On the pathway of the n'-n° migration of a Cp* ligand
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The thermolysis and photolysis, respectively, of the
phosphinidene complex [Cp*P{W(CO),},] 1 in the presence
of MeC=CMe leads to the three-membered heterocycle
[(n*-CH,C;Me,)W(CO),C{(CH;)CH(CH,)}PW(CO);] 4
with an unusual n*-coordinated CH,C;Me, ligand formed
by a 1,4-sigmatropic hydrogen shift; the crystal structure
and the spectroscopic data of 4 are discussed.

Complexes with a metal-phosphorus triple bond are a novel
class of compounds' which exist in two different types;
[L,M=P] A% and [L,M=P—M’(CO),] B* (M’ = Cr, W). In com-
plexes of type A the metal-phosphorus triple bond is kinetically
stabilised by sterically demanding substituents at the ML,
fragment. Thus, these complexes react predominantly end-on by
using the phosphorus lone pair.* In complexes of type B the
lone pair is already used by coordination to Lewis acidic com-
plexes to stabilise the overall complex and thus, revealing a high
side-on reactivity. If in both types of complex the transition
metal is in a high oxidation state, stable compounds can be
isolated. In the case of a low oxidation state of the transition
metal these complexes exist as highly reactive intermediates.’
We recently developed a synthetic approach to generate com-
plexes of type B directly as highly reactive intermediates reveal-
ing a high side-on reactivity.® The principle of their generation
is based on migration of a o-bound Cp* at the phosphorus
atom to give an n’-coordination mode at the transition metal as
shown in Scheme 1. Thus, the thermolysis of [Cp*P{W(CO)s},]
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Scheme 1 Reaction pathway for the thermolysis of [Cp*P{W(CO)s},]
1.

1 leads, via CO elimination, to an intermediate of the formula
[Cp*(CO),W=P—>W(CO)s] D containing a phosphorus tung-
sten triple bond. The dimerisation of D leads to the major
product [Cp*,(CO),W,{1,n>-P,[W(CO)s]}] 2. The CH-activated
phosphine 3 can be isolated as a minor product. Its formation
can be regarded as a subsequent side-reaction of the first
formed intermediate C. The chemistry of the highly reactive
intermediate D offers synthetic routes to a large variety of
unprecedented phosphametallocycles. Herein we report on the
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thermolysis as well as the photolysis of [Cp*P{W(CO)s},] 1 in
the presence of but-2-yne, which gives an insight into the Cp*
migration process.

The photolysis of [Cp*P{W(CO)s},] 1 in the presence of
MeC=CMe in toluene at ambient temperatures leads to the
yellow crystalline complex 4 in 80% yield.® However, the
thermolysis of 1 with MeC=CMe leads to a mixture of prod-
ucts. The ¥P{'H} NMR of the crude reaction mixture shows
besides the major product 4 small amounts of 2 and 3 as the
thermolysis products of 1 alone and an additional singlet at
19.2 ppm with a Jyp of 226 Hz. Column chromatographic
work-up on silica gel leads to a 30% isolated yield of 4.t
Unfortunately the product leading to the above-mentioned
singlet decomposes on the column material. Due to our results
on the reaction of 1 with other alkynes’ one can speculate that
this compound contains a four-membered WPC, ring formed
by the reaction of intermediate D with MeC=CMe.
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Complex 4 is moderately soluble in pentane and readily
soluble in toluene and CH,Cl,. 4 was fully characterised on the
basis of its spectroscopic dataf and by single-crystal X-ray
structure analysis.§ In the IR spectra 4 shows CO stretching
frequencies in the range of terminal CO ligands. The appropri-
ate molecular ion peak is observed in the mass spectrum. The
3P{'H} NMR spectrum of 4 shows a singlet at 73.3 ppm with
"Jwp coupling constants of 234 Hz for the P->W(CO); bond
and 38 Hz for a P-W(CO), single bond, the latter revealing a
reduced s-character.

The X-ray crystal structure analysis of 4 (Fig. 1) reveals a
tricyclic complex with a dominant three membered [WCP] ring
with a distorted tetrahedrally coordinated phosphorus atom.
The bond distance W(1)-P [2.5516(19) A] corresponds to a
typical W—P single bond whereas the bond distance P-C(10) at
1.755(7) A is significantly shorter than a P—C single bond. This
distance is comparable to the P-C bond length in the three

membered ring complex [Cp(CO)zMoPPhZZ "H,].% As a result of
the complicated tricyclic arrangement the P-C bond distance to
the atom C(14) of the previously Cp* ligand corresponds toa
lengthened P-C single bond [1.919(7) A], which is 0.017 A
longer than the P-C bond in the starting material 1.5 Another
interesting structural feature of 4 is the n'- (at the P atom) and
n- (at the W atom) coordinated previously Cp* ligand. As
mentioned before, the thermolysis of 1 leads to a n'-n® Cp*
migration from the phosphorus to the tungsten atom. Thus,
compound 4 can be considered as a snapshot of the Cp*
migration process trapped by the alkyne. The alkyne binds to
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Fig. 1 Molecular structure of 4 (showing 50% probability ellipsoids;
hydrogen atoms are omitted for clarity). Selected bond distances (A)
and angles (°): W(1)-P 2.5516(19), W(1)-C(10) 2.385(7), W(1)-C(21)
2.523(8), W(1)-C(16) 2.572(8), P—C(10) 1.755(7), P-C(14) 1.919(7),
P-W(2) 2.5367(18), C(10)-C(11) 1.545(10), C(11)-C(13) 1.526(9),
C(11)-C(15) 1.531(10), C(15)-C(14) 1.560(10), C(15)-C(16) 1.529(10),
C(17)-C(18) 1.350(12), C(21)-C(16) 1.368(11), W(1)-C(10)-P 74.4(2),
W()-P-C(10) 64.2(2), P-W(1)-C(10) 41.47(17), W(1)-P-W(2)
127.52(7), W(1)-P-C(14) 102.4(2), C(14)-P-W(2) 124.2(2), C(14)-P-
C(10) 96.7(3).

