corresponds to CH₃OC₆H₄Te[N('Pr₂PS)₂](Cl)₂ – Cl.

Te(C₆H₄OCH₃)[[†]Pr₂P(S)NP(S)Ph₂](Cl)₂ 9. KO'Bu (0.044 g, 0.393 mmol) and [†]Pr₂P(S)NHP(S)Ph₂ (0.15 g, 0.393 mmol) were stirred in methanol (5 ml) and TeCl₃(C₆H₄OCH₃) (0.134 g, 0.393 mmol) in 3 ml of methanol was added. The yellow solution was stirred for 20 min. The product, a yellow precipitate, was collected by filtration. Yield 0.085 g, 0.124 mmol, 32%. Microanalysis calculated for C₂₅H₃₁NP₂S₂TeCl₂O: C 43.7; H 4.5; N 2.0. Observed: C 42.5; H 4.5; N 1.8%. ³¹P-{¹H} NMR (CDCl₃): δ 69.2, 34.5, ²J(³¹P-³¹P) 24.9 Hz. FTIR (KBr disc, cm⁻¹): v(PNP) 1255 (s), 780 (w); v(PS) 569 (m), v(TeS) 379 (w). FAB + ve MS: *m*/z 651 corresponds to CH₃OC₆H₄Te[[†]Pr₂P(S)NP(S)Ph₂]-(Cl)₂ – Cl.

Crystallography

Details of the data collections and refinements are summarised in Table 1. Data were collected at room temperature using Mo radiation with a SMART system. Intensities were corrected

Compound	1	2.1.5CHCl ₃	3	4	L	×	6
Empirical formula Formula weight Space group /Å /Å /Å /Å	C ₂₄ H ₅₆ N ₂ P ₄ S ₄ Te 752.43 Monoclinic P2 ₄ (c 10.4727(2) 14.5022(3) 11.9760(2) 100.1450(10)	C _{49.5} H _{89.5} Cl _{4.5} N ₂ P ₄ S ₄ Te 1251.998 Triclinic \vec{P}_1 10.4307(3) 11.4307(3) 114.403(3) 114.9400(10) 108.6960(10)	C ₂₂ H ₄₆ N ₂ O ₄ P ₄ S ₄ Te 896.38 Monoclinic C2 <i>lc</i> 22.7944(11) 11.8286(5) 30.2546(14) 103.0180(10)	C ₃₆ H ₄₈ N ₂ P ₄ S ₄ Te 888.48 Monoclinic P2 ₁ /c 9.7117(7) 11.9430(8) 18.4530(11) 104.162(2)	C ₄₄ H ₅₆ N ₂ P ₄ Se ₄ Te 940.03 Monoclinic P24(c 10.4104(7) 14.7541(11) 12.1815(8) 98.739(2)	C ₁₉ H ₃₅ Cl ₂ NOP ₂ S ₂ Te 618.04 Monoclinic P ₂₁ 9.1666(3) 11.1730(4) 13.5041(4) 100.1440(10)	C ₂₅ H ₃₁ Cl ₂ NOP ₂ S ₂ Te 686.07 Orthorhombic P2 ₁ 2 ₁₂₁ 13.4268(2) 14.0714(4) 15.05035(4)
η^{o} $V[\hat{A}]^{3}$ Z $D_{o}^{2}g \mathrm{cm}^{-3}$ $dimm^{-1}$ Measured reflections independent observed, reflections $(I > 2.0\sigma(I))$ Final $R1/wR2$	1790.44(6) 2 1.396 1.260 7664 2332 0.0368/0.0882	89.7000(10) 1623.86(6) 1.278 0.900 4623 3454 0.0545/0.1305	7957.8(6) 8 1.498 1.157 5721 3895 0.0323/0.0599	2076.4(2) 2 1.421 1.099 2.974 1.530 0.0474/0.0765	1849.3(2) 2 1.688 4.931 2660 1955 0.0249/0.0425	1361.45(8) 2 1.508 1.571 3592 3599 0.0232/0.0599	2929.14(12) 4 1.556 1.469 4216 2666 2666 0.0573/0.1119

