Insertion and cleavage reactions of $[closo-3,1,2-Ta(NMe_2)_3-(C_2B_9H_{11})]$ with nitriles, phenols and thiols; structural characterisation of *N*,*N*-dimethylamidinate ligands[†]

DALTON FULL PAPER

Charlotte K. Broder, Andrés E. Goeta, Judith A. K. Howard, Andrew K. Hughes,* Andrew L. Johnson, John M. Malget and Ken Wade

Department of Chemistry, University Science Laboratories, South Road, Durham, UK DH1 3LE

Received 19th June 2000, Accepted 25th August 2000 First published as an Advance Article on the web 22nd September 2000

The tantalum complex [*closo*-3,1,2-Ta(NMe₂)₃(C₂B₉H₁₁)] underwent insertion into the NC bond of acetonitrile and *p*-fluorobenzonitrile to give the *N*,*N*-dimethylacetamidinate complex [*closo*-3,1,2-Ta{N=C(Me)NMe₂}₃(C₂B₉H₁₁)], and *p*-fluoro-*N*,*N*-dimethylbenzamidinate, [*closo*-3,1,2-Ta{N=C(C₆H₄F)NMe₂}₃(C₂B₉H₁₁)], respectively. Attempted re-crystallisation of the latter from chlorinated solvents led to [*closo*-3,1,2-Ta{N=C(C₆H₄F)NMe₂}₂Cl(C₂B₉H₁₁)], in which one amidinate ligand has been replaced by a chloride. [*closo*-3,1,2-Ta(NMe₂)₃(C₂B₉H₁₁)] reacts with cyclohexylisocyanide to give [Ta(NMe₂)₂(η^2 -N(Cy)CNMe₂}(C₂B₉H₁₁)]. The structures of the novel *N*,*N*-dialkyl-amidinate complexes have been determined by single crystal X-ray diffraction, and reveal the extensive delocalisation and strong π -donor character of the amidinate ligands. The M–N bonds of [*closo*-3,1,2-Ta(NMe₂)₃(C₂B₉H₁₁)] are cleaved by protic reagents, and it reacts with 2,6-dimethylphenol to give [*closo*-3,1,2-Ta(OC₆H₃Me₂-2,6)₃(C₂B₉H₁₁)] and with benzenethiol to give the charge-compensated complex [*closo*-3-Ta(SC₆H₅)₄(9-NHMe₂-1,2-C₂B₉H₁₀)] where the β-boron of the C₂B₃ face bears a NHMe₂⁺ substituent. The structures of the last two compounds have also been determined.

Introduction

We recently reported the synthesis and characterisation of the dicarbollide tris(dimethylamide) [*closo*-3,1,2-M(NMe₂)₃-(C₂B₉H₁₁)] (M = Nb, **1** or Ta **2**), together with the insertion of CO₂ and CS₂ into the M–NMe₂ bonds of **1** and **2** to give tris(carbamate) and tris(dithiocarbamate) complexes.¹ These are rare examples of dicarbollide complexes with Group 5 metals,^{2,3} and of complexes containing both dicarbollide and amide ligands.⁴

The amminolysis reaction of metal amides with acids is well known,⁵ and in recent years has found use as a novel method for ligand co-ordination,^{6,7} occasionally providing routes to otherwise inaccessible compounds⁸ or thermodynamic product ratios.⁹ Thermodynamically, a reaction between a metal amide complex and a Brønsted acid will occur if the acid is more acidic than the eliminated HNR₂, pK_a 35–40. Given that reactions of M–NR₂ bonds with acids are likely to proceed *via* a σ -bond metathesis, involving some prior co-ordination, those of co-ordinating acids such as amines, alcohols and thiols are kinetically more favourable than with carbon acids, such as C_5H_6 or PhCCH.¹⁰

The other typical reactions of metal amides are insertion into polar multiple bonds. Acetonitrile acts as a Brønsted acid with amides of tin and lead,¹¹ but inserts into the metal– nitrogen bond of early transition metal amides, M–NR₂, to form *N*,*N*-dialkylamidinate ligands, M–NC(Me)NR₂,¹² occasionally accompanied by the formation of poly(acetonitrile). Although there have been many studies of the isomeric *N*,*N*'-dialkylamidinates,¹³ to the best of our knowledge there are no structurally characterised examples of the less numerous N,N-dialkylamidinates co-ordinated to a transition metal.¹⁴ There have been a number of reports of the insertion of acetonitrile into M-PR₂ bonds, generating phosphorus analogues of N,N-dialkylamidinates.¹⁵ In comparison to reported examples of insertion of isocyanides, RNC, into M-C bonds, ^{16,17} their insertion into M–NR₂ bonds to give metalla-amidinides or η^2 -iminocarbamoyls, η^2 -RNCNR₂, is also less well explored.^{16,18}

The relationship between dicarbollide complexes, [*closo*-3,1,2-MC₂B₉H₁₁], and cyclopentadienyl complexes, M(η -C₅H₅), both examples of (Π_2)M complexes,¹⁹ has been discussed in detail elsewhere.²⁰ In the dicarbollide ligand the two π -donor orbitals are non-degenerate, so it is classified as Π_2' , resulting in an orientational preference, often described as a strong *trans* influence of the dicarbollide ligand, as observed in indenyl,^{21,22} pyrrolyl²³ and carbonyl²⁴ complexes. The most widely studied dicarbollide ligand is that derived from *ortho*-carborane, generating [*closo*-3,1,2-MC₂B₉H₁₁] complexes.

Here we report the reactions of $[closo-3,1,2-Ta(NMe_2)_3-(C_2B_9H_{11})]$ **2** with nitriles and isocyanides, which proceed by insertion, and with phenol and benzenethiol, which proceed by amminolysis.

Results and discussion

Acetonitrile inserts into the Ta–N bonds of [*closo*-3,1,2-Ta(NMe₂)₃(C₂B₉H₁₁)], **2**, on heating, giving a deep red solution from which pale yellow crystals of the tris-insertion product [*closo*-3,1,2-Ta{N=C(Me)NMe₂}₃(C₂B₉H₁₁)], **3**, were obtained (Scheme 1). The red coloration is thought to be due to the formation of trace poly(acetonitrile). The NMR spectra of **3** are complicated by dynamic exchange processes that are close to coalescence at ambient temperature. The ¹¹B-{¹H} NMR spectrum displays 5 B–H resonances in a 1:2:2:3:1 intensity

 $[\]dagger$ Dedicated to the memory of Ron Snaith, a pioneer in the chemistry of *N*,*N*-dialkylamidinates.

Electronic supplementary information (ESI) available: rotatable 3-D crystal structure diagram in CHIME format. See http://www.rsc.org/suppdata/dt/b0/b004862n/

Scheme 1 The reactions of $[closo-3,1,2-Ta(NMe_2)_3(C_2B_9H_{11})]$, 2, with N=C multiple bonds and with phenol and benzenethiol. Reagents: (i) acetonitrile; (ii) *p*-fluorobenzonitrile; (iii) CH₂Cl₂; (iv) cyclohexyl isocyanide; (v) 2,6-dimethylphenol; (vi) benzenethiol. Filled circles represent cluster CH, open circles cluster BH units.

ratio. The ambient temperature 500 MHz ¹H and 125 MHz ¹³C NMR spectra reveal two NC(Me)NMe₂ ligand environments in a 2:1 ratio, with two C–Me resonances in a 2:1 ratio. Restricted rotation about the C–NMe₂ bond results in four NMe resonances in a 1:1:2:2 ratio. The 300 MHz ¹H and 75 MHz ¹³C spectra are broadened by the onset of coalescence for rotation about the C–NMe₂ bond. The ¹H NMR spectra also show a single broad resonance for the cage C–H hydrogens; the associated ¹³C resonance is obscured by the solvent, but was located in a HETCOR (heteronuclear correlation) experiment. The related uranium amidinate complexes [U(COT)(N=C(Me)-NEt₂)(THF)₂][BPh₄]²⁵ and [U(C₅H₅)₂{NC(Me)NMe₂}(THF)]-[BPh₄]²⁶ have inequivalent NR₂ groups due to restricted rotation around the C–NR₂ bond in the ligands.