the W(1) and P atoms but also to the Cp* ligand. The carbon
atom C(21) of a previous methyl group of the Cp* ligand loses
one hydrogen atom which migrates via a 1,4 H-shift to the
carbon atom C(11) resulting in a CH, moiety at C(21) and
giving a C—C double bond [d(C21-C16) = 1.368(11) A], which
is now n*-coordinated to the W(CO), fragment. The bond
distance C(10)-C(11) of the former alkyne corresponds, after
incorporation within the tricyclic system, to a C—C single bond
[1.545(10) A]. Complex 4 possesses several chiral centres, most
of them included in rigid ring systems but also at the carbon
atom C(11). However, no diastereomers can be observed in the
NMR spectrum since the hydrogen attack at C(11) from the
back of the molecule is the only possible reaction pathway for
the H-migration.

The structure of 4 gives an insight into the Cp* migration
process as the first step of the formation of intermediate C
which leads, via the triple bond intermediate D, finally to com-
plex 2 (compare Scheme 1). Starting from [Cp*P{W(CO)s},] 1
the loss of one molecule of CO, initiated by the thermal or
photochemical activation leads to an approach of but-2-yne
and the movement of the Cp* ligand. The alkyne coordinates
side-on at the W(CO), unit to give intermediate E (Scheme 2).
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Scheme 2 Proposed reaction pathway for the reaction of 1 with
MeC=CMe.

P-C and W-C bond formation leads to migration of the hydro-
gen atom at C(21) to the carbon atom C(11) of the alkyne under
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C-C bond formation. Since, hydrogen attack from the back of
the alkyne is the only possible pathway for this reaction, just
one diastereomer is formed.
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Notes and references

T Synthesis of 4. A solution of Me-C=C-Me in n-hexane (0.042 g, 0.77
mmol) was added to a solution of 1 (0.630 g, 0.77 mmol) in toluene (40
ml) and refluxed/photolysed for 2 hours until the colour of the solution
changed from deep blue to brown. The solvent was completely removed
in vacuo, and the resulting brown residue was transferred onto silica
gel and separated by column chromatography. Elution with n-hexane—
toluene (10: 1) gave a yellow fraction containing 4, which was recrystal-
lised from n-hexane to give yellow crystals (thermolysis: 0.193 g, 0.23
mmol, 30%; photolysis: 0.344 g, 0.42 mmol, 55%). Anal. Calcd. for
Cy,H,,0,PW,: C, 34.48; H, 2.53. Found: C, 34.10; H, 2.28%.

1 Spectroscopic data for 4: 3'P{"H} NMR (C¢Dy): 6 73.3 (s, 'Jyp 234 and
38 Hz); '"H NMR (C¢Dy): 6 3.55 (m, 1 H, H21A), 3.26 (d, "Jyuy 6.9 Hz,
1 H, H21B), 2.15(d, Jyy 14.1 Hz, 3 H, CHj;), 1.64 (dd, Jyy 1.1 Hz, 3 H,
CH,;), 1.40 (d, Jugu 17.8 Hz, 3 H, CHj;), 1.00 (dd, Jizy 1.1 Hz and 5.5 Hz,
3 H, CH;), 0.88 (s, br, 1 H, H11), 0.73 (d, Jyg 7.2 Hz, 3 H, CH;), 0.37 (s,
3 H, CH,); IR (KBr) v (CO) [em™']: 2072 (s), 2045 (s), 1997 (w), 1974
(br), 1921 (br); MS (EX): m/z (%): 840 (14) [M*], 644 (61) [M*" — 7 CO],
402 (14) [M* — W(CO),).

§ Crystallographic data for 4: C,,H,;O,PW,, M =836.08, monoclinic,
space group P2,/n; a=16.077(3) A, b=10.499(2) A, ¢=16.773(3) A,
B=114.44(3)°, U=2577.609) A®, Z =4, \(Mo-K,) =0.71073, £ =9.025
mm . Data were collected at 200(1) K on a STOE IPDS “image-plate”
diffractometer for the range 4.58 <20 < 51.9°. The structure was solved
by direct methods using SHELXS-86," a full-matrix least-squares
refinement on F? in SHELXL-97% with anisotropic displacement for
non-H atoms (except of the atom O2, due to the limited quality of the
crystal used). Hydrogen atoms were located in idealised positions and
refined isotropically according to the riding model. Final residuals for
a total of 17327 reflections, of which 4916 were independent [R;, =
0.0772] was R, =0.0511 and wR,=10.966 and for the 4039 reflections
with 1> 2a(I), R, =0.0401 and wR, = 0.0924. CCDC reference number
186/2043. See  http://www.rsc.org/suppdata/dt/b0/b004941g/  for
crystallographic files in .cif format.
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