Reaction of N,N'-bridged 1,10-diazacyclooctadeca-5,14-diynes with [CpCo(cod)]: a new type of superphane

Rolf Gleiter,* Thomas von Hirschheydt, Volker Wolfart and Frank Rominger

Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

Received 1st December 1999, Accepted 14th January 2000

The reaction of N,N'-bridged 1,10-diazacyclooctadeca-5,14-diynes 1a-d with [CpCo(cod)] (2) leads to both intra-(3) and inter-molecular (4) CpCo-cyclobutadiene complexes. The yield of intramolecular complex decreases and the yield of intermolecular complex increases with growing length of the alkane bridge. X-Ray investigations on single crystals of 3a, 3d and 4d reveal that the repulsions between the Cp ring and two CH₂-groups in β -position to the cyclobutadiene ring increase from 3a to 3d. Such steric repulsions are not found in 4d.

Since 1956 when Longuet-Higgins and Orgel predicted the stability of cyclobutadiene coordinated to a transition metal¹ a great variety of these compounds has been synthesized. In particular (η^5 -cyclopentadienyl)cobalt (CpCo) was found to be a good stabilizing transition metal fragment and the resulting cyclobutadiene (Cbd) complexes are legion by now.² Cobalt initiated dimerization of alkynes occurs either thermally or photochemically.^{3,4}

Early investigations by King *et al.*⁵ have shown that cyclic diynes of medium ring size yield the intramolecular cyclobutadiene complex stabilized either with the CpCo or the Fe(CO)₃ fragment. More detailed investigations showed that also an intermolecular route can be followed.^{6,7} In this case dimeric,^{6,7} trimeric and tetrameric⁸ superphanes result. These studies show that the resulting products depend mainly on steric effects.^{6,7}

For 1,10-cyclooctadecadiyne the reaction with (η^4 -cycloocta-1,5-diene)(η^5 -cyclopentadienyl)cobalt [CpCo(cod)] **2** afforded only an intermolecular complex, a superphane, in low yield besides material of higher molecular weight.⁹ This was rationalized by assuming that in the 18-membered ring the transannular distance (7.12 Å) of the triple bonds prevents an intramolecular dimerization.^{6,7} In the related bicyclic system of N,N'-bridged 1,10-diazacyclooctadeca-5,14-diynes **1** the additional bridge forces a folding of the 18-membered diyne cycle which leads to a shorter transannular distance of the π -systems ¹⁰ compared to the carbocyclic compound so that an intramolecular reaction might be possible. Here, we report on the complexation of a series of bicyclic diynes **1a**-**d**, the dependence of the distribution of products on the length of the third bridge and the solid state structures of the complexes.

Heating of **1a–d** with **2** yields two types of products (Scheme 1, Table 1). For **1a** only the intramolecular complex **3a** was found in almost 30% yield. The yield of the intramolecular complex decreases with growing length of the alkane bridge whereas the formation of the intermolecular complex **4** increases in the same manner so that **4d** could be isolated in nearly 11% yield. The increase in the yields of **4b** and **4c** was observed in the mass spectra (FAB⁺) of the reaction mixture but they could not be successfully isolated. The reason for the decreasing yield of the intramolecular complex from **1a** to **1d** can be seen by comparing the solid state structures of **3a** and **3d** (Fig. 1). In **3a** the planes of the cyclopentadienyl and cyclobutadiene rings are arranged almost parallel whereas a bending of the cyclopentadienyl ring is found in **3d** (the angles between the least-squares-planes are 1.7° in **3a** *cf*. 5.2° in **3d**) leading also

 Table 1
 Isolated yields (%) of intra- and inter-molecular complexes

$(CH_2)_n$	Intra	Inter
5	29.3 (3a)	Trace (4a)
6	13.6 (3b)	FAB-MS (4b)
7	6.6 (3c)	FAB-MS (4c)
8	9.4 (3d)	10.7 (4d)

Scheme 1

to a slight downfield shift of the cyclopentadienyl protons from δ 4.61 for **3a** to δ 4.74 for **3d** so that packing effects in the crystal can be excluded as the reason for the bending. The long -(CH₂)₈- bridge in **3d** forces a conformation of the molecule in which steric hindrance between the hydrogen atoms of two β -methylene groups of the cyclobutadiene ligand and the hydrogen atoms of the cyclopentadienyl ring leads to the bending. For the corresponding intermolecular complex **4d** a parallel arrangement of the rings in the solid state (Fig. 2) and a

DOI: 10.1039/a909482b

J. Chem. Soc., Dalton Trans., 2000, 685–687 685

3d

Fig. 1 Molecular structure of 3a and 3d in solid state. The thermal ellipsoids are of 25% probability and the hydrogen atoms have been omitted for clarity.