The reaction of compound 2 with *p*-fluorobenzonitrile, $N = CC_6H_4F$, gives [*closo*-3,1,2-Ta{N=C(C_6H_4F)NMe₂}₃(C_2B_9- H_{11}] 4 which may be isolated as a bright yellow powder, and purified by crystallisation from hot toluene, in which it is sparingly soluble. The poor solubility of 4 in solvents with which it does not react has hampered satisfactory spectroscopic characterisation. Attempted re-crystallisation by diffusion of pentane into a solution of 4 in dichloromethane gives colourless crystals of $[closo-3,1,2-Ta{N=C(C_6H_4F)NMe_2}_2Cl(C_2B_9 H_{11}$], 5, where one amidinate ligand has been replaced by a chloride. Dehydrochlorination reactions have been observed in other areas of main group²⁷ and transition metal amide chemistry,²⁸ and arise from the high basicity and polar nature of the M-N bond.²⁹ The 400 MHz ¹H-{¹¹B} and 100 MHz ¹³C NMR spectra of 5 reveal the presence of two cage C-H signals and a total of 8 B-H signals in a 1:1:1:1:2:1:1 ratio. The 9th B-H resonance could not be observed in the ¹H-{¹¹B} NMR spectrum, intensity ratios suggest that this signal is hidden under the methyl group signals. The ¹H NMR spectrum also shows resonances assigned to two different NMe2 groups in a 1:1 ratio. This observation of two similar ligand environments in a 1:1 ratio is repeated for the remaining signals in both the ¹H and ¹³C NMR spectra. The ¹³C NMR spectrum shows 4 signals assigned to the phenyl groups, indicating free rotation about the

NC–C₆H₄F bond in two inequivalent ligands. Assignment of the ¹³C NMR spectrum was assisted by comparison of the C-F coupling constants with those of the starting nitrile, *p*-fluorobenzonitrile. The ¹⁹F (188 MHz) NMR spectrum shows two ¹⁹F environments in a 1:1 intensity ratio.

The reaction of compound 2 with three equivalents of cyclohexyl isocyanide yields only the mono-insertion product $[Ta(NMe_2)_2\{\eta^2-N(Cy)CNMe_2\}(C_2B_9H_{11})], 6.$ The ¹¹B-{¹H} NMR spectrum of 6 shows 5 resonances in a 1:3:2:1:2 intensity ratio indicating a $C_{\rm s}$ symmetrical molecule. The ¹H and ¹³C NMR spectra show only one resonance for the C–H unit in the cage, confirming the symmetry. The ¹H NMR spectrum also shows the presence of three N-Me groups in a 4:1:1 intensity ratio, which is also seen in the ¹³C NMR spectrum, and a series of C-H multiplets with a total integral of 11 H, assigned to the cyclohexyl group. The CH₃, CH₂ and CH units were identified by ¹³C DEPT experiments. One geometry consistent with these data for 6 is shown in Scheme 1, with free rotation about the Ta-NMe₂ bonds in solution at room temperature and the N(Cy)CNMe₂ ligand lying in the molecular mirror plane, with two inequivalent N-Me groups also in the mirror plane. The available spectroscopic data cannot exclude the alternative structure with the N-Cy group adjacent to the cage, or a fluxional structure of lower symmetry. We have been unable to grow suitable crystals for a structural study.

Since only starting materials were recovered from refluxing toluene solutions of compound **2** with the carbon-based acids C_5H_6 , C_5H_5Me or phenylacetylene,⁶ the reactions of **2** with co-ordinating acids, which are kinetically more reactive, were next investigated. The reaction with four equivalents of 2,6-dimethylphenol in toluene solution at 80 °C yields colourless [*closo*-3,1,2-Ta(OC₆H₃Me₂-2,6)₃(C₂B₉H₁₁)], **7**. Attempts to treat **2** with stoichiometric quantities of methanol or ethanol resulted in the formation of [NH₂Me₂][*nido*-C₂B₉H₁₂]. The ¹¹B-{¹H} NMR spectrum of **7** shows 5 resonances in a 1:2:2:3:1 intensity ratio. The ¹H NMR spectrum confirms the molecular C_s symmetry of the molecule in solution with the presence of only one cage C–*H* resonance. The ¹³C and ¹H

Fig. 1 The molecular structure of $[closo-3,1,2-Ta\{N=C(Me)NMe_2\}_{3}-(C_2B_9H_{11})]$ 3 showing 50% displacement ellipsoids. Hydrogen atoms have been omitted for clarity.

NMR spectra also show only one methyl environment and one *meta* environment in the aromatic ring, consistent with rapid rotation around the metal–oxygen bond, and exchange of the "vertical" and "horizontal" phenoxide ligands. Attempts to freeze out the these processes in variable temperature NMR experiments, by cooling a sample of 7 in CD₂Cl₂ to -90 °C, proved unsuccessful, showing no decoalescence.

The reaction of 4 equivalents of benzenethiol with compound 2 produces red needle-like crystals of the chargecompensated ³⁰ complex [*closo*-3-Ta(SC₆H₅)₄(9-NHMe₂-1,2-C₂-B₉H₁₀)], **8**, where the β-boron of the C₂B₃ face bears a NHMe₂⁺ substituent. The ¹¹B NMR spectrum of **8** shows 5 doublets and one singlet resonance in a 1:2:2:2:1:1 intensity ratio, with the low frequency singlet at δ 23.3 corresponding to the boron to which the NHMe₂ is co-ordinated. The ¹H NMR spectrum shows the cage to be symmetrical with one resonance for the cage C–H at δ 3.19. The N–CH₃ protons are clearly identified, as is the resonance for the hydrogen on the NMe₂ group attached to the cage. The phenyl region of the spectrum shows a series of multiplets that integrate to 20 H; this region of the spectrum along with the 4 resonances observed in the ¹³C-{¹H} spectrum indicates free rotation of the SPh groups.

The mechanism by which compound 8 is formed is not known but the reaction is reproducible and the product may be isolated in a moderate yield, 53%. There are many reports in the literature in which charge-compensated carborane ligands have been prepared, using various methods including ligand rearrangement from metal site to the carborane cage,³¹ nucleophilic substitution,³² reduction of a metallacarborane complex by a Lewis base,³³ and addition of dialkyl sulfide to a protonated metallocene-type sandwich complex.³⁴ Amine substituted dicarbollide systems, where the amine has substituted the hydrogen atom at the unique boron in the C_2B_3 face, have been prepared by the FeCl3-promoted oxidative coupling of nido-7,8-C₂B₉H₁₂ salts with amines such as triethylamine.³⁵ It is possible that the benzenethiol contained a quantity of diphenyl disulfide, PhSSPh, which reacts with the dicarbollide cage of $[Ta(SPh)_3(C_2B_9H_{11})]$ to form the cationic intermediate $[Ta(SPh)_3(9-PhS-C_2B_9H_{11})]^+$, which in turn is attacked by free Me₂NH giving 8.

Crystallography

The molecular structure of the acetonitrile insertion product, $[closo-3,1,2-Ta\{N=C(Me)NMe_2\}_3(C_2B_9H_{11})]$ 3 is shown in Fig. 1 and selected bond lengths and angles are given in Table 1, whilst the *p*-fluorobenzonitrile insertion product $[closo-3,1,2-Ta\{N=$

Fig. 2 The molecular structure of $[closo-3,1,2-Ta{N=C(C_6H_4F)-NMe_2}_3(C_2B_9H_{11})]$ 4. Details as in Fig. 1.

