The structural pathways of (dipicolylamine)dinitratocopper(II): an example of the uncommon see-saw stereochemistry

Mallayan Palaniandavar, ${ }^{a}$ Sethuraman Mahadevan, ${ }^{,}$Martin Köckerling ${ }^{b}$ and Gerald Henkel ${ }^{b}$
${ }^{a}$ Department of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India. E-mail: palani@bdu.ernet.in
${ }^{b}$ Institut für Synthesechemie, Gerhard-Mercator-Universität, Lotharstr 1, D-47057, Duisburg, Germany

Received 12th October 1999, Accepted 8th February 2000

Abstract

The dark blue complex $\left[\mathrm{Cu}(\right.$ dipica $\left.)\left(\mathrm{NO}_{3}\right)_{2}\right]$ (dipica $=$ dipicolylamine, bis(2-pyridylmethyl)amine) has been isolated and characterized by single crystal X-ray crystallography. The five-co-ordinate $\mathrm{CuN}_{3} \mathrm{O}_{2}$ chromophore is located in a general position and involves a planar tridentate co-ordination of the dipica nitrogen atoms with short $\mathrm{Cu}-\mathrm{N}_{\mathrm{py}}$ [1.965(4), 1.970(5) \AA] and $\mathrm{Cu}-\mathrm{N}_{\text {amine }}[1.973(6) \AA$ A distances. Both the nitrate ions are co-ordinated in a plane almost perpendicular (90.15°) to the CuN_{3} plane with slightly different $\mathrm{Cu}-\mathrm{O}$ distances $[\mathrm{Cu}-\mathrm{O}(1), 2.153(4) ; \mathrm{Cu}-\mathrm{O}(4)$, $2.148(4) \AA$ § and a $\mathrm{O}(1) \mathrm{CuO}(4)$ angle of 78.4°. The value of the trigonal index τ of $0.33\left[\left(a_{8}-a_{1}\right) / 60\right.$, where $a_{8}=$ $\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 1$ and $\left.a_{1}=\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 3\right]$ suggests that the structure is best described as trigonal bipyramidal distorted square based pyramidal (TBDSBP). Two further remote oxygen atoms of the nitrato ligands are semi-co-ordinated in the $\mathrm{CuO}(1) \mathrm{O}(4)$ plane with much longer $\mathrm{Cu}-\mathrm{O}^{\prime}$ distances $[\mathrm{Cu}-\mathrm{O} 2,2.698(4) ; \mathrm{Cu}-\mathrm{O} 6,2.870(4) \AA$] so that the complex may be considered alternatively to possess a near seven-co-ordinate $\mathrm{CuN}_{3} \mathrm{O}_{2} \mathrm{O}^{\prime}{ }_{2}$ chromophore. According to the Structural Pathway of the vibronic coupling model the five-co-ordinate structure is then best described as an extreme see-saw structure which is best understood in terms of a distortion of the regular five-co-ordinate trigonal bipyramidal stereochemistry involving a $-\mathrm{A}+\mathrm{B}$ route distortion. With an $\mathrm{O}(1) \mathrm{CuO}(4)$ angle of 78.4° this structure is the most extreme example known of the uncommon see-saw stereochemistry of the copper(II) ion.