Fig. 2 Molecular structure of 4d in the solid state. The thermal ellipsoids are of 10% probability and the hydrogen atoms have been omitted for clarity.

normal ¹H-shift for the cyclopentadienyl protons of δ 4.63 was found.

Conclusions

The shorter transannular distance of the π -systems in the bicyclic system of N,N'-bridged 1,10-diazacyclooctadeca-5,14diynes compared to 1,10-cyclooctadecadiyne leads preferably to intramolecular cyclobutadiene complexes. The increasing steric hindrance with growing length of the alkane bridge is avoided by formation of the intermolecular complex. The superphane 4d represents a new type of superphane in so far as the chains interconnecting the two π -systems are tethered.

Experimental

General

All reactions were carried out under argon atmosphere with magnetic stirring in sodium-dried and oxygen-free *n*-nonane. ¹H and ¹³C NMR spectra were recorded in C_6D_6 with Bruker AC 300 and Avance 500 instruments, respectively. High resolution (HR) mass spectra were obtained with a JEOL JMS 700 high-resolution mass spectrometer. The UV/VIS spectrum of **3a** was recorded on a Hewlett-Packard HP 8452 diode array spectrometer in CH₂Cl₂ and the microanalysis was performed at the Mikroanalytisches Laboratorium der Chemischen Institute der Universität Heidelberg.

General procedure for preparation of the complexes

A solution of bicyclic diyne **1a–d** (0.6 mmol) and of **2** (140 mg, 0.6 mmol) in *n*-nonane (60 ml) was refluxed for four days. Solvent and unreacted **2** were then removed by chromatography (Al₂O₃ with 6% water) using light petroleum (bp 30–40 °C) as solvent. The intramolecular complexes **3a–d** were obtained using light petroleum-diethyl ether (10:1) while **4d** was eluted upon increasing the polarity of the eluent (light petroleum-diethyl ether (5:1)). The intramolecular complexes **3a–d** were recrystallized from pentane while **4d** was recrystallized from C₆D₆. In all cases, polymeric material remains as a yellow band on the head of the column.

$\{(5,6,14,15-\eta)-1,10-Diazatetracyclo[8.8.5.0^{5,15}.O^{6,14}]tricosa-5(6),14(15)-diene}(\eta^5-cyclopentadienyl)cobalt 3a$

Yield: 77 mg (0.17 mmol), 29.3% (orange crystals (mp 164 °C)) (Calc. for $C_{26}H_{39}CoN_2$: C, 71.21; H, 8.96; N, 6.39. Found: C, 71.31; H, 8.89; N, 6.35%). HRMS, FAB: *m/z* 438.2469, calc. for $C_{26}H_{39}CoN_2$ (M⁺): *m/z* 438.2445. UV–VIS (CH₂Cl₂) λ_{max}/nm (log ε/dm^3 mol⁻¹ cm⁻¹) 222 (4.33), 266 (4.48), 300 (3.12), 384 (2.39). IR (KBr)/cm⁻¹ 3447br, 3093w, 2903vs, 2846s, 2800vs, 1651w, 1460m. ¹H NMR (C₆D₆, 500 MHz) δ 1.16–1.24 (m, 4H), 1.32–1.57 (m, 10H), 2.10–2.18 (m, 4H), 2.22–2.40 (m, 12H), 2.48–2.55 (m, 4H) (CH₂); 4.61 (s, 5H, CpH). ¹³C NMR (C₆D₆, 125.76 MHz) δ 27.64 (CH₂), 28.39 (CH₂-Cbd); 29.60, 30.74 (CH₂); 61.14, 61.88 (CH₂N); 80.04 (CpC), 81.15 (Cbd C).