Details of the crystal data and refinements

Table 1

Table 2Selected bond lengths (Å) and angles (°) for 1, 2, 3, 4 and 7

	1	2	3	4	7 (S = Se)
Te(1)–S(1)	2.6730(6)	2.6971(12)	2.5267(11)	2.678(2)	2.8152(4)
Te(1)-S(2)	2.6978(6)	2.6820(13)	2.91	2.684(2)	2.7941(4)
Te(1)-S(3)			2.5131(12)		
Te(1)-S(4)			2.90		
S(1)–P(1)	2.0354(8)	2.046(2)	2.046(2)	2.022(2)	2.1944(10)
S(3)–P(3)			2.053(2)		
P(1)–N(1)	1.583(2)	1.584(4)	1.580(3)	1.589(5)	1.579(3)
P(3)–N(3)			1.567(3)		
N(1)–P(2)	1.584(2)	1.594(4)	1.558(3)	1.593(5)	1.588(3)
N(3)–P(4)			1.576(3)		
P(2)-S(2)	2.0363(8)	2.045(2)	1.962(2)	2.032(2)	2.1888(11)
P(4)–S(4)			1.968(2)		
S(1)-Te(1)-S(2)	87.21(2)	90.67(4)		85.69(6)	87.159(12)
Te(1)-S(1)-P(1)	100.84(3)	101.11(6)	103.7(5)	94.72(9)	98.15(3)
S(1) - P(1) - N(1)	118.66(7)	117.7(2)	117.57(12)	119.8(2)	118.98(12)
P(1)-N(1)-P(2)	142.93(12)	145.3(3)	142.2(2)	138.8(8)	145.1(2)
N(1)-P(2)-S(2)	117.04(7)	118.7(2)	120.98(13)	118.9(2)	116.90(12)
P(2)-S(2)-Te(1)	96.27(3)	102.98(6)		101.51(9)	93.22(3)

for Lorentz-polarisation and for absorption. The structures were solved by the heavy atom method or by direct methods. The positions of the hydrogen atoms were idealised. Refinements were by full-matrix least squares based on F^2 using SHELXTL.¹⁸ The chirality of **9** was established by the Flack parameter (-0.06(4)).

CCDC reference number 186/1793.

See http://www.rsc.org/suppdata/dt/a9/a907336a/ for crystallographic files in .cif format.

Results and discussion

Te(tu)₄Cl₂ was reacted in a 1:2 molar ratio with a number of imidophosphinates $R_2P(E)NHP(E)R'_2$, to give the desired bis(imidophosphinate) complexes 1–7 (eqn. (1)). Reactions were

$$Te(tu)_{4}Cl_{2} \cdot 2H_{2}O + 2HL \xrightarrow{2K'BuO}_{MeOH} TeL_{2}$$
(1)

carried out in methanol with K'BuO used as the base to deprotonate the ligand.

The desired products were deposited as yellow solids after refrigeration overnight. Significant yields (41–96%) of high purity materials were isolated by this route. The materials are stable in the solid state when stored under argon with the exclusion of daylight. Satisfactory elemental analyses, IR spectra, ¹H and ³¹P NMR spectra and FAB +ve mass spectra were obtained for each complex.

The ³¹P NMR spectra of **1** and **2** contain a single peak (as predicted for a symmetric ligand) at δ 58.7 and 51.9 respectively with the characteristic downfield shift of *ca.* 30 ppm which results from deprotonation of the free ligand.⁷ Their IR spectra are also indicative of a complex in which the ligand is deprotonated and consistent with delocalisation around an SNPNSM ring; *e.g.* the *v*(P–S) vibration in **1** (535 cm⁻¹) reflects a reduced P–S bond relative to the free ligand (*v*(P=S) 646 cm⁻¹), whilst the *v*(PNP) vibration in **1** (1232 cm⁻¹) indicates an increase in P–N bond order over the free ligand (*v*(PNP) = 960 cm⁻¹).

The complexes formed with unsymmetrical ligands $R_2P(S)$ -NHP(S)R'₂ offer the potential for the formation of *cis* and *trans* isomers (if the tellurium adopts a square planar geometry). The ³¹P NMR spectrum of **4** is consistent with the production of both species and clearly shows two sets of doublets with very similar ²J(³¹P-³¹P) couplings of 22.5 Hz. The free ligand has a higher ²J(³¹P-³¹P) coupling of 30.8 Hz, which probably reflects the change in P–N–P angle/electronic delocalisation between the 'free ligand' and the complexed anions.

The solid-state structures of 1, 2 and the (preferentially

crystallized) *trans* isomer of **4** show (Table 2, Fig. 1) that the TeS_2P_2N rings adopt pseudo-chairlike conformations similar to those reported for some Pt(II) and Pd(II) complexes.⁸ In all three complexes the S–P–N–P–S ligand is approximately planar and inclined to the coordination plane by 113, 119 and 110° for **1**, **2** and **4** respectively.

The room temperature ³¹P NMR spectrum for **3** contains two broad peaks at δ 55.1 and 43.7. This suggests some sort of fluxional process within the complex, variable temperature experiments resulted in decomposition of the complex. The IR spectrum of **3** suggests both P=S (665 cm⁻¹) and P–S (581 cm⁻¹) bonds are present in the solid state.