Introduction

Five-co-ordinate copper(II) complexes have elicited much interest ${ }^{1,2}$ as they display varying co-ordination geometries. More recently a wide range of distorted forms of the cations $\left[\mathrm{Cu}(\text { bipy })_{2} \mathrm{Cl}\right]^{+}$(bipy $=2,2^{\prime}$-bipyridyl), ${ }^{3}\left[\mathrm{Cu}(\text { phen })_{2} \mathrm{Cl}\right]^{+}{ }^{4}{ }^{4}[\mathrm{Cu}-$ (phen) $\left.)_{2} \mathrm{Br}\right]^{+5}$ and $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+6} \quad$ (phen $=1,10$-phenanthroline) have been recognized. In these series the basic five-co-ordinate stereochemistry is clearly intermediate between square based pyramidal and trigonal bipyramidal depending on the anion present and illustrates intermediate forms, each with a static local molecular stereochemistry, in the mechanistic pathway of the Berry Twist ${ }^{7}$ from a regular trigonal bipyramidal (RTBP) to a regular square pyramidal stereochemistry (RSBP). The concept of a structural pathway for these complexes has been developed ${ }^{3}$ recently to describe these structures in terms of a vibrational coupling model. ${ }^{8}$ Thus the structural pathways of the five-co-ordinate $\left[\mathrm{Cu}(\text { bipy })_{2} \mathrm{Cl}\right] \mathrm{Y}$ series of complexes 1 (Fig. 1) have been reported using eighteen structures. ${ }^{9}$ In the distortion of RTBP to RSBP stereochemistry the modes of vibration of the in-plane $\mathrm{CuN}_{2} \mathrm{Cl}$ portion of the chromophore involved are $v_{\text {sym }}{ }^{\text {str }}, v_{\text {sym }}{ }^{\text {bend }}, v_{\text {asym }}{ }^{\text {str }}$ and $v_{\text {asym }}$ bend (Fig. 1). These senses of distortion can conveniently be described in terms of the $\pm \mathrm{A}$ and $\pm \mathrm{B}$ routes of Fig. 1. The $\pm \mathrm{A}$ route of distortion solely involves $v_{\text {sym }}$ str and $v_{\text {sym }}$ bend modes of vibration, both of which retain the C_{2} symmetry of the $\mathrm{CuN}_{4} \mathrm{Cl}$ chromophore. On the other hand, the $\pm \mathrm{B}$ route of distortion is determined by the $v_{\text {asym }}$ str and $v_{\text {asym }}^{\text {band }}$ modes, both of which lower the symmetry of the $\mathrm{CuN}_{4} \mathrm{Cl}$ chromophore to C_{1}. Thus the $\left[\mathrm{Cu}(\text { bipy })_{2} \mathrm{Cl}\right] \mathrm{X}$ series of complexes are described with -A route distortion involving also a significant +B route distortion. The pure - A route distortion with C_{2} symmetry is represented by the left horizontal distortion through the RTBP stereochemistry in Fig. 1 and has been used to describe the stereochemistry of the complexes $\left[\mathrm{Cu}(\right.$ terpy $\left.)(\mathrm{NCS})_{2}\right] \mathbf{2}^{10}$ and
$\left[\mathrm{Cu}\right.$ (terpy) $\left.\mathrm{Br}_{2}\right] 3^{10}$ where terpy $=2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine, both with C_{2} symmetry (Fig. 2) as a reversed trigonal bipyramidal ${ }^{10}$ (RevTBP), implying that the pure + A route distortion, illustrated by the right horizontal distortion in Fig. 1, is referred to as normal. These complexes have the $a_{3}(\mathrm{XCuX})$ angles of 98.1(3) (2) and $109.0(0)^{\circ}$ (3), which are near enough to the RTBP angle of 120° to justify them to be described as having RevTBP stereochemistry. On the other hand, the complexes $\left[\mathrm{Cu}(\mathrm{py})_{2}\left(\mathrm{ONO}_{2}\right)_{2}\right] 4^{11}(\mathrm{py}=$ pyridine $)$ and $\left[\mathrm{Cu}(\mathrm{hfacac})_{2}\left(\mathrm{NH}_{3}\right)\right]$ 5^{12} (Fig. 2, Hhfacac $=1,1,1,5,5,5$-hexafluoroacetylacetone) are known to possess even lower angles of 91.4(3) and 90.8(2) ${ }^{\circ}$ respectively. As the a_{3} angles are nearly 30° less than the 120° of the RTBP stereochemistry, it is inappropriate to describe them as RevTBP and so the term see-saw distorted trigonal bipyrimidal (SSDTBP) has been introduced to describe their geometries; ${ }^{9}$ however, it should be noted that the distinction between these two geometries is only arbitrary.
The present report describes the preparation, crystal structure determination and spectroscopic properties of the complex $\left[\mathrm{Cu}(\right.$ dipica $\left.)\left(\mathrm{NO}_{3}\right)_{2}\right] \quad$ dipica $=$ dipicolylamine, i.e. bis $(2$-pyridylmethyl)amine) with an even lower $a_{3}(\mathrm{OCuO})$ angle of 78.4° and a slight rhombic distortion away from C_{2} symmetry.

