We’ve gathered the family to show you why

PERCOM'’s™ Number 1

in cassette data systems for microcomputers.

Pardon us for doing a little boasting, but we’re proud of our
family. Proud of each member’s reputation for performance and
reliability. And pleased that we can offer the best in cassette
data systems and data terminal interfacing at low, home-com-

puting prices.

It took more than guts and a little luck to
forge a position of leadership. We're
number 1 because you get more when
you buy PERCOM™. The reason, simply,
is experience. Every product described
in this ad is based on nearly 10 years of
crucial involvement in the design and
manufacture of computer peripherals

Experience. It's why we developed a
more reliable data cassette for home
computing. Why our interfacing units
provide both cassette and data terminal
interfacing. Why you get the fastest,
most reliable cassette data rates from
PERCOM™. Experience. It's the reason
for PERCOM™.

that use cassettes for mass storage.

1APE
ON

TERMINAL

RATE
300

= e v
*ao Q b A

1200 tochl

PERCIM g

UNE

cis-30+

For your SS-50 bus computer — the
CIS-30+

« Interface to data terminal and two cas-
sette recorders with a unit only 1/10
the size of SWTP's AC-30.

« Select 30, 60, or 120 bytes per second
cassette interfacing, 300, 600 or 1200
baud data terminal interfacing.

« Optional mod kits make CIS-30+ work
with any microcomputer. (For MITS
680b, ask for Tech Memo TM-CIS-
30+—09.)

» KC-Standard/Bi-Phase-M (double fre-
quency) cassette data encoding. De-
pendable self-clocking operation.

* Ordinary functions may be accom-
plished with 6800 Mikbug™ monitor.

« Prices: Kit, $79.95; Assembled,

99.95.

Prices include a comprehensive instruction
manual. Also available: Test Cassette, Re-
mote Control Kit (for program control of
recorders), IC Socket Kit, MITS 680b mod
documentation, Universal Adaptor Kit
(converts CIS-30+ for use with any com-

puter). MIKBUG® Motorola, inc.

For your S-100 computer —the CI-812

» Both cassette and data terminal inter-
facing on one S-100 bus PC board.

« Interfaces two recorders. Record and
playback circuits are independent.

« Select 30, 60, 120, or 240 bytes per
second cassette interfacing, 110 to
9600 baud data terminal interfacing.

« KC-Standard/Bi-Phase-M (double fre-
quency) encoded cassette data. De-
pendable self-clocking operation.

« Optional firmware (2708 EPROM)
Operating System available.

« Prices: kit, $99.95; assembled,
$129.95.

Prices include a comprehensive instruction
manual. In addition to the EPROM Operating
System, a Test Cassette, Remote Control Kit
(for pro'gram control of recorders), and an IC
Socket Kit are also available.

For your data storage — Pilon-30™
data cassettes

» Orders-of-magnitude improvement in
data integrity over ordinary audio cas-
settes.

« Pilon-coated pressure pad eliminates
lint-producing felt pad of standard
audio cassettes.

« Smooth pilon coating minimizes erra-
tic tape motion.

» Foam pad spring is energy absorbing.
Superior to leaf spring mounted pad
which tends to oscillate and cause flut-
ter.

« Five-screw case design virtually pre-
cludes deformation during assembly.

» Price: $2.49.

PERCOM™ products may be purchased
from home computer dealers nation-
wide, or may be ordered direct from the
factory.*

*Texas residents must include an
additional 5% for factory orders. MC &
Visa cards honored.

PERCOM DATA COMPANY, INC.
DEPT.

. K
318 BARNES - GARLAND, TEXAS 75042
Phone: (214) 276-1968

PERCOM™ ‘peripherals for personal computing’ [p EH c D M]

P7

Converting a binary num-
ber to one’s complement.
Write down the binary num-
ber. Then invert each bit —
that is, change each 1 toa 0
and each 0 to a 1. For ex-
ample, the one’s complement
of 10110 is 01001.

Converting an octal num-
ber to one’s complement.
Write the octal number. Then
above each digit put a 7. Now
subtract each bottom digit
from the top digit.

To convert the octal 0145,
for example, you proceed like
this:

7 7 7 7
D A4 4 B

7 6 3 2
Remember that in the

binary number that’s actually
in your computer, each 0 is
being inverted into a 1 as you
complement. Any extra zeros
you put in will produce extra
ones in the complement. For

example, octal 5 is binary
101. But it is also 0101,
00101, 000101, etc., since

putting extra zeros in front of
a binary number does not
change it. But look what
happens if you try to get the
one’s complement (Fig. 1).