Recent work suggests the presence of long range S...Te contacts in a number of mixed chalcogen containing systems.19-21 The solid state structure of 3 (Fig. 2) reveals two-cordinate or 'pseudo-four-coordinate' behaviour; the Te(1)-S(1) and Te(1)-S(3) distances are 2.5267(11) and 2.5131(12) Å respectively with the Te(1)-S(2) and Te(1)-S(4) contacts being considerably longer (≈ 2.9 Å). The bond lengths in the SPNPS ring of 3 suggest that the negative charge is localised on the tellurium bound sulfur; P(4)-S(4) is 1.968(2) Å, typical for P=S while the bonded P(1)-S(1) is longer at 2.046(2) Å indicating a bond order lower than 2. Including all four sulfur atoms the geometry about tellurium is distorted square planar. The two pendant sulfur atoms are attached to the OPh substituted phosphorus atoms whilst the coordinated sulfur atoms are closest to Et substituents. The OPh groups are not as sterically demanding as the cyclohexyl substituents in 2 which is four-coordinate. It can be concluded that the electronic nature of the R groups is more significant in affecting coordination number/fluxionality in these complexes than the steric requirements of the phosphorus substituents.

Compounds 5 (R = Et, R' = Ph) and 6 (R = OPh, R' = OEt) display similar NMR properties to those of 3 and we were able to observe v(P=S) (653 cm⁻¹) and v(P-S) (558 cm⁻¹) bands in the IR spectrum for 5 but only one v(P-S) vibration (553 cm⁻¹) for 6, though crystals suitable for X-ray diffraction studies could not be obtained in these cases.

A tellurium complex of the selenium donor ligand NH(${}^{i}Pr_{2}$ -PSe)₂]₂ was synthesised to assess the influence of the donor atom type on structure. This complex was readily prepared but found to be very light sensitive. The ³¹P NMR spectrum for 7 indicates the presence of only one phosphorus containing species, which was characterised as the bis chelate complex TeL₂. The IR spectrum shows one ν (P–Se) band at 484 cm⁻¹ which compares well with related diselenoimidophosphinate systems where the ligand is deprotonated at the amine.¹¹

The solid state structure of 7 (Fig. 3) is similar in most

Fig. 1 Solid state structures of (a) 1, (b) 2 and (c) *trans* isomer of 4.

respects to those formed with sulfur donor ligands. The tellurium is square planar and the $\text{TeSe}_2\text{P}_2\text{N}$ rings again adopt the pseudo chair conformations (the Se–P–N–P–Se ligand is inclined by 110° to the coordination plane). The ³¹P NMR spectrum of 7 consists of one sharp peak with Se satellites, indicating that the complex is stable in solution.

A number of Te_2L_2 dimer species have been reported in the literature,¹⁰ where $\text{L} = \text{Ph}_2\text{P}(\text{S})\text{NHP}(\text{S})\text{Ph}_2$. Here $\text{TeCl}_3(\text{C}_6\text{H}_4\text{-}\text{OCH}_3)$ was reacted in a 1:1 molar ratio with the deprotonated imidophosphinate ligands in attempts to investigate the generality of the reaction, however substitution of a chloride ligand by a bidentate imidophosphinate ligand according eqn.

Fig. 3 Solid state structure of 7.

Table 3Selected bond lengths (Å) and angles (°) for 8 and 9

	8	9
Te(1)–S(1)	2.5987(10)	2.669(3)
Te(1)-S(2)	2.6227(10)	2.603(3)
Te(1)-Cl(1)	2.5501(11)	2.505(3)
Te(1)-Cl(2)	2.5293(11)	2.510(3)
Te(1)-C(13)	2.134(4)	2.147(11)
S(1) - P(1)	2.0615(14)	2.029(4)
P(1) - N(1)	1.580(3)	1.558(9)
N(1) - P(2)	1.580(3)	1.599(9)
P(2) - S(2)	2.041(2)	2.015(4)
S(1) - Te(1) - S(2)	89.94(4)	91.39(12)
S(1) - Te(1) - C(13)	87.81(12)	84.4(3)
Cl(1)-Te(1)-Cl(2)	91.42(4)	91.23(14)
Cl(1) - Te(1) - C(13)	88.40(12)	89.2(3)
Te(1)-S(1)-P(1)	98.28(4)	93.50(13)
S(1) - P(1) - N(1)	115.74(14)	117.9(4)
P(1) - N(1) - P(2)	144.3(2)	139.0(6)
N(1)-P(2)-S(2)	115.25(14)	117.2(4)
P(2)-S(2)-Te(1)	97.97(5)	98.5(2)

(2) occurs instead. Satisfactory ¹H NMR spectra and elemental

$$\text{TeCl}_{3}(\text{C}_{6}\text{H}_{4}\text{OCH}_{3}) + \text{HL} \xrightarrow{\text{K'BuO}} \text{TeLCl}_{2}(\text{C}_{6}\text{H}_{4}\text{OCH}_{3}) \quad (2)$$

analyses were obtained for these compounds. The FAB +ve mass spectra for both 8 and 9 do not show the parent ion peaks, but peaks due to the loss of one, then two chlorides in each case.