 $C(C_6H_4F)NMe_2_3(C_2B_9H_{11})]$ **4**, which crystallises with a half molecule of benzene solvate, is shown in Fig. 2 and selected bond lengths and angles are also given in Table 1. The *N*,*N*-dimethylamidinate ligands in both **3** (*N*,*N*-dimethylacetamidinate) and **4** (*p*-fluoro-*N*,*N*-dimethylbenzamidinate) are coordinated in a monodentate fashion, giving an approximate propeller-like geometry to the TaL₃ unit, with one ligand localised *cis* to the C₂ unit of the C₂B₉H₁₁ ligand.

In compound 3 the N,N-dimethylacetamidinate ligands are close to planar, with mean deviations from planarity of the Ta–N–C–(C)–NC₂ units varying from 0.033 Å for the ligands containing N(20) and N(30) to 0.074 Å for the ligand containing N(10) which lies *cis* to the C_2 unit of the cage. The ligand containing N(10) has the NMe_2 unit on the cage side of the N(10)-N(20)-N(30) plane, with the former acetonitrile methyl group directed away from the cage; the situation is reversed in the other two ligands. The angles between the centroid-Ta-N planes and the acetamidinate ligand planes are 80.5 N(10), 144.0 N(20) and 140.6° N(30) so that the unique acetamidinate ligand, containing N(10), is more nearly parallel to the C_2B_3 face of the cage than the other two. The longest Ta-N bond is to the ligand containing N(10) and the Ta-N distances are intermediate between typical amide Ta-NR₂ distances (CSD mean 1.99 Å; 1.949(4) to 1.987(5) Å in 2),36 and tantalum imido Ta-NR distances (CSD 1.75 to 1.82 Å, mean 1.79 Å). Finally, the N–C bonds in the amidinate are shorter than typical N–C single bonds.

In compound 4, the Ta–N–C–(C_{ipso})–NC₂ units are also close to planar, with mean deviations from planarity of 0.002 (N2), 0.036 (N5) and 0.067 Å (N1), although the *p*-fluorophenyl fragments are twisted out of these planes. The angles between the centroid–Ta–N planes and the amidinate ligand planes are 34.0 N(1), 42.3 N(3) and 99.2° N(5), so that the ligand containing N(5) is more nearly parallel with the C₂B₃ face of the cage. The ligand containing N(3) has its phenyl group on the cage side of the N(1)–N(3)–N(5) plane, whilst the other two ligands have the NMe₂ group on the cage side of this plane.

These structural features of compounds 3 and 4 reflect a delocalised π -bonding framework over the entire amidinate ligand and a balance between the two canonical forms, (I) tantalum amide and (II) tantalum imide. The strong π donation to the metal atom from three amidinate ligands results in a

 $\begin{array}{l} \textbf{Table 1} \quad \text{Selected bond lengths (Å) and angles (°) for [closo-3,1,2-Ta \{N=CMe(NMe_2)\}_3(C_2B_9H_{11})] 3, [closo-3,1,2-Ta \{N=C(C_6H_4F)NMe_2\}_3(C_2B_9H_{11})] 4 \\ \textbf{and [closo-3,1,2-Ta \{N=C(C_6H_4F)NMe_2\}_2Cl(C_2B_9H_{11})] 5 } \end{array}$

	3		4		5	
	Ta(1)–N(10)	1.922(3)	Ta(1)–N(1)	1.9125(16)	Ta(1)–N(1)	1.870(3)
	Ta(1) - N(20)	1.878(3)	Ta(1)-N(3)	1.9049(16)	Ta(1) - N(3)	1.859(3)
	Ta(1) - N(30)	1.912(4)	Ta(1) - N(5)	1.8863(16)	Ta(1)-Cl(1)	2.397(1)
	Ta(1)-C(1)	2.589(4)	Ta(1) - C(7)	2.526(2)	Ta(1) - C(7)	2.479(4)
	Ta(1)-C(2)	2.619(4)	Ta(1) - C(8)	2.568(2)	Ta(1) - C(8)	2.501(3)
	Ta(1) - B(3)	2.547(4)	Ta(1) - B(9)	2.548(2)	Ta(1) - B(9)	2.499(4)
	Ta(1) - B(4)	2.460(4)	Ta(1) - B(10)	2.487(2)	Ta(1) - B(10)	2.461(4)
	Ta(1) - B(5)	2.460(4)	Ta(1) - B(11)	2.466(2)	Ta(1) - B(11)	2.462(4)
	Ta(1)–Cb	2.097(5)	Ta(1)–Cb	2.068(3)	Ta(1)–Cb	2.018(5)
	N(10)-C(10)	1.279(5)	N(1) - C(10)	1.286(2)	N(1) - C(10)	1.297(5)
	N(20) - C(20)	1.303(6)	N(3) - C(20)	1.288(2)	N(3) - C(20)	1.304(4)
	N(30) - C(30)	1.314(6)	N(5)-C(30)	1.291(2)		
	C(10) - N(11)	1.348(6)	C(10) - N(2)	1.365(3)	C(10)–N(2)	1.337(5)
	C(20)–N(21)	1.336(6)	C(20) - N(4)	1.347(2)	C(20)–N(4)	1.328(5)
	C(30)–N(31)	1.344(7)	C(30)–N(6)	1.347(2)		
	Cb-Ta(1)-N(10)	106.4(2)	Cb-Ta(1)-N(1)	124.3(2)	Cb-Ta(1)-N(1)	116.7(3)
	Cb-Ta(1)-N(20)	124.1(2)	Cb-Ta(1)-N(3)	113.1(2)	Cb-Ta(1)-N(3)	123.5(2)
	Cb-Ta(1)-N(30)	118.4(2)	Cb-Ta(1)-N(5)	113.5(2)	Cb-Ta(1)-Cl(1)	112.2(1)
	Ta(1)-N(10)-C(10)	161.3(3)	Ta(1) - N(1) - C(10)	162.8(2)	Ta(1) - N(1) - C(10)	168.1(3)
	Ta(1)-N(20)-C(20)	173.7(3)	Ta(1)-N(3)-C(20)	167.2(2)	Ta(1)-N(3)-C(20)	172.7(3)
	Ta(1) - N(30) - C(30)	157.7(7)	Ta(1) - N(5) - C(30)	174.5(2)	· · · · · · · ·	~ /
Cb = Centroid	of the n ⁵ -co-ordinated	C ₂ B ₂ ring.				

Fig. 3 The molecular structure of $[closo-3,1,2-Ta\{N=C(C_6H_4F)-NMe_2\}_2Cl(C_2B_9H_{11})]$ 5. Details as in Fig. 1.

competitive weakening of the carborane to metal π donation, and complex **3** shows the longest centroid–metal distance seen in the present study.

In the solid state each molecule of $[closo-3,1,2-Ta{N=C(C_6 H_4F$)NMe₂}₂Cl(C₂B₉H₁₁)], 5, is accompanied by two independent molecules of dichloromethane; the molecular structure is shown in Fig. 3, and selected bond lengths and angles appear in Table 1. Each *p*-fluoro-*N*,*N*-dimethylbenzamidinate ligand is co-ordinated to the tantalum in a monodentate fashion, with slightly different Ta-N bond distances (1.870(3) and 1.859(3) Å), which are shorter than those in 3. As in 3, the amidinate ligand is very close to planar, with the *p*-fluorophenyl group out of plane. The partial multiple character of both Ta-N and N-C bonds prevents rotation about them, and results in two inequivalent *p*-fluorophenyl groups, *cis* and *trans* respectively with respect to the Ta-Cl bond (Fig. 4), as evidenced by the NMR data. The carbon atom positions in the dicarbollide cage are clearly identified, with the Ta-Cl bond lying directly beneath the cage carbon atom C(7). The Ta-Cl bond in 5 is longer than in $[TaCl_3(C_2B_9H_{11})]$ (2.205(5) to 2.259(5) Å),² as a consequence of the steric bulk of the two amidinate ligands, and a reduction in the Lewis acidity of the Ta atom.