An octal 5 can have many
different complements; but
notice that the only differ-
ence between them is the
presence of extra ones at the
left. The solution is to use
only as many ones at the left
as will fit the word length of
the computer being used. For
example, in an eight-bit com-
puter the complement of 5
would be 11111010 binary,
or 372 octal.

So, whenever you find the
complement of any number,
always be sure to keep in
mind the word length of your
computer, and modify the
answer to fit your word
length. In the case of hobby
computers, this problem
usually arises on either the

Binary Number

Binary Complement

7 7 7 7 7 8 0 0

0 2 3 0 7 5 0 0

7 5 4 7 0 3 0 0
Example 2.

Heath H8 computer or any
8008 system, which use octal
with an eight-bit word length.
Since the leftmost octal digit
of any octal number on these
computers only stands for
two binary digits, the largest
it can be is octal 3 (or binary
11). Hence, any complement
that starts with a digit greater
than 3 is wrong. The usual
trick is to subtract a 4 from
the !'eftmost digit.

Suppose you want the
one's complement of 005. If
you follow the rule for con-
verting, you get

777
-005

772

Since the leftmost digit is
greater than 3, there is an
extra bit. Remove it by sub-
tracting 4 from it, so the
actual complement is 372.

Converting a hex number
to one’s complement. The
rule is the same as for octal
numbers, except that we
write a 15 above each digit
and convert hex digits to and
from decimal.

The one's complement of
hex 68 is hex 97.

15 15
6 8
9 7

The one’s complement of hex
9E is hex 61; we have to
convert E to 14:

15 15
-9 -E(14)
6 1

The one’s complement of hex
61 is hex 9E; this time we

Octal Complement

101 010 2

0101 1010 12

00101 11010 32

000101 111010 72
Fig. 1.

have to convert 14 to a hex

15 15
6 =1
9 14 (E)

The same warnings about
extra ones in the complement
apply here as when using
octal numbers; but we don’t
usually have to worry about
it because in most computer
systems the number of bits
matches the hex digits ex-
actly. For example, the two
hex digits used in eight-bit
computers like the 8080 or
6800 match the word length
exactly.

Converting numbers in
one’s complement to two's
complement. As mentioned
before, most systems use
two'’s rather than one's
complements. It's easy to
convert from one’s to two's
complement: add 1. If the
one's complement of some
number is 110, the two’s
complement is 111; if it's 61,
the two’s complement is 62;
if it's 9B, the two's comple-
ment is 9C — adding 1 to B
(which is 11) makes it C (12).

Be careful how you add 1
— it has to be done right. For
example, if the one's comple-
ment is a binary 101, adding
1 does not give you 102
because a 2 is not allowed in
binary! 101 plus 1 is 110
(refer to the table).

Although this is irrelevant
anyway since there are other
ways of converting, it is of
some interest since many
microprocessors convert to
the two’s complement by
first finding the one’s comple-
ment and then adding a 1.
For instance, the Intersil
6100 has a CIA (complement
and increment accumulator)
instruction. (/ncrement
means to add one.)

Converting a binary num-
ber to its two’s complement.

Write the binary number.
Now find the rightmost 1 and
put a vertical line just to the
left of it. Invert all bits to the
left of this line. Leave the bits
to the right of the line un-
changed.

Convert the binary num-
ber 10110 thus:

101 10
010 10
invert leave

alone

The two’s complement of the
eight-bit number 00000101 is
11111011:

0O000O0OO0OT1TO0]1
111110111
invert

Converting an octal num-
ber to its two’s complement.
Write the octal number and
see whether it has any zeros
at its right end (ignore zeros
in the middle or at the left).
If so, put a zero above each
zero at the right. For in-
stance, if you wanted to con-
vert the octal number
02307500, you would now
have

00

02307500

Continue from the right and
put an 8 above the next digit
and a 7 above each of the
others. Finally, subtract each
digit from the one above it
(see Example 2). The two's
complement in this case is
75470300.

Just one warning: Every-
thing we said about extra
ones in the one’s complement
conversion applies here, too.
For instance, in an eight-bit
computer the complement of
005 would be 373, not 773.

If you find this method
too hard to remember, you
can always convert your octal
number to binary, find the
two’'s complement of that,
and then convert that back to
octal.