Experimental

Materials

All reagents for syntheses were used as received from Aldrich Chemicals or Fluka. 2,2'-Dipicolylamine [bis(2-pyridylmethyl)amine] was a gift from Reilly Industries.

(Dipicolylamine)dinitratocopper(II), $\left[\mathrm{Cu}(\right.$ dipica $\left.)\left(\mathrm{NO}_{3}\right)_{2}\right]$

This compound was prepared by the addition of a methanolic solution $(5 \mathrm{~mL})$ of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(0.199 \mathrm{~g}, 1 \mathrm{mmol})$ to a solution of

Fig. 1 Full structural pathways of the $\mathrm{CuN}_{4} \mathrm{X}$ chromophore involving the A, B and $\mathrm{A}+\mathrm{B}$ route distortions. The bond distances have been rounded off to the nearest $0.05 \AA$ and the bond angles to the nearest 5°.

RTBP - [Cu(bipy) $\left.{ }_{2} \mathrm{Cl}\right] \mathrm{Y}, 1$

RevTBP - [Cu(terpy) $\left(\mathrm{NCS}_{2}\right]_{2} 2$

RevTBP - [Cu(terpy) Br_{2}], 3

Fig. 2 Molecular structures 1-5
dipica ($0.199 \mathrm{~g}, 1 \mathrm{mmol}$) in methanol (10 mL) with stirring, and then allowing the solution to evaporate slowly at room temperature. The dark blue crystals of the nitrate, which were deposited after a few days, were suitable for X-ray diffraction. Yield $0.35 \mathrm{~g}, 90 \%$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{CuN}_{5} \mathrm{O}_{6}$: C, 37.26; $\mathrm{H}, 3.39$; N, 18.11. Found: C, $36.84 ;$ H, $3.41 ;$ N, 18.08%.

Physical measurements

Elemental analyses were performed at CDRI, Lucknow, India The diffuse-reflectance spectrum was measured on a Hitachi U-3400 double-beam UV/VIS-NIR spectrophotometer and the EPR spectrum on a Varian E 112 X-band spectrometer calibrated with diphenylpicrylhydrazyl (dpph).

Crystal structure determination

A dark blue crystal of $\left[\mathrm{Cu}(\right.$ dipica $\left.)\left(\mathrm{NO}_{3}\right)_{2}\right]$ was mounted within thin-wall capillaries. Intensity measurements were performed on a Siemens P 4 -four circle diffractometer equipped with a conventional molybdenum X-ray source, graphite monochromator and scintillation counter. The lattice parameters of the monoclinic cell were derived from 30 carefully centered orientation reflections taken from a rotation photograph. Intensity data were collected by the $\omega-2 \theta$ scan technique. In both cases two octants of data (in addition to the $h=-1$ shell) were collected implying the restriction of C-centering. The data reduction involved Lorentz and polarization corrections, ${ }^{13}$ as well as an empirical absorption correction using

Table 1 Crystallographic data for $\left[\mathrm{Cu}(\right.$ dipica $\left.)\left(\mathrm{NO}_{3}\right)_{2}\right] 1$

Chemical formula	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{CuN}_{5} \mathrm{O}_{6}$
M	386.81
Space group	$C 2 / c($ monoclinic, no. 15)
a / \AA	$14.853(4)$
b / \AA	$8.050(1)$
c / \AA	$25.395(4)$
$\beta /{ }^{\circ}$	$103.18(2)$
V / \AA^{3}	$2956(1)$
Z	8
$T /{ }^{\circ} \mathrm{C}$	20
$\lambda\left(\mathrm{Mo}^{\circ}-\mathrm{K} \alpha\right) / \AA$	0.71073
$\rho_{\text {calc }} / \mathrm{g} \mathrm{cm}$	
μ / cm^{-3}	1.738
Independent reflections	7.6
Reflections with $I>2.00 \sigma(I)$	$3195\left(R_{\text {int }}=0.0345\right)$
R	2278
$R_{\text {w }}$	0.0573
	0.0613