In the solid state the asymmetric unit of $[closo-3,1,2-Ta(OC_6H_3Me_2-2,6)_3(C_2B_9H_{11})]$, 7, comprises two molecules, A

Fig. 4 A view orthogonal to the ligand plane of the Ta $\{N=C-(C_6H_4F)NMe_2\}_2Cl$ fragment of compound 5. Hydrogen atoms have been omitted for clarity.

and B, with similar geometries (Fig. 5 shows molecule A and data for both are given in Table 2). The tantalum atom is coordinated by the open C_2B_3 face of the dicarbollide ligand (in a nearly symmetrical η^5 fashion) and by three dimethylphenoxide ligands. This complex exhibits evidence of the trans influence of the dicarbollide ligand, with two phenoxide ligands lying nearly parallel to the C2B3 face, and one perpendicular, in a fashion reminiscent of the structure of [Ta(NMe2)3(C2B9-H₁₁)] and [Nb(S₂NMe₂)₃(C₂B₉H₁₁)].¹ A similar orientation of alkoxide ligands is observed in $[Ti(^{t}Bu)(OC_{6}H_{3}^{i}Pr_{2}-2,6)_{3}]$.³⁷ The carbon atoms in the C₂B₃ face were clearly identified in both molecules, with one carbon atom lying almost directly trans to the unique phenoxide ligand. This results in a pseudo mirror symmetry which is only violated by the non-equivalence of C(8) and B(11) in molecule A and C(78) and B(81) in molecule B.

The planes defined by the C_2B_3 face of the dicarbollide ligand and the three oxygen atoms of the phenoxide ligands are not exactly parallel, with angles between the two planes of 2.6 and 1.8° in molecule A and B respectively. The dicarbollide ligand tilts forward, away from the unique phenoxide ligand. The Ta–O bond to the unique phenoxide ligand is shorter than to the other two, and shows a larger centroid–Ta–O angle, *i.e.* the oxygen moves away from the cage to reduce steric interaction and the cage tilts forward also to relieve interaction between the phenoxide ligand and B–H bonds.

In the solid state [*closo*-3-Ta(SC₆H₅)₄(9-NHMe₂-1,2-C₂B₉-H₁₀)], **8**, co-crystallises with one molecule of disordered toluene; the molecular structure of **8** appears in Fig. 6 and selected bond lengths and angles are given in Table 3. The Ta(SPh)₄ fragment has a distorted four-legged piano-stool structure, with approximate molecular C_2 symmetry (Fig. 7). The thiolate ligands containing S(1) and S(3) are bent away from the dicarbollide ligand (centroid–Ta–S angles of 123.3(3) and 119.1(3)° respectively), whilst the thiolate ligands containing S(2) and S(4) are displaced towards the dicarbollide ligand and do not have such pronounced angles at tantalum (centroid–Ta– S angles of 106.0(3) and 104.0(3)° respectively). The planes of the phenyl groups on S(1) and S(3) are almost co-parallel, but point in opposite directions, with an angle between the two

Fig. 5 The molecular structure of $[closo-3, 1, 2-\text{Ta}(OC_6H_3Me_2-2, 6)_3 - (C_2B_9H_{11})]$, 7. Only molecule A is shown. Other details as in Fig. 1.

Table 2 Selected bond lengths (Å) and angles (°) for [closo-3,1,2-Ta(OC_6H_3Me_2-2,6)_3(C_2B_9H_{11}], 7

	Molecule A		Molecule B
Ta(1)–C(7)	2.462(3)	Ta(2)–C(77)	2.483(3)
Ta(1) - C(8)	2.447(3)	Ta(2) - C(78)	2.428(3)
Ta(1) - B(9)	2.400(3)	Ta(2) - B(79)	2.409(3)
Ta(1) - B(10)	2.408(3)	Ta(2) - B(80)	2.413(3)
Ta(1) - B(11)	2.443(3)	Ta(2) - B(81)	2.449(3)
Cb–Ta(1)	1.963(3)	Cb–Ta(2)	1.956(3)
C(7)–C(8)	1.612(5)	C(77)–C(78)	1.638(4)
Ta(1) - O(1)	1.878(2)	Ta(2) - O(4)	1.853(2)
Ta(1) - O(2)	1.880(2)	Ta(2)-O(5)	1.882(2)
Ta(1) - O(3)	1.844(2)	Ta(2) - O(6)	1.857(2)
Ta(1)–O(1)–C(11)	153.0(2)	Ta(2)–O(4)–C(41)	160.5(2)
Ta(1) - O(2) - C(21)	151.0(2)	Ta(2) - O(5) - C(51)	153.2(2)
Ta(1) - O(3) - C(31)	165.0(2)	Ta(2)–O(6)–C(61)	164.4(2)
Cb = Centroid of th	e η⁵-co-ordinate	ed C ₂ B ₃ ring.	

Fig. 6 The molecular structure of $[closo-3-Ta(SC_6H_5)_4(9-NHMe_2-1,2-C_2B_9H_{10})]$, 8. Details as in Fig. 1.

Fig. 7 A view of compound 8 along the molecular pseudo-twofold axis, showing the approximate C_2 symmetry of the Ta(SPh)₄ unit, and the alternating arrangement of the SPh ligands. Hydrogen atoms have been omitted for clarity.

planes of 2.5°, whilst the phenyl groups on S(2) and S(4) have a much greater angle (140.0°) between them. This ligand orientation differs from that observed in the related structure of $[Ta(C_5H_4CH_3)(SC_6H_5)_4]$ ³⁸ where two of the phenyl groups are almost perpendicular to each other.

The Ta–S(3) distance is slightly shorter than the other three Ta–S distances, although all are in the range of typical tantalum(v)–thiolate distances, 2.35–2.47 Å.^{39,40} The Ta–centroid distance is slightly longer than those observed in other tantalum dicarbollide species, 1.963(3)–2.028(4) Å. This is not unexpected as the SPh groups are very good donor groups to the metal, resulting in a weakening of the M–cluster bonding interaction, and the [*nido*-10-NHMe₂-7,8-C₂B₉H₁₁][–] ligand is a mono- rather than di-anionic ligand.

Table 3 Selected bond lengths (Å) and angles (°) for [closo-3-Ta(SPh)₄(9-NHMe₂-1,2-C₂B₉H₁₀)], 8

	Ta–C(1)	2.515(6)	Ta–C(2)	2.456(6)	C(1)–C(2)	1.573(8)
	Ta-B(4)	2.539(6)	Ta-B(9)	2.552(6)	Ta-B(10)	2.489(7)
	Ta–Cb	2.053(6)				
	Ta-S(1)	2.4255(14)	Cb–Ta–S(1)	123.3(3)	Cb-Ta-S(1)-C(10)	90.0(3)
	Ta-S(2)	2.4224(14)	Cb–Ta–S(2)	106.0(3)	Cb-Ta-S(2)-C(20)	180.0(3)
	Ta-S(3)	2.4177(14)	Cb-Ta-S(3)	119.1(3)	Cb-Ta-S(3)-C(30)	83.9(4)
	Ta-S(4)	2.4580(16)	Cb-Ta-S(4)	104.0(3)	Cb-Ta-S(4)-C(40)	167.9(4)
$Cb = Centroid of the \eta^{5}$ -	co-ordinate	ed C ₂ B ₃ ring.				