Converting a hex number
to its two’s complement.
Look at the hex number to
see whether it has any zeros
on the right end (ignore zeros
in the middle or at the left).
If it does, put a zero above

51

each of these rightmost zeros.
To convert COBO, you would
write:

0
coBO

Continue from the right and
write the number 16 above
the rightmost nonzero digit
of the hex number; write 15
above each of the other
digits. Finally, subtract each
of the hex digits from the
number above it, converting
from letters to numbers — or
back if needed. COBO con-
verts to 3F50 (Example 3).

As another example, the
two’s complement of hex 05
is FB:

15 16

-0 -5

15 (F) 11 (B)

By the way, the two's

complement of a two’s
complement is the original
number; the two's comple-
ment of FB is 05:

15 16
-F (15) -B (11)
0 5

Converting Decimal to BCD

Many computers allow
calculations to be done in
binary coded decimal (BCD)
rather than only in binary.

15 15 16 0
-C(12) -0 -B (11) 9
3 15 (F) 5 0
Example 3.
verting decimal to BCD is is only a form of shorthand

performed in the same way as
converting hex to binary:
Replace each decimal digit by
its four-bit binary equivalent
from the table. To convert
decimal 93, replace 9 by
1001 and 3 by 0011 to get
10010011.

Notice that this result is
different from the 01011101
you would get if you con-
verted 93 to binary. In con-
verting to binary, you convert
an entire decimal number at
once; in converting to BCD,
you convert only one digit at
a time.

Watch out for one big area
of confusion. If you convert
decimal 93 to BCD you get
10010011, which looks like
binary. Consequently, you
might be tempted to convert
this “binary’" number to hex,
by following the standard
procedure, to get 93.

This might fool you into
thinking that hex 93 is the
same as decimal 93, which is

that allows you to express the
bit pattern 10010011 in a
simpler form. If you were
employing an assembler that
used hex, you might use what
looks like hex 93 when you
really meant BCD 10010011.

BCD to Decimal

This conversion is the
same as that for binary to
hex: Arrange the bits in
groups of four starting from
the right, and convert each

group into hex using the
table. For instance, BCD
10001001 is grouped into

1000 and 1001, which gives
the decimal 89.

In BCD to decimal, you
should never get the digits A
through F. If you do, then
the BCD number was wrong.
For instance, to convert
00111100, you would get
two groups 0011 and 1100.
The 0011 converts into a 3,
but 1100 converts to C,
which is not allowed in

So — What's All This Used
For?

If all your programming is
in BASIC, you will probably
never need to know any of
this hex magic. But if you do
any machine- or assembly-
language programming, it will
help a lot.

For example, suppose you
want to set up a counter at
-50 (decimal) and want to
convert this to hex. First find
+50 in hex: 50 divided by 16
is 3, with a remainder of 2;3
divided by 16 is 0, with a
remainder of 3. So, a decimal
+50 is hex 32. Now change
this to -50 by finding the
two’s complement:

15 16

-3 2

12 (C) 14 (E)
-50 is CE in hex.

Or suppose you want to
subtract 2 from some hex
number. If your computer
does not have a subtract in-
struction, you can do the
same thing by adding a -2. In
hex, 2 is 02, and the -2 is
found as the two’s comple-
ment:

15 16
u. -2
15(F) 14 (E)

You should add hex FE.

00111100

(BCD is a combination of notso. The “hex’ 93 isnota decimal. Hence,
binary and decimal.) Con- true hexadecimal number; it was not a valid BCD number.
§-100 RO-CHE Systems
STATIC RAM y

16K 2995

® FULLY STATIC (Not Pseudo Static)
© PHANTOM DISABLE (A16)

® MWRT OR PWR

® FULLY BUFFERED

e 128-2102L1PC'S

© 400NS GUARANTEED (250NS TYP.)
© ASSEMBLED/BURNT-IN

® 90-DAY GUARANTEE

Also:

8K STATIC RAM 155
2102L1PC *1.40

Calif. Residents add 6%. @ Master Charge & Visa welcome

E”—_E P.0. BOX 17296

714y 7517341 'RVINE, CA. 91711:

MULTI-CASSETTE
CONTROLLER

* Read and write records from and to up to 4
cassette recorders with one Tarbell Cassette
Interface.

* Included software handles Assembly Lan-
guage and BASIC.

* File Maintenance System and Text Editor
available.