Fig. 3 An ORTEP drawing of $\left[\mathrm{Cu}(\right.$ dipica $\left.)\left(\mathrm{NO}_{3}\right)_{2}\right]$ showing the atom numbering and thermal motion ellipsoids (50% probability level) for non-hydrogen atoms.

O1-Cu1-N3(x_{1})
O4-Cu1-N3 $\left(\alpha_{2}\right)$
O4-CuI-OI $\left(x_{3}\right)$
N3-Cu1-N1 $\left(\alpha_{4}\right)$
N3-Cu1-N2 $\left(\alpha_{5}\right)$
O1-CuI-N1 $\left(\alpha_{6}\right)$
O4-Cu1-N2 $\left(\alpha_{7}\right)$
N2-Cu1-N1 $\left(\alpha_{4}\right)$
O1-Cu1-N2 $\left(\alpha_{4}\right)$
O4-Cu1-N1 $\left(\alpha_{10}\right)$

Fig. 4 The angular notation $\left(a_{n}\right)$ used to illustrate the $[\mathrm{Cu}$ (dipica)$\left(\mathrm{NO}_{3}\right)_{2}$] structure.
3ψ-scan reflections. Initial structural models ($\mathrm{Cu}, \mathrm{O}, \mathrm{N}$, and some C) were obtained by direct methods (SHELXTL program package). ${ }^{14}$ The remaining C atoms were obtained from Fourier-difference maps following some least-squares cycles. After isotropic refinement of these models H atoms were added on idealized positions. One common isotropic thermal parameter per group was refined for the riding H atoms. Details of the data collections, structure solutions and refinements are given in Table 1 and important bond lengths and angles in Table 2.

CCDC reference number 186/1849.
See http://www.rsc.org/suppdata/dt/a9/a908185b/ for crystallographic files in .cif format.

Table 2 Selected bond distances and angles for $\left[\mathrm{Cu}(\text { dipica })\left(\mathrm{NO}_{3}\right)_{2}\right]^{a}$

$\mathrm{Cu}-\mathrm{N} 1$	$1.965(4)$	$\mathrm{Cu}-\mathrm{O} 4$	$2.148(4)$
$\mathrm{Cu}-\mathrm{N} 2$	$1.970(5)$	$\mathrm{Cu}-\mathrm{O} 2$	$2.698(4)$
$\mathrm{Cu}-\mathrm{N} 3$	$1.973(6)$	$\mathrm{Cu}-\mathrm{O} 6$	$2.870(4)$
$\mathrm{Cu}-\mathrm{O} 1$	$2.153(4)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3\left(a_{1}\right)$	$145.3(3)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1\left(a_{6}\right)$	$94.0(2)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 3\left(a_{2}\right)$	$136.3(3)$	$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 2\left(a_{7}\right)$	$97.7(2)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 1\left(a_{3}\right)$	$78.4(2)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1\left(a_{8}\right)$	$164.8(2)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1\left(a_{4}\right)$	$82.4(3)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2\left(a_{9}\right)$	$97.2(2)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2\left(a_{5}\right)$	$82.5(3)$	$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 1\left(a_{10}\right)$	$94.6(2)$

${ }^{a}$ Distances in \AA, angles in ${ }^{\circ}$, and standard deviation in last significant digit in parentheses.