3530 J. Chem. Soc., Dalton Trans., 2000, 3526–3533

Extended Hückel molecular orbital studies on $[Ta(C_5H_5)-(SH)_4]$, as a model for $[Ta(C_5H_4CH_3)(SC_6H_5)_4]$,³⁸ show that π bonding between the sulfur π -donor orbitals and the d_{x^2} and d_{xy} orbitals accounts for most of the observed centroid–Ta–S angles, *i.e.* S(1) and S(3) are shifted down to maximise overlap with the d_{x^2} orbital, while S(2) and S(4) are displaced towards the Cp ligand to maximise overlap with the d_{xy} orbitals which are Ta–Cp bonding appear to contribute significantly to the M–L σ bonding in CpML₄ compounds.⁴¹ The substituted dicarbollide ligand [*nido*-10-NHMe₂-7,8-C₂B₉H₁₁]⁻ in **8** has the same overall charge and very similar frontier orbitals to the [C₅H₅]⁻ ligand, and it is likely that the electronic structures of [Ta(C₅H₄CH₃)(SC₆H₅)₄] and **8** are similar.

The orientation of the NHMe₂ unit is of some interest, as it lies between S(1) and S(4), with the hydrogen atom pointing down into the plane of the sulfur atoms. Although the distances $H(1N) \cdots S(1)$ and $H(1N) \cdots S(4)$ are 2.78 and 2.67 Å respectively and direct hydrogen bonding can be ruled out, some weaker form of electrostatic interaction may be responsible for the directionality of the N(1)–H(1N) bond. The angle N(1)–B(9)–centroid is 160.7° and not dissimilar from the H–B–centroid angle at the unsubstituted cage boron atoms.

Experimental

All manipulations of air- and moisture-sensitive compounds were performed on a conventional vacuum/nitrogen line using standard Schlenk and cannula techniques or in a nitrogen filled glove box. When required, solvents were dried by prolonged reflux over an appropriate drying agent prior to distillation and deoxygenation by freeze-pump-thaw processes. NMR solvents were vacuum-distilled from suitable drying agents and stored in ampoules under a dry nitrogen atmosphere. Elemental analysis was performed by the micro-analytical service within this department. Infrared spectra were run as liquid films on a Perkin-Elmer 1615 FTIR spectrometer or as solid samples on a Graseby Specac 10500 Golden Gate coupled to a Perkin-Elmer 1000 series "Paragon" spectrometer, mass spectra on a Micromass Autospec instrument operating in EI mode (in each case the highest abundance peak in the envelope is quoted). NMR spectra were recorded on the following instruments: Varian Gemini-200 (¹⁹F); Varian Unity-300 (¹H, ¹¹B, ¹³C); Varian VXR-400 (1H, 13C); Varian 500 (1H, 13C and HETCOR); 1H and ¹³C spectra on the Unity-300 unless otherwise stated. All chemical shifts are reported in δ (ppm) and coupling constants in Hz. ¹H NMR spectra were referenced to residual protio impurity in the solvent (C₆D₅H, δ 7.15; CHCl₃, 7.26; CDHCl₂, 5.25), ¹³C to the solvent resonance (C_6D_6 , δ 128.0; CDCl₃, 77.0; CD₂Cl₂, 53.5) and ¹⁹F and ¹¹B externally to CFCl₃, and BF₃·Et₂O respectively, δ 0. Except where otherwise indicated, all spectra were recorded at ambient temperature.

Syntheses

[closo-3,1,2-Ta{N=C(Me)NMe₂}₃(C₂B₉H₁₁)] 3. In a Young's ampoule a stirred toluene (20 cm³) solution of compound 2 (0.445 g, 1 mmol) was treated dropwise with NCMe₃ (0.143 g, 3.5 mmol). The ampoule was evacuated and the solution heated to 130 °C and maintained at this temperature for 48 h. The reaction mixture slowly changed from pale yellow to deep red. It was allowed to cool to room temperature and the solvent evaporated under reduced pressure. The orange residue was extracted with dichloromethane (10 cm³) and layered with pentane (10 cm³), which produced a pale yellow powder that was isolated by careful filtration. This process was repeated two times and resulted in the isolation of a pale yellow microcrystalline precipitate. Yield 0.22 g, 39%. ¹H NMR (500 MHz, CD₂Cl₂): δ 3.20 (s, 3 H, NMe) 3.12 (s, 6 H, 2 × NMe), 3.06 (s, 6 H, 2 × NMe), 3.04 (s, 3 H, NMe) 2.90 (s, 2 H, carborane

C–H), 2.31 (s, 3 H, C–Me) and 2.21 (s, 6 H, C–Me). Additional peaks in ¹H-{¹¹B} NMR (CD₂Cl₂): δ 2.77 (1 H), 2.14 (2 H), 2.02 (2 H), 1.85 (1 H) and 1.69 (3 H). ¹³C-{¹H} NMR (125 MHz, CD₂Cl₂) assigned by HETCOR: δ 169.9 (1 × N=C(Me)NMe₂), 163.8 (2 × N=C(Me)NMe₂), 54.2 (carborane CH), 39.4, (1 × C–NMe) 39.3 (1 × C–NMe), 38.9 (C–NMe₂), 38.5 (C–NMe₂), 21.8 (2 × N=C–Me) and 17.7 (1 × N=C–Me). ¹¹B NMR (CDCl₃): δ –0.5 (d, 1B, J_{B-H} 108), -4.9 (d, 2B, J_{B-H} 138), -8.1 (d, 2B, J_{B-H} 99), -13.4 (d, 3B, J_{B-H} 153) and -17.4 (d, 1B, J_{B-H} 144 Hz). Calc. for C₁₄H₃₈B₉N₆Ta: C, 29.57; H, 6.73; N, 14.78. Found: C, 29.55; H, 6.91; N, 14.06%. MS: *m*/z 569 [M⁺], 484 [M⁺ – (NC-(Me)NMe₂)] and 436 [M⁺ – C₂B₉H₁₁].

 $[closo-3,1,2-Ta{NC(C_6H_4F)NMe_2}_3(C_2B_9H_{11})]$ 4. In а Young's ampoule a stirred toluene (10 cm³) solution of compound 2 (0.445 g, 1 mmol) was treated dropwise with a toluene solution (10 cm³) of NCC₆H₄F-p (0.42 g, 3.5 mmol). The ampoule was evacuated and the solution heated to 130 °C and maintained at this temperature for 48 h. The reaction mixture slowly changed from pale yellow to deep red. It was then allowed to cool to room temperature and the solvent evaporated under reduced pressure. The residue was extracted with hot toluene, filtered and allowed to cool to room temperature, when bright yellow [closo-3,1,2-Ta{NC(C₆H₄F)NMe₂}₃(C₂B₉H₁₁)] 4 precipitated. Crystals suitable for X-ray diffraction were grown by sealing a small amount of material in a 5 mm NMR tube containing benzene-d₆, heating to 60 °C and allowing to cool slowly to room temperature. ¹H NMR (300 MHz, C₆D₆): δ 7.07–6.56 (m, 12 H, C₆H₄), 4.53 (br s, 2 H, carborane CH), 2.64 (s, 12 H, NMe) and 2.57 (s, 6 H, NMe). ¹¹B NMR (96.2 MHz, C_6D_6): δ 5.1 (2B), -0.2 (3B), -4.9 (2B), -10.6 (1B) and -14.1 (1B). Calc. for C₂₉H₄₁B₉F₃N₆Ta·0.25C₆H₆: C, 44.2; H, 5.2; N, 10.1. Found: C, 44.1; H, 5.2; N, 9.5%.