The ³¹P NMR spectrum of **8** is a singlet at δ 62.0 consistent with deprotonation of the ligand. Compound **9** gives a characteristic pair of doublets [²J(³¹P–³¹P) = 24.9 Hz] indicating the presence of only one phosphorus containing species whilst the anticipated dimer structure has two potential isomeric forms.

Single crystal X-ray diffraction experiments identified **8** and **9** (Table 3, Fig. 4) as five-coordinate tellurium(IV) species with square based pyramidal geometry about the tellurium atom. The TeS₂Cl₂ geometry is very near to perfect square planar in

Fig. 4 Solid state structure of (a) 8 and (b) 9.

both structures with the S-P-N-P-S ligand backbone being almost planar and inclined by 109 and 108° in 8 and 9 respectively. The phenyl ring of the CH₃OC₆H₄ group is perpendicular to the TeS₂Cl₂ plane and bisects the S(1)–Te(1)–S(2) plane. The OCH₃ substituent has the opportunity to occupy two sites *i.e.* on the same side as (8) or opposite side to (9) the chloride ligands. There are no significant intermolecular interactions in the structure of 8 but there is a weak $O(16) \cdots Cl(2')$ interaction [3.61 Å] in ion 9.

Acknowledgements

We are grateful to the JREI for an equipment grant and to Zeneca for support.

References

- 1 G. P. McQuillan and I. A. Oxton, Inorg. Chim. Acta, 1978, 29, 69.
- 2 M. Rietzel, H. W. Roesky, K. V. Katti, M. Noltemeyer, M. C. R. Symons and A. Abu-Raqabah, J. Chem. Soc., Dalton Trans., 1991, 1285
- 3 M. Rietzel, H. W. Roesky, K. V. Katti, H.-G. Schmidt, R. Herbst-Irmer, M. Noltemeyer, M. C. R. Symons and A. Abu-Raqabah, J. Chem. Soc., Dalton Trans., 1990, 2387.
- 4 T. Q. Ly, F. E. Mabbs, A. M. Z. Slawin and J. D. Woollins, Inorg. Chem. Commun., 1998, 1, 143.
- 5 M. R. Churchill and J. Wormald, *Inorg. Chem.*, 1971, **10**, 1778.
- 6 C. S. Browning, D. H. Farrar and D. C. Frankel, Inorg. Chim. Acta, 1996, **241**, 111.
- 7 S. W. Magennis, S. Parsons, A. Corval, J. D. Woollins and Z. Pikramenou, Chem. Commun., 1999, 61.
- 8 J. D. Woollins, J. Chem. Soc., Dalton Trans., 1998, 2893.
- 9 D. Cupertino, R. Keyte, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, Polyhedron, 1996, 15, 4441.
- 10 S. Husebye, K. Maartmann-Moe and O. Mikalsen, Acta Chem. Scand., 1990, 44, 802.
- 11 S. Bjkornevag, S. Husebye and K. Maartmann-Moe, Acta Chem. Scand., 1982, A36, 195.
- 12 J. Novosad, S. V. Lindemanm, J. Marek, S. Husebye and J. D. Woollins, J. Heteroatom Chem., 1998, 9, 615.
- 13 J. Novosad, K. W. Törnroos, M. Necas, A. M. Z. Slawin, J. D. Woollins and S. Husebye, *Polyhedron*, 1999, 18, 2861.
 G. T. Morgan and R. E. Kellet, *J. Chem. Soc.*, 1926, 1081.
- 15 O. Foss and S. Hauge, Acta Chem. Scand., 1961, 15, 1616.
- 16 P. Bhattacharyya, J. Novosad, J. Phillips, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., Dalton Trans., 1995, 1607.
- 17 D. Cupertino, D. J. Birdsall, A. M. Z. Slawin and J. D. Woollins, *Inorg. Chim. Acta*, 1999, **290**, 1.
 18 SHELXTL 5.1, Bruker AXS, Madison, WI, 1999.
- 19 J. E. Drake, A. Silvestru, J. Yang and I. Haiduc, Inorg. Chim. Acta, 1998, 271, 75.
- 20 A. Silvestru, I. Haiduc, R. A. Toscano and H. J. Breunig, Polyhedron, 1995, 14, 2047.
- 21 V. Garcia-Montalvo, J. Novosad, P. Kilian, J. D. Woollins, A. M. Z. Slawin, P. Garcia y Garcia, M. Lopez-Cardoso, G. Espinosa-Perez and R. Cea-Olivares, J. Chem. Soc., Dalton Trans., 1997, 1025.

Paper a907336a