Results and discussion
 Structure of [Cu(dipica) $\left.\left(\mathrm{NO}_{3}\right)_{2}\right]$

An ORTEP ${ }^{15}$ plot of the local molecular structure of the complex $\left[\mathrm{Cu}(\right.$ dipica $\left.)\left(\mathrm{NO}_{3}\right)_{2}\right]$ is illustrated in Fig. 3 along with the atom numbering scheme. The reduced angle notation $\left(a_{n}\right)$ is shown in Fig. 4, corresponding to that used for the RTBP stereochemistry (Fig. 1). The structure of the complex molecule involves a five-co-ordinate $\mathrm{CuN}_{3} \mathrm{O}_{2}$ chromophore with a trigonal bipyramidal co-ordination environment. The tridentate dipica ligand bonds in a planar conformation with its two pyridine nitrogen atoms occupying the axial positions. The oxygen atoms O 1 and O 4 of the nitrato ligands are co-ordinated in a plane at right angles $\left(90.15^{\circ}\right)$ to the dipica plane, at almost the same $\mathrm{Cu}-\mathrm{O}$ distance $[\mathrm{Cu}-\mathrm{O}(1), 2.153(4) ; \mathrm{Cu}-\mathrm{O}(4), 2.148(4) \AA$ A $]$ as expected. It is interesting that the mutually trans out-ofplane $\mathrm{Cu}-\mathrm{N}_{\mathrm{py}}$ distances [1.965(4), 1.970(5) \AA] and the single in-plane $\mathrm{Cu}-\mathrm{N}_{\text {amine }}$ distance [1.973(6) \AA] are almost equal and short. Generally the $\mathrm{M}-\mathrm{N}_{\text {het }}$ distance is shorter than the $\mathrm{M}-\mathrm{N}_{\text {amine }}$ distance, as observed in six-co-ordinate $\left[\mathrm{Cu}(\text { dipica })_{2}\right]$ $\left[\mathrm{BF}_{4}\right]_{2},{ }^{16} \quad\left[\mathrm{Cu}(\mathrm{bba}) \mathrm{Cl}_{2}\right][\mathrm{bba}=$ bis(benzimidazol-2-ylmethyl)amine $,{ }^{17}\left[\mathrm{Cu}(\mathrm{bba})_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2},{ }^{18}\left[\mathrm{Cu}_{2}(\mathrm{tpbd})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left[\mathrm{S}_{2} \mathrm{O}_{6}\right]_{2}[\mathrm{tpbd}=$ $N, N, N^{\prime}, N^{\prime}$-tetrakis(2-pyridylmethyl)benzene-1,4-diamine], ${ }^{19}$ $\left[\mathrm{Fe}(\text { dipica }) \mathrm{Cl}_{3}\right]^{20}$ and $\left[\mathrm{Fe}(\text { dipica })_{2}\right]^{2+21}$ complexes on account of the difference in hybridization of the nitrogen atoms. In the present complex the observed short $\mathrm{Cu}-\mathrm{N}_{\text {amine }}$ distance probably results from the small bite angles [$a_{4}, 82.4(3) ; a_{5}$, $\left.82.5(3)^{\circ}\right]$ of the dipica ligand. A similar observation has been made for the five-co-ordinate square pyramidal $\left[\mathrm{Cu}(\text { dipica })_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}$ complex ${ }^{16}$ in which the axial $\mathrm{Cu}-\mathrm{N}_{\mathrm{py}}$ distance ($2.044 \AA$) is longer than the equatorial $\mathrm{Cu}-\mathrm{N}_{\text {amine }}$ distance ($1.995 \AA$) . Further, the in-plane a_{1}, a_{2} and a_{3} angles (145.3, $136.3,78.4^{\circ}$), sum 360°, deviate from the value of 120° expected for the RTBP geometry. The out-of-plane a_{4} and a_{5} angles are less and the out-of-plane a_{6}, a_{7}, a_{9} and a_{10} angles greater than the expected RTBP angles of 90°. The a_{8} angle is $164.8(2)^{\circ}$, which is clearly less than 180° due to the small bite angles (a_{4}, a_{5}) of the dipica ligand. The angle between the CuN_{3} and CuO_{2} planes of 90.15° is very close to 90°, with the remaining atoms of the nitrato groups lying close to the CuO_{2} plane. These distortions and the value of the trigonal index τ^{22} [$\left.=\left(a_{8}-a_{1}\right) / 60\right]$ of 0.33 suggest that the structure is best described as trigonal bipyramidal distorted square based pyramidal ${ }^{4}$ (TBDSBP). While both the nitrate anions are co-ordinated in our complex, only one is co-ordinated in the benzimidazole (bzim) analog $\left[\mathrm{CuL}\left(\mathrm{NO}_{3}\right)\right] \mathrm{NO}_{3}[\mathrm{~L}=$ bis(benz-imidazolylmethyl)-n-butylamine] and its homologs, ${ }^{23}$ obviously because of the bulkiness of the bzim moiety which prevents the other nitrate anion from co-ordination. If the remote $\mathrm{O}(2)$ and $\mathrm{O}(6)$ oxygen atoms of the nitrato groups at longer distances $[\mathrm{Cu}-\mathrm{O}(2), 2.698(4) ; \mathrm{Cu}-\mathrm{O}(6), 2.870(4) \AA]$ are considered to be involved in semi-co-ordination, then the structure would correspond alternatively to a seven-co-ordinate $\mathrm{CuN}_{3} \mathrm{O}_{2} \mathrm{O}^{\prime}{ }_{2}$ chromophore. While the two short $\mathrm{Cu}-\mathrm{O}(1)$ and $\mathrm{Cu}-\mathrm{O}(4)$ distances hardly show significant difference, the $\mathrm{Cu}-\mathrm{O}(2)$ and
$\mathrm{Cu}-\mathrm{O}(6)$ distances are clearly different and hence lower the symmetry of the $\mathrm{CuN}_{3} \mathrm{O}_{2} \mathrm{O}_{2}^{\prime}$ chromophore from C_{2} to C_{1}. This lowering is supported by the asymmetry in the values of the $\mathrm{N}(3) \mathrm{CuO}(1)\left(a_{1}\right)$ and $\mathrm{N}(3) \mathrm{CuO}(4)\left(a_{2}\right)$ angles.