 $[closo-3,1,2-Ta{N=C(C_6H_4F)NMe_2}_2Cl(C_2B_9H_{11})]$ 5. The initial stages of the synthesis of compound 4 were followed. The red/orange residue from the reaction was extracted with dichloromethane (10 cm³) and layered with pentane (10 cm³), which produced a pale yellow powder that was isolated by careful filtration. This process was repeated two times and resulted in the isolation of a yellow microcrystalline precipitate. Slow recrystallisation from a concentrated dichloromethane solution layered with pentane at -20 °C formed crystals suitable for single crystal X-ray diffraction experiments. Yield 0.33 g, 49%. ¹H NMR (400 MHz, CD_2Cl_2): δ 3.10 (s, 1 H, carborane C–H), 3.32 (s, 1 H, carborane C-H), 3.00 (s, 6 H, NMe₂), 3.20 (s, 6 H, NMe₂) and 6.98–7.5 (M, 8 H, $2 \times C_6 H_4 F$). Additional peaks in ¹H-{¹¹B} NMR (300 MHz, CD₂Cl₂): δ 1.50 (1 H), 1.58 (1 H), 1.80 (1 H), 1.99 (1 H), 2.06 (2 H), 2.32 (1 H) and 2.75 (1 H); 9th B-H hidden under C-H and NMe region. ¹⁹F NMR (188 MHz, CD₂Cl₂): δ -107.15 (s, 1F) and -110.06 (s, 1F). ¹³C-{¹H} NMR (100.57 MHz, CD₂Cl₂): δ 39.5 (NMe₂), 40.7 (br, C₂B₉-H₁₁), 41.7 (NMe₂), 42.5 (br, C₂B₉H₁₁), 115.7 (d, ortho-C of C_6H_4F , J_{C-F} 22), 116.8 (d, ortho-C of C_6H_4F , J_{C-F} 23), 128.4 (s, N=C), 129.2 (s, N=C), 130.0 (d, para-C of C₆H₄F, J_{C-F} 3), 130.2 (d, meta-C of C_6H_4F , J_{C-F} 9), 130.9 (d, para-C of C_6H_4F , J_{C-F} 3), 131.2 (d, *meta*-C of C₆H₄F, J_{C-F} 9), 163.6 (d, C-F, J_{C-F} 251) and 165.1 (d, C-F, J_{C-F} 254 Hz). ¹¹B NMR (96.2 MHz, C) (1, 1) (1 CDCl₃): δ 0.7 (d, 1B, J_{B-H} 118), -4.3 (d, 2B, J_{B-H} 141), -7.5 (d, $3B J_{B-H} 130$, $-13.9 (d, 2B, J_{B-H} 144)$ and $-16.9 (d, 1B, J_{B-H} 139)$ Hz). Calc. for C₂₀H₃₁ClB₉F₂N₄Ta·1.3CH₂Cl₂: C, 32.4; H, 4.3; N, 7.1. Found: C, 32.6; H, 4.3, N, 7.2%.

[*closo*-3,1,2-Ta(NMe₂)₂{ η^2 -N(Cy)CNMe₂}(C₂B₉H₁₁)] 6. A stirred toluene (10 cm³) solution of compound 2 (0.445 g, 1 mmol) was treated dropwise with a toluene solution (10 cm³) of CNC₆H₁₁ (0.35 g, 3.2 mmol). The yellow solution was warmed to 110 °C and maintained at this temperature for 12 h. The reaction mixture was allowed to cool to room temperature and the solvent evaporated under reduced pressure. The orange

	3	4	5	7	8
Formula	C14H38B0N6Ta	C ₃₂ H ₄₄ B ₉ F ₃ N ₆ Ta	C ₂₂ H ₃₅ B ₆ Cl ₃ F ₂ N ₄ Ta	C ₂₆ H ₃₈ B ₉ O ₃ Ta	C ₃₁ ₅H ₃₇ B₀NS₄Ta
М	568.74	847.97	849.03	676.80	836.10
Crystal system	Triclinic	Monoclinic	Triclinic	Monoclinic	Triclinic
Space group	$P\overline{1}$	$P2_1/c$	$P\bar{1}$	$P2_1/c$	$P\overline{1}$
aĺÅ	9.3136(5)	13.104(3)	10.122(2)	18.732(3)	11.236(1)
b/Å	10.4888(6)	18.420(4)	12.074(2)	19.920(3)	11.950(1)
c/Å	13.2061(7)	15.495(4)	15.206(3)	15.986(3)	15.081(2)
$a/^{\circ}$	78.322(1)		90.21(1)		110.016(3)
βl°	83.674(1)	90.976(4)	105.49(1)	95.108(4)	96.548(2)
y/°	75.013(1)		104.14(1)		102.996(2)
U/Å ³	1218.12(12)	3739.6(15)	1732.0(6)	5941.4(17)	1813.1(3)
Ζ	2	4	2	8	2
μ (Mo-K α)/mm ⁻¹	4.525	2.987	3.592	3.727	3.286
Reflections measured	13888	42691	22150	71190	21823
Unique reflections	5565	9287	9387	16897	9807
R(int)	0.0214	0.0304	0.0221	0.0329	0.0864
Reflections with $I \ge 2\sigma(I)$	5000	8380	8767	12834	6099
$R\left[F^2 > 2\sigma(F^2)\right]$	0.030	0.018	0.033	0.024	0.050
$wR(F^2)$, all data	0.078	0.047	0.090	0.057	0.090

residue was extracted with fresh toluene (10 cm³) filtered and carefully layered with pentane (10 cm³). Slow recrystallisation at $-20 \,^{\circ}$ C produced a yellow crystalline solid. Yield 0.37 g, 67%. ¹H NMR (C₆D₆): δ 3.58 (s, 2 H, carborane C–H), 3.35 (s, 12 H, 2 × NMe₂), 2.85 (s, 3 H, NMe), 2.54 (s, 3 H, NMe) and 0.7–1.38 (m, 11 H, C₆H₁₁). Additional peaks in ¹H-{¹¹B} NMR (C₆D₆): δ 1.90 (2 H), 2.20 (1 H), 2.50 (1 H), 2.76 (1 H), 2.84 (2 H) and 3.93 (2 H). ¹³C-{¹H} NMR (C₆D₆): δ 211.4 (N–C=N), 58.5 (CH in C₆H₁₁), 50.9 (NMe₂), 50.1 (C₂B₉H₁₁), 45.8 (NMe), 40 (NMe), 34.9 (CH₂ in C₆H₁₁) and 25.5 (CH₂ in C₆H₁₁). ¹¹B NMR (C₆D₆): δ 3.2 (d, 1B, J_{B-H} 116), -3.4 (d, 3B, J_{B-H} 124), -8.1 (d, 2B, J_{B-H} 87 Hz), -13.9 (d, 1 B) and -15.6 (d, 2B). Calc. for C₁₅H₄₀B₉N₄Ta: C, 32.48; H, 7.27; N, 10.10. Found: C, 32.51; H, 7.47; N, 8.30%. MS: *m*/z 555 [M⁺], 510 [M – NMe₂⁺] and 402 [M – (Me₂NC=NC₆H₁₁)⁺].

[closo-3,1,2-Ta(OC₆H₃Me₂-2,6)₃(C₂B₉H₁₁)] 7. A stirred toluene (10 cm³) solution of compound 2 (0.89 g, 2 mmol) was treated dropwise with a toluene solution (10 cm³) of HOC₆H₃Me₂-2,6 (0.9 g, 7.4 mmol). The yellow solution was refluxed for 12 h. The reaction mixture then allowed to cool to room temperature and the solvent evaporated under reduced pressure. The pale yellow residue was extracted with fresh toluene (10 cm³), filtered and carefully layered with pentane (10 cm³). Slow recrystallisation at -20 °C produced colourless crystals. Yield 1.1 g, 82%. ¹H NMR (CD₂Cl₂): δ 2.38 (s, 18 H, $OC_6H_3Me_2$), 3.37 (br s, 2 H, $C_2B_9H_{11}$), 6.97 (t, 6 H, meta-H of $C_6H_3Me_2$) and 7.11 (d, 3 H, para-H of $C_6H_3Me_2$). Additional peaks in ¹H-{¹¹B} NMR (300 MHz, CD_2Cl_2): δ 1.21 (1 H), 2.31 (2 H), 2.36 (2 H), 2.66 (2 H), 2.89 (1 H) and 3.07 (1 H). ¹³C-{¹H} NMR (CD₂Cl₂): δ 17.4 (MeAr), 60.3 (br, C2B9H11), 124.7 (para-C of OC6H3Me2), 128.7 (ortho-C of OC₆H₃Me₂), 129.4 (meta-C of OC₆H₃Me₂) and 158.6 (ipso-C of OC₆H₃Me₂). ¹¹B NMR (96.2 MHz, CD₂Cl₂): δ 7.3 (d, 1B, J_{B-H} 138), 0.7 (d, 2B, J_{B-H} 138), -3.4 (d, 2B, J_{B-H} 138), -9.2 (d, 3 B) and -15.3 (d, 1B, J_{B-H} 172 Hz). Calc. for C₂₆H₃₈B₉O₃Ta: C, 46.14; H, 5.66. Found: C, 45.9; H, 5.63%.