Write for brochure:
RO-CHE Systems R16
7101 Mammoth Avenue

Van Nuys, California 91405

Once you figure it out,
hex magic can be fun. =

Canadian
8K MEMORY KITS

® Low Power, SOONS, S100 BUS

©® On-Board Regulation, No Duty

® Prime Quality, First Run 21 LO 2 ICs
® WAMECO PC Board, SST Included

® Full Documentation, Tl Sockets

® Solder Mask

. $219.95 (Canadian)

Price . .
CHARGEX & VISA
HONORED
Mail orders to: @na

ORTHON COMPUTERS
12411 Stony Plain Rd
Edmonton, Alberta Canada TSN3N3
o8

52

Try GOMPUTER DIGEST...
And Get A Digest of
EDP & Scanning News
Without Risk

By subscribing to COMPUTER DIGEST, you problems, because you will be more knowledge-
have the facts you need about computers and able about computers and optical scanning.
optical scanning.

With this information, you can act immediate- e It's a timely summary of what is being
ly on new business opportunities. Subscribe and ~ written about computers and optical scanning in
each month you get: the business press. You save reading time, plus

you can be sure of getting hundreds of new

e A 12-page newsletter digesting the im- items of interest each year.

portant news in the computer and optical scan-
ning field. There is coverage of new equipment,
new optical scanning and computer forms, who To subscribe, just complete the form below
is expanding, who is getting promoted—a wide and mail it back. The newsletter is fully guaran-
variety of facts, all written in concise style, so teed. Read 2 issues, see if you can use the infor-
you can read the reports in minutes. mation. If you find you don't need COMPUTER
DIGEST, just write “cancel” on the invoice we
send you, and owe nothing. If you want to con-
tinue to read COMPUTER DIGEST, simply pay
the $40 invoice we send. We have found this is
the best way to introduce businessmen to this

¢ Not only can you find new markets, but newsletter. This way, we take all the risk, so you
the reports will help you solve customer have nothing to lose by trying this publication.

e QOver 50 news reports in each issue cov-
ering new equipment, new uses of computers
and scanning equipment, new products and
software.

Send to:
COMPUTER DIGEST
North American Building, 401 N. Broad St., Philadelphia, PA 19108

Y send me COMPUTER DIGEST, also incorporating OPTICAL Bill company for $40
es, SCANNING NEWS. | understand | can look at 2 issues, and if not)
satisfied, | will owe nothing. | can write “cancel” on the bill, and Bill me for $40

owe nothing. If | like the newsletter, | will pay the $40 bill | receive. Payment enclosed

Name Title

Company

Address

City/Statel/Zip

W AMep,
[y 332
-
] st Computer Digest is published by North American Publishing Company. leaders in editorial excellence. KB/5/78
%

&

NG CO"~

53

ILUBAU
NSSHUUM

=l

George Young
Sierra High School
Tollhouse CA 93667

In the last session, we covered
the majority of the TTL
counters and some of the regis-
ter chips. We performed many
experiments with these chips,
thus building your background
skills in reading circuit dia-
grams and, | hope, building up
your confidence as well. As you
can see, the sessions are be-
ginning to get a bit rougher.
Hang in there; we will make it
yet.

In this session, we will take
up decoders, decoding, three-
state devices, and how trafficis
controlled on the microproces-
sor data bus.

Introduction

Most of our modern micro-
processor chips have 16 ad-
dress lines providing the capa-
bility of selecting 65,535 dis-
crete memory locations. These
separate memory locations are

54

referred to as the address
space of the microprocessor.
Fig. 1 shows the microproces-
sor and 16 address lines. These
are labeled A, through A,,. 1K of
RAM requires ten address lines
from the microprocessor to
select the 1024 separate mem-
ory cells in each RAM chip; so
we have drawn the 10 address
lines A, through A; running
from the microprocessor to the
1K RAM block.

We are going to draw the 1K
RAM block in an unusual
fashion. There are actually
eight separate RAM chips in
the RAM block, and we have
drawn them stacked up in order
to conserve space. We did not
draw eight rectangles in the
stack, but the concept of more
than one chip is readily con-
veyed by this diagram.