The five-co-ordinate structure of our complex is closely comparable to the very rare five-co-ordinate copper(II) complexes like $\left[\mathrm{Cu}(\right.$ terpy $\left.)(\mathrm{NCS})_{2}\right] \mathbf{2}^{10}{ }^{10}\left[\mathrm{Cu}(\right.$ terpy $\left.) \mathrm{Br}_{2}\right] \mathbf{3}^{10}$ and $\left[\mathrm{Cu}(\text { py })_{3^{-}}\right.$ $\left.\left(\mathrm{O}_{2} \mathrm{NO}\right)_{2}\right] 4,{ }^{11}$ all of which involve a crystallographic twofold axis and show an extreme see-saw stereochemistry (- A route distortion), but differs in two respects. First the copper(II) ions in these complexes lie on a crystallographic twofold axis of symmetry and secondly their a_{3} angles [2, 98.1; 3, 109.0; 4, $\left.91.4^{\circ}\right]$ are significantly higher than that $\left(78.4^{\circ}\right)$ of our complex. These complexes can be considered to undergo a pure - A route distortion (Fig. 1) and so are appropriately described as having a RevTBP stereochemistry as their a_{3} angles are within 29° of 120° of a RTBP stereochemistry. On the other hand, the a_{3} angles of the present complex, $\mathbf{4}$ and $\left[\mathrm{Cu}(\mathrm{hfacac})_{2}\left(\mathrm{NH}_{3}\right)\right] 5^{12}$ are significantly less than 120°, with that of the present complex being more than 40° less; so it is inappropriate to describe the stereochemistry of these three complexes as RevTBP. Moreover, the in-plane $\mathrm{Cu}-\mathrm{O}(1)$ and $\mathrm{Cu}-\mathrm{O}(4)$ distances of our complex and $\mathbf{4}$ of $c a .2 .15 \AA$ are considerably longer than that of $2.10 \AA$ normally associated with the inplane $\mathrm{Cu}-\mathrm{O} / \mathrm{N}$ distances of the RTBP stereochemistry. On these grounds the basic stereochemistry of the present complex and of $\mathbf{4}$ and $\mathbf{5}$ is significantly different from those of $\mathbf{2}$ and $\mathbf{3}$ and hence deserves a separate description as SEE-SAW RTB (SSRTB). ${ }^{9}$