[closo-3-Ta(SC₆H₅)₄(9-NHMe₂-1,2-C₂B₉H₁₀)] 8. A stirred toluene (10 cm³) solution of compound 2 (0.89 g, 2 mmol) was cooled to -60 °C and treated dropwise with a toluene solution (10 cm³) of PhSH (0.88 g, 8 mmol). On warming the yellow solution to ambient temperature it rapidly turned blood red. The reaction mixture was then stirred at room temperature for 12 h, after which the solvent was evaporated under reduced pressure. The red residue was extracted with toluene (10 cm³), filtered and carefully layered with pentane (10 cm³). Slow recrystallisation at -20 °C produced deep red crystals. Yield

0.84 g, 53%. ¹H NMR (CD₂Cl₂): δ 3.19 (s, 2 H, $H_2C_2B_9H_8$ -NHMe₂), 3.27 (s, 6 H, NMe₂), 3.49 (br s, NH) and 7.11–7.30 (M, 4 × SPh). Additional peaks in ¹H-{¹¹B} NMR (CD₂Cl₂): δ 3.11 (1 H), 2.86 (2 H), 2.394 (2 H), 1.99 (1 H) and 1.58 (2 H). ¹³C-{¹H} NMR (CD₂Cl₂): δ 50.3 (NMe₂), 56.3 (br, $C_2B_9H_{10}$ -NHMe₂), 127.7 (*para*-C of SPh), 128.8 (*meta*-C of SPh), 132.5 (*ortho*-C of SPh) and 143.1 (*para*-C of SPh). ¹¹B NMR (CD₂Cl₂): δ 23.3 (s, 1B), -3.4 (d, 2B, J_{B-H} 124), -4.4 (d, 2B, J_{B-H} 113), -8.7 (d, 2B, J_{B-H} 172), -10.5 (d, 1B, J_{B-H} 157) and -16.3 (d, 1B, J_{B-H} 117). Calc. for $C_{28}H_{37}B_9NS_4Ta\cdot0.2C_7H_8$: C, 43.4; H, 4.8; N, 1.7. Found: C, 43.5; H, 5.0; N, 1.6%.

X-Ray crystallography

Single-crystal diffraction experiments at 150 K (3, 5 and 7) or 120 K (4 and 8) were carried out with a SMART 1K CCD area detector, using graphite-monochromated Mo-K α radiation ($\bar{\lambda} = 0.71073$ Å). The reflection intensities were corrected for absorption by numerical integration based on measurements of the crystal and face indexing (for compounds 7 and 8, using SHELXTL software⁴²) or by a semi-empirical method based on multiple scans of identical reflections and Laue equivalents using the SADABS program for 4 and 5,⁴³ and using SHELXTL for 3. The structures were solved by direct methods and refined by full-matrix least squares against F^2 of all data, using SHELXTL programs.⁴² Crystal data and experimental details are listed in Table 4.

CCDC reference number 186/2165.

See http://www.rsc.org/suppdata/dt/b0/b004862n/ for crystallographic files in .cif format.

Acknowledgements

We acknowledge the award of an EPSRC Senior Research Fellowship to J. A. K. H. and we thank EPSRC and Kvaerner Process Technology for a CASE studentship to A. L. J. We thank the ERDF-funded 21st Century Materials Centre at the University of Durham for a fellowship to J. M. M.

References

- 1 A. S. Batsanov, A. V. Churakov, J. A. K. Howard, A. K. Hughes, A. L. Johnson, A. J. Kingsley, I. S. Neretin and K. Wade, *J. Chem. Soc.*, *Dalton Trans.*, 1999, 3867.
- 2 R. Uhrhammer, D. J. Crowther, J. D. Olson, D. C. Swenson and R. F. Jordan, *Organometallics*, 1992, **11**, 3098.
- 3 D. J. Crowther, R. A. Fisher, A. M. Canich, G. G. Hlatky and H. W. Turner, US Pat., 5502124, 1996; D. J. Crowther, S. L. Borkowsky, D. Swenson, T. Y. Meyer and R. F. Jordan, *Organometallics*, 1993, **12**, 2897; D. J. Crowther, D. C. Swenson and R. F. Jordan, J. Am. Chem. Soc., 1995, **117**, 10403.

- 4 D. E. Bowen, R. F. Jordan and R. D. Rogers, *Organometallics*, 1995, 14, 3630.
- 5 G. Chandra and M. F. Lappert, J. Chem. Soc. A, 1968, 1940; M. F. Lappert, P. P. Power, A. R. Sanger and R. C. Srivastava, Metal and Metalloid Amides, Ellis Horwood Publishers, Chichester, 1980; M. H. Chisholm and I. P. Rothwell, in Comprehensive Co-ordination Chemistry, eds. G. Wilkinson R. D. Gillard and J. A. McCleverty, Pergamon Press, Oxford, 1987, vol. 2, ch. 13.4.
- 6 A. K. Hughes, A. Meetsma and J. H. Teuben, *Organometallics*, 1993, **12**, 1936.
- 7 W. A. Hermann and W. Baratta, J. Organomet. Chem., 1996, 506, 357;
 Y. Mu, W. E. Piers, M. A. MacDonald and M. J. Zaworotko, Can. J. Chem., 1995, 73, 2233;
 Y. Mu, W. E. Piers, D. C. MacQuarrie, M. J. Zaworotko and V. G. Young, Organometallics, 1996, 15, 2720;
 Z. Ziniuk, I. Goldberg and M. Kol, J. Organomet. Chem., 1997, 546, 441.
- A. Guzei, A. G. Baboul, G. P. A. Yap, A. L. Rheingold, H. B. Schlegel and C. H. Winter, *J. Am. Chem. Soc.*, 1997, **119**, 3387;
 I. A. Guzei, G. P. A. Yap and C. H. Winter, *Inorg. Chem.*, 1997, **36**, 1738; Y. Mu, W. E. Piers, L. R. Macgillivray and M. J. Zaworotko, *Polyhedron*, 1995, **14**, 1.
- 9 G. M. Diamond, R. F. Jordan and J. L. Petersen, *Organometallics*, 1996, **15**, 4045; J. N. Christopher, G. M. Diamond, R. F. Jordan and J. L. Petersen, *Organometallics*, 1996, **15**, 4038; G. M. Diamond, R. F. Jordan and J. L. Petersen, *J. Am. Chem. Soc.*, 1996, **118**, 8024.
- 10 For an example of the balance between kinetic and thermodynamic control see: A. K. Hughes and A. J. Kingsley, J. Chem. Soc., Dalton Trans., 1997, 4139.
- 11 K. Jones and M. F. Lappert, J. Organomet. Chem., 1965, 3, 295.
- 12 C. Chandra, A. D. Jenkins, M. F. Lappert and R. C. Srivastava, J. Chem. Soc. A, 1970, 2550.
- 13 J. Barker and M. Kilner, Coord. Chem. Rev., 1994, 133, 219.
- 14 For examples containing lithium see: D. R. Armstrong, D. Barr, R. Snaith, W. Clegg, R. E. Mulvey, K. Wade and D. Reed, *J. Chem. Soc., Dalton Trans.*, 1987, 1071; R. P. Davies, P. R. Raithby, G. P. Shields, R. Snaith and A. E. H. Wheatley, *Organometallics*, 1997, 16, 2223.
- 15 U. Segerer, S. Blaurock, J. Sieler and E. Hey-Hawkins, Organometallics, 1999, 18, 2838; Z. Hou and D. W. Stephan, J. Am. Chem. Soc., 1992, 114, 10088.
- 16 L. D. Durfee and I. P. Rothwell, Chem. Rev., 1988, 88, 1059.
- 17 For an example involving a carborane spectator ligand see: E. A. Boring, M. Sabat, M. G. Finn and R. N. Grimes, *Organometallics*, 1997, **16**, 3993.
- 18 A. Dormond, A. Aaliti and C. Moïse, J. Chem. Soc., Chem. Commun., 1985, 1231; P. Zanella, N. Brianese, U. Casellato, F. Ossola, M. Porchia, G. Rossetto and R. Graziani, J. Chem. Soc., Dalton Trans., 1987, 2039; M. H. Chisholm, C. E. Hammond, D. Ho and J. C. Huffman, J. Am. Chem. Soc., 1986, 108, 7860; Z. Z. Wu, J. B. Diminne and Z. L. Xue, Organometallics, 1999, 18, 1002; M. Galakhov, P. Gómez-Sal, A. Martín, M. Mena and C. Yélamos, Eur. J. Inorg. Chem., 1998, 1319; Z. Wu, J. B. Diminnie and Z. Xue, Organometallics, 1999, 18, 1002.
- 19 V. C. Gibson, J. Chem. Soc., Dalton Trans., 1994, 1607.
- 20 R. N. Grimes, in *Comprehensive Organometallic Chemistry II*, ed. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon Press, Oxford, 1995, vol. 1, ch. 9; M. F. Hawthorne, *Acc. Chem. Res.*, 1968, 1, 281; A. K. Saxena and N. S. Hosmane, *Chem. Rev.*, 1993, 93, 1081.
- 21 Z. G. Lewis, D. Reed and A. J. Welch, J. Chem. Soc., Dalton Trans., 1992, 731; U. Grädler, A. S. Weller, A. J. Welch and D. Reed, J. Chem. Soc., Dalton Trans., 1996, 335.