$\{(5,6,14,15-\eta)-1,10-Diazatetracyclo[8.8.6.0^{5,15}.0^{6,14}] tetracosa-5(6),14(15)-diene \}(\eta^5-cyclopentadienyl) cobalt 3b$

Yield: 37 mg (0.08 mmol), 13.6% (orange crystals). HRMS, FAB: m/z 452.2607, calc. for C₂₇H₄₁CoN₂ (M⁺): m/z 452.2602. ¹H NMR (C₆D₆, 500 MHz) δ 1.27–1.43 (m, 8H), 1.43–1.63 (m, 8H), 2.02–2.33 (m, 16H), 2.44–2.56 (m, 4H) (CH₂); 4.65 (s, 5H, Cp–H). ¹³C NMR (C₆D₆, 125.76 MHz) δ 27.42, 28.34, 29.07, 29.27 (CH₂); 58.79, 60.19 (CH₂N); 79.68 (CpC); 80.91 (Cbd C).

$\label{eq:states} \{(5,6,14,15-\eta)-1,10-Diazatetracyclo[8.8.7.0^{5,15}.0^{6,14}] pentacosa-5(6),14(15)-diene \}(\eta^5-cyclopentadienyl) cobalt 3c$

Yield: 18 mg (0.04 mmol), 6.6% (orange crystals). HRMS, FAB: m/z 466.2777, calc. for C₂₈H₄₃CoN₂ (M⁺): m/z 466.2758. ¹H NMR (C₆D₆, 500 MHz) δ 1.24–1.47 (m, 10H), 1.47–1.67 (m, 8H), 1.94–2.10 (m, 8H), 2.21–2.31 (m, 4H), 2.37–2.60 (m, 8H) (CH₂); 4.71 (s, 5H, CpH). ¹³C NMR (C₆D₆, 125.76 MHz) δ 26.01, 26.37, 28.35, 29.16, 29.41 (CH₂); 57.98, 59.19 (CH₂N); 78.38 (CpC); 81.33 (Cbd C).

$\{(5,6,14,15-\eta)-1,10-Diazatetracyclo[8.8.8.0^{5,15}.0^{6,14}] hexacosa-5(6),14(15)-diene \}(\eta^5-cyclopentadienyl) cobalt 3d$

Yield: 29 mg (0.06 mmol), 9.4% (orange crystals). HRMS, FAB: m/z 480.2923, calc. for C₂₉H₄₅CoN₂ (M⁺): m/z 480.2915.

	3a	3d	4d
Empirical formula	C ₂₆ H ₃₉ CoN ₂	C ₂₉ H ₄₅ CoN ₂	C ₅₈ H ₉₀ Co ₂ N ₄
Formula weight	438.52	480.60	961.20
T/K	200(2)	200(2)	293(2)
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	$P\overline{1}$	$P2_1/c$	C2/c
Ź	2	4	4
a/Å	7.6567(1)	8.5424(1)	23.9708(2)
b/Å	9.7915(2)	29.0936(3)	9.4887(7)
c/Å	16.0835(3)	10.9486(1)	23.9264(2)
a/°		87.261(1)	
βl°	77.433(1)	110.090(1)	98.214(1)
y/°		75.054(1)	
$V/Å^3$	1137.04(3)	2555.55(5)	5386.3(7)
μ/mm^{-1}	0.769	0.690	0.655
Reflections collected	8530	18908	19435
Independent reflections	3796	4439	4623
R _{int}	0.0143	0.0242	0.0648
Final R indices			
$(I > 2\sigma(I)) R(F)$	0.028	0.031	0.069
$R_{\rm w}(F^2)$	0.083	0.082	0.160

¹H NMR (C₆D₆, 500 MHz) δ 1.33–1.62 (m, 20H), 1.82–1.92 (m, 4H), 1.99–2.09 (m, 4H), 2.22–2.29 (m, 4H), 2.38–2.50 (m, 8H) (CH₂); 4.74 (s, 5H, Cp H); ¹³C NMR (C₆D₆, 125.76 MHz) δ 25.14, 27.51, 28.81,¹¹ 30.22 (CH₂); 56.30, 56.76 (CH₂N); 79.30 (Cp C), 80.79 (Cbd C).