The stereochemistries of $\mathbf{4}$ and $\mathbf{5}$ differ from that of our complex in having a crystallographic twofold axis of symmetry and hence described as having a pure -A route distortion, which involves the pure $v_{\text {sym }}{ }^{\text {str }}$ and $v_{\text {sym }}{ }^{\text {bend }}$ modes of vibration. The distorted $\mathrm{CuN}_{3} \mathrm{O}_{2}$ chromophore of the present complex with slight contraction along the $\mathrm{Cu}-\mathrm{N}(3)$ distance (opposite to a_{3}), the almost equal $\mathrm{Cu}-\mathrm{N}(1)$ and $\mathrm{Cu}-\mathrm{N}(2)$ distances and the nonequivalence of a_{1} and a_{2} angles without a twofold axis of symmetry is considered to involve the $-\mathrm{A}+\mathrm{B}$ route distortion with the obvious domination of -A over +B , involving all the four modes of vibration $v_{\text {sym }}$ str,$v_{\text {sym }}$ bend, $v_{\text {asym }}^{\text {str }}$ and $v_{\text {asym }}{ }^{\text {bend }}$, namely the molecular structures IX and IX' of Fig. 1. Alternatively, the precise co-ordination geometry displayed may be interpreted ${ }^{5}$ as an effect of vibronic coupling of a linear combination of the nuclear modes of vibrations $v_{\text {sym }}$, a symmetric C_{2} mode, and $v_{\text {asym }}$, an asymmetric non- C_{2} mode, of the $\mathrm{CuN}_{3} \mathrm{O}_{2}$ chromophore.

Electronic properties

The polycrystalline EPR spectrum of the complex is clearly axial, suggesting a $\mathrm{d}_{x^{2}-y^{2}}$ ground state for $\mathrm{Cu}^{\mathrm{II}}$. The axial g values of 2.097 and 2.207 correspond to crystal g values and not the local molecular g values because of misalignment of the local molecular axes. However, in view of the short $\mathrm{N}(1) \mathrm{Cu}(\mathrm{N} 2)$ distances in the complex, a $\mathrm{d}_{z^{2}}$ ground state is the more likely, as already established for the related complex 4 by single crystal EPR measurements. The polycrystalline electronic spectrum of the complex displays only one ligand field band around 15300 cm^{-1}. It is difficult to assign this band as the ground state could not be confirmed.

Conclusion

The present report describes the preparation, crystal structure determination and spectroscopic properties of the 1:1 copper(II) nitrate complex of dipicolylamine. The crystal structure of the complex $\left[\mathrm{Cu}(\right.$ dipica $\left.)\left(\mathrm{ONO}_{2}\right)_{2}\right]$ with low symmetry $\mathrm{CuN}_{3} \mathrm{O}_{2}$ chromophore involves a five-co-ordinate see-saw stereochemistry with an extreme $\mathrm{O}(1) \mathrm{CuO}(4)\left(a_{3}\right)$ angle of 78.4° and a slight rhombic distortion away from C_{2} symmetry. We have invoked the involvement of vibronic coupling ($-\mathrm{A}+\mathrm{B}$
route distortion) to account for the observed structure. The ability of the dipica ligand to co-ordinate to copper(II) in a planar conformation is also demonstrated.

Acknowledgements

The authors thank the Department of Science and Technology, India for supporting this research [Scheme No. SP/S1/FO2/96] and the Council of Scientific and Industrial Research, India for a Senior Research Fellowship (to S. M.). One of them (M. P.) thanks the Indian National Science Academy and German Research Council (DFG) for a visiting fellowship to Germany. He thanks Professor Huttermann, University of Saarlandes and Professor G. Henkel, University of Duisburg for hospitality. Reilly Industries, USA is thanked for a generous gift of dipicolylamine. Professor Brian J. Hathaway, University College Cork, Ireland is sincerely thanked for his valuable comments.