- 22 D. E. Smith and A. J. Welch, Organometallics, 1986, 5, 760.
- 23 F. Teixidor, S. Gómez, M. Lamrani, C. Viñas, R. Sillanpää and R. Kivekäs, Organometallics, 1997, 16, 1278; S. Gómez, C. Viñas, M. Lamrani, F. Teixidor, R. Kivekäs and R. Sillanpää, Inorg. Chem., 1997, 36, 3565; M. Lamrani, S. Gómez, C. Viñas, F. Teixidor, R. Sillanpää and R. Kivekäs, New J. Chem., 1996, 20, 909.
- 24 J. Cowie, E. J. M. Hamilton, J. C. V. Laurie and A. J. Welch, J. Organomet. Chem., 1990, 394, 1.
- 25 C. Boisson, J. C. Berthet, M. Ephritikine, M. Lance and M. Nierlich, J. Organomet. Chem., 1996, **522**, 249.
- 26 C. Boisson, J. C. Berthet, M. Lance, M. Nierlich and M. Ephritikine, *J. Organomet. Chem.*, 1997, **548**, 9.
- 27 D. J. Cardin and M. F. Lappert, Chem. Commun., 1967, 1034.
- 28 L. Wesemann, M. Trinkaus and M. Ruck, Angew. Chem., Int. Ed., 1999, 38, 2375.
- 29 T. A. George, K. Jones and M. F. Lappert, J. Chem. Soc. A, 1969, 992.
- 30 A. S. F. Boyd, G. M. Rosair, F. B. H. Tiarks, A. S. Weller, S. K. Zahn and A. J. Welch, *Polyhedron*, 1998, **17**, 2627; G. M. Rosair, A. J. Welch, A. S. Weller and S. K. Kahn, *J. Organomet. Chem.*, 1997, **536**, 299; M. Gomez Saso, D. F. Mullica, E. Sappenfield and F. G. A. Stone, *Polyhedron*, 1996, **15**, 793; Y. K. Yan, D. M. P. Mingos, T. E. Muller, D. J. Williams and M. Kurmoo, *J. Chem. Soc.*, *Dalton Trans.*, 1995, 2509; Y. K. Yan, D. M. P. Mingos, T. E. Mullica, E. L. Sappenfield, F. G. A. Stone and S. F. Woolam, *Organometallics*, 1994, **13**, 157; E. J. M. Hamilton and A. J. Welch, *Polyhedron*, 1994, **10**, 471; J. Cowie, E. J. M. Hamilton, J. C. V. Laurie and A. J. Welch, *J. Organomet. Chem.*, 1990, **394**, 1.
- 31 S. B. Miller and M. F. Hawthorne, *J. Chem. Soc., Chem. Commun.*, 1976, 787; R. E. King III, S. B. Miller, C. B. Knobler and M. F. Hawthorne, *Inorg. Chem.*, 1983, **22**, 3548.
- 32 G. M. Rosair, A. J. Welch, A. S. Weller and S. K. Zahn, J. Organomet. Chem., 1997, 536, 299; S. A. Jasper, J. C. Huffman and L. J. Todd, Inorg. Chem., 1998, 37, 6060; S. A. Batten, J. C. Jeffery, L. H. Rees, M. D. Rudd and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1998, 2839.
- 33 C. J. Jones, J. N. Francis and M. F. Hawthorne, J. Am. Chem. Soc., 1973, 95, 7633; M. R. Churchill and K. Gold, Inorg. Chem., 1973, 12, 1157; J. Plešek, B. Štíbr and S. Heřmánek, Collect. Czech. Chem. Commun., 1984, 49, 1492.
- 34 M. F. Hawthorne, L. F. Warren Jr., K. P. Callahan and N. F. Travers, J. Am. Chem. Soc., 1973, 95, 7633.
- 35 H. C. Kang, S. S. Lee, C. B. Knobler and M. F. Hawthorne, *Inorg. Chem.*, 1991, **30**, 2024; R. E. King III, S. B. Miller, C. B. Knobler and M. F. Hawthorne, *Inorg. Chem.*, 1983, **22**, 3548.
- 36 F. H. Allen and O. Kennard, *Chem. Des. Autom. News*, 1992, 8, 1; F. H. Allen and O. Kennard, *Chem. Des. Autom. News*, 1992, 8, 31.
- 37 H. Nöth and M. Schmidt, Organometallics, 1995, 14, 6601.
- 38 O. J. Curnow, M. D. Curtis, A. Rheingold and B. S. Haggerty, *Inorg. Chem.*, 1991, **30**, 4043.
- 39 K. Tatsumi, I. Matsubara, Y. Inoue, A. Nakamura, K. Miki and N. Kasai, J. Am. Chem. Soc., 1989, 111, 7766.
- 40 S. M. Koo, R. Bergero, A. Salifoglou and D. Coucouvains, *Inorg. Chem.*, 1990, **29**, 4844.
- 41 P. Kubáček, R. Hoffmann and Z. Havalas, Organometallics, 1982, 1, 180.
- 42 SHELXTL, Version 5.1 NT, Brüker AXS, Analytical X-ray Systems, Madison, WI, 1998.
- 43 G. M. Sheldrick, SADABS, Program for scaling and correction of area detector data, University of Göttingen, 1996.