$\{(5,6,48,49-\eta)(23,24,40,41-\eta)-1,10,19,28-Tetraazaheptacyclo-[16.16.8^{1,10}.8^{19,28}.0^{5,49}.0^{6,48}.0^{23,41}.0^{24,40}] dopentaconta-5(49), \\ 6(48),23(41),24(40)-tetraene\} bis[(\eta^5-cyclopentadienyl)cobalt] 4d$

Yield: 33 mg (0.03 mmol), 10.7% (orange crystals). HRMS, FAB: m/z 960.5873, calc. for C₅₈H₉₀Co₂N₄ (M⁺): m/z 960.5829. ¹H NMR (C₆D₆, 500 MHz) δ 1.30–1.80 (m, 20H), 1.93–2.08 (m, 4H), 2.20–2.49 (m, 16H) (CH₂), 4.63 (s, 5H, Cp H); ¹³C NMR (C₆D₆, 125.76 MHz) δ 25.24, 27.87, 28.28, ¹¹ 29.84 (CH₂); 54.60, 55.38 (CH₂N); 79.00 (Cp C); 80.55 (Cbd C).

X-Ray structural analysis of 3a, 3d and 4d

The measurements were performed on a Bruker SMART CCD X-ray diffractometer using graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). The SMART software package¹² was used for data collection as well as frame integration. Structure solution was carried out using the SHELXTL V5.10 software package.¹³ Intensities were corrected for Lorentz and polarisation effects. All structures were solved by direct methods. Full-

matrix least-squares refinement was carried out against F^2 . The non-hydrogen atoms were refined anisotropically. The hydrogen atoms were taken into account at calculated positions. The crystallographic data are listed in Table 2.

CCDC reference number 186/1806.

See http://www.rsc.org/suppdata/dt/a9/a909482b/ for crystallographic files in .cif format.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (SFB 247), the Fonds der Chemischen Industrie and the BASF Aktiengesellschaft, Ludwigshafen.

References

- 1 H. C. Longuet-Higgins and L. E. Orgel, J. Chem. Soc., 1956, 1969.
- 2 A. Efraty, Chem. Rev., 1977, 691 and references therein.
- M. D. Rausch, G. F. Westover, E. Mintz, G. M. Reisner, I. Bernal, A. Clearfield and J. M. Troup, *Inorg. Chem.*, 1979, 18, 2605; W.-S. Lee and H. H. Brintzinger, *J. Organomet. Chem.*, 1977, 127, 93; Y. Wakatsuhi, O. Nomura, K. Kitaura, K. Morokuma and H. Yamazaki, *J. Am. Chem. Soc.*, 1983, 105, 1907; G. A. Ville, K. P. C. Vollhardt and M. J. Winter, *J. Am. Chem. Soc.*, 1981, 103, 5267; *Organometallics*, 1984, 3, 1177; R. Dierks, B. E. Eaton, S. Gürtzgen, S. Jalisatgi, A. J. Matzger, R. H. Radde and K. P. C. Vollhardt, *J. Am. Chem. Soc.*, 1998, 120, 8247; J. H. Hardesty, J. B. Koerner, T. A. Albright and G.-Y. Lee, *J. Am. Chem. Soc.*, 1999, 121, 6055.
- 4 Reviews: N. E. Schore, *Chem. Rev.*, 1988, **88**, 1081; K. P. C. Vollhardt, *Acc. Chem. Res.*, 1977, **10**, 1.
- R. B. King and M. N. Ackermann, J. Organomet. Chem., 1974, 67, 431; R. B. King and I. Haiduc, J. Am. Chem. Soc., 1972, 94, 4044; R. B. King, I. Haiduc and C. W. Eavenson, J. Am. Chem. Soc., 1973, 95, 2508.
- 6 R. Gleiter, Angew. Chem., 1992, 104, 29; Angew. Chem., Int. Ed. Engl., 1992, 31, 27.
- 7 R. Gleiter and M. Merger, Angew. Chem., 1997, **109**, 2532; Angew. Chem., Int. Ed. Engl., 1997, **36**, 2426.
- 8 G. Haberhauer, F. Rominger and R. Gleiter, *Angew. Chem.*, 1998, **110**, 3632; *Angew. Chem.*, *Int. Ed.*, 1998, **37**, 3376.
- 9 R. Gleiter, G. Pflästerer and B. Nuber, J. Chem. Soc., Chem. Commun., 1993, 454.
- 10 T. v. Hirschheydt, V. Wolfart, R. Gleiter, H. Irngartinger, T. Oeser, F. Rominger and F. Eisenträger, J. Chem. Soc., Perkin Trans. 2, in press.
- 11 Two magnetically equivalent CH_2 groups show one signal of double intensity.
- 12 Siemens (Bruker) Analytical X-ray Division, Madison, WI, 1996.
- 13 G. M. Sheldrick, Bruker Analytical X-ray Systems, Madison, WI, 1997.

Paper a909482b