References

1 B. J. Hathaway and D. E. Billing, Coord. Chem. Rev., 1970, 5, 143 and references therein; J. Gazo, I. B. Bersuker, J. Garaj, M. Kabesova, J. Kohout, H. Langfelderova, M. Melnik, M. Seraton and F. Valach, Coord. Chem. Rev., 1979, 11, 253; B. J. Hathaway, Struct. Bonding (Berlin), 1984, 57, 55.
2 B. J. Hathaway, Comprehensive Coordination Chemistry, The Synthesis, Reactions, Properties and Applications of Coordination Compounds, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 5, pp. 533-774.
3 W. D. Harrison, D. M. Kennedy, N. J. Ray, R. Sheahan and B. J. Hathaway, J. Chem. Soc., Dalton Trans., 1981, 1556; P. Nagle, E. O'Sullivan, B. J. Hathaway and F. Muller, J. Chem. Soc., Dalton Trans., 1990, 3399; M. Brophy, G. Murphy, C. O’Sullivan, B. J. Hathaway and B. Murphy, Polyhedron, 1999, 18, 611.
4 G. Murphy, P. Nagle, B. Murphy and B. J. Hathaway, J. Chem. Soc., Dalton Trans., 1997, 2645.
5 G. Murphy, C. O’Sullivan, B. Murphy and B. J. Hathaway, Inorg. Chem., 1998, 37, 240.
6 G. Murphy, P. Nagle, B. Murphy and B. J. Hathaway, J. Chem. Soc., Dalton Trans., 1997, 2653.
7 S. Berry, J. Chem. Phys., 1960, 32, 933.
8 B. Bersuker, The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry, Plenum, New York, 1983.
9 C. O'Sullivan, G. Murphy, B. Murphy and B. J. Hathaway, J. Chem. Soc., Dalton Trans., 1999, 1835.
10 M. J. Arriortua, J. L. Mesa, T. Rojo, T. Debaerdemaeker, D. Beltran-Porter, H. Stratemeier and D. Reinen, Inorg. Chem., 1988, 27, 2976.
11 F. Cameron, D. W. Taylor and R. H. Nuttall, J. Chem. Soc., Dalton Trans., 1972, 1603; R. J. Dudley, B. J. Hathaway, P. G. Hodgson, P. C. Power and D. J. Loose, J. Chem. Soc., Dalton Trans., 1974, 1005.

12 J. Pinkas, J. C. Huffman, M. H. Chisholm and K. G. Caulton, Inorg. Chem., 1995, 34, 5314.
13 A. T. C. North, C. C. Philips and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351.
14 SHELXTL, Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1990.
15 C. K. Johnson, ORTEP II, a Program for Thermal Ellipsoid Plotting, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
16 M. Palaniandavar, R. J. Butcher and A. W. Addison, Inorg. Chem., 1996, 35, 467.
17 D. Wahnon, R. C. Hynes and J. Chin, J. Chem. Soc., Chem. Соттии., 1994, 1441.
18 M. Palaniandavar, T. Pandiyan, M. Lakshminarayanan and H. Manohar, J. Chem. Soc., Dalton Trans., 1995, 455.

19 T. Buchen, A. Hazell, L. Jessen, C. J. McKenzie, L. P. Nielsen, J. Z. Pedersen and D. Schoelmeyer, J. Chem. Soc., Dalton Trans., 1997, 2697.
20 R. Viswanathan, M. Palaniandavar, T. Belasubramanian and P. T. Muthiah, J. Chem. Soc., Dalton Trans., 1996, 2519.

21 J. Butcher and A. W. Addison, Inorg. Chim. Acta, 1989, 158, 211.
22 The index τ is zero for a square pyramid, unity for a trigonal bipyramid; A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349.

23 Y. Nishida and K. Takahashi, J. Chem. Soc., Dalton Trans., 1988, 691.

Paper a908185b