As shown in Fig. 1, our 1K of
RAM will not function; two
things are wrong. First, the ten
address lines will not drive the
address inputs of the 1K RAM
block. Microprocessor output

Bus Traffic Control

pins are capable of driving one
TTL load. We are asking each
address line to drive eight in-
puts to the RAM block. There-
fore, we must provide buffering
on each of the address lines out
of the microprocessor. A buffer
is a circuit placed between two
circuits to provide isolation. We
need a buffer on each address
line not for isolation, but to in-
crease the drive capability.

The second reason Fig. 1
won't work is that the chip en-
able (CE) pins on the RAM
chips are floating. The CE and
the small circle on the symbol
both indicate that we need an
active low enable here to make
the RAM function.

In Fig. 2a, we have added
noninverting buffers to each
address line to provide the drive
capability required. Our first
idea is to use the A,, address
line for the CE input for the first
1K RAM block. After all, this

line will be low for the first 1K of
memory space; and when this
line goes high, the first 1K RAM
block will be de-selected.

We are also introducing
another concept in Fig. 2a. The
ten address lines, A, through
A,;, are shown entering a rec-
tangle. Feeding from the rec-
tangle is a widened arrow that
goes to each of the RAM
blocks. Data lines and address
lines are often drawn in this
fashion. The broadened line in-
dicates that more than one line
isincluded in the wide line. This
saves drawing the individual
lines involved and takes less
space in the diagram. As long
as the idea is understood by
everyone, there is no problem,
and the diagram is clearer and
actually more easily under-
stood.

Furthermore, in Fig. 2a we
have added a second 1K RAM
block. Our first thought on

MICROPROCESSOR

AlS A4 AIY AI2 All A0 A9 A8

A7 A6 A5 A4 A3 A2 A1 A0

R

]

Fig. 1. Addressing the 1K RAM block.

MICROPROCESSOR

AlS A1a AI3 AR All_A10 A9 A8

R

Y

1YY Y1

1K RAM

I‘\Ac
1K RAM
—

a9 —
CE

5>
(a)

ADDRESSES | AIS | Al14 | AI13 | A12 | AlL AlOQ

4-1023 o o] o o [} o IST 1K
1024-2047 o o o (o] o | 2ND IK
2048-307!1 o [) o o] 1 o 3RD IK
3072-4095 [e] o) 0) 1 4TH IK
4096-5119 L] o (] | o o 5TH IK
5120-6143 o o o 1 o I 6TH IK

(d)

Fig. 2. Adding the second 1K RAM block.

handling the second group of
"CE pins on this block is to add
an inverter between the CE on
the first RAM block and the CE
on the second RAM block. This
will work if we only have 2K of
memory in our system. If we
have more RAM or ROM, then
an examination of the truth
table in Fig. 2b will help us find
out why this simple method of
enabling the 2K will not work.

The truth table shows that
the A,, line does indeed start
out low for the first 1K of
memory space and then is high
for the second 1K. But lines 3
and 5 of the table also show the
A, line low. Therefore, the first
1K RAM block will be selected
every time the A,, line goes low.
In other words, the single in-
verter decoder will not do for
memory sizes above 2K.

Fig. 3 shows the experimental
setup for the design console
breadboard and the address
lines from the microprocessor.
Since we don’t have a micropro-
cessor (yet), we'll use this cir-
cuit to show how the lines are
related; the actual test circuitis
shown in Fig. 4a. The chip en-
able LEDs have been arranged
in the circuit to turn on the LED
when the CE line goes low.

In Fig. 4 we are attempting to
place an equivalent circuit on
the console breadboard that
will represent what happens
with the address lines and the
decoding process. Fig. 4a
shows the equivalent bread-
board circuit for Fig. 2. Note
that we are not considering the
A, through A; address lines in
the decoding process. These
lines are used by each 1K block
of memory throughout the ad-
dress space and are not used in
the decoding process for each

| MICROPROCESSOR

AlS Al4 A3 a2 All A0 A9 A8

A7 A6 AS A& A3 A2 Al aQ

I

4096 1024

HERERE

LED ON=

CHIP ENABLE

Fig. 3. Experimental setup for decode testing.

1K block.

In order to have a 1K RAM
block selected only once in the
memory space, we must use
some form of decoding. We can
use gates and inverters and de-
code each 1K block in this
fashion. Fig. 4b shows this kind
of decoder. You can set this cir-
cuit up on the console bread-
board and use it to decode the
four CE lines; but there is an
easier way—use a decoder
chip. This makes a rather long
introduction, but | think that we
have the problem fairly well
delimited.

Experiment #51
The 7442 Decoder
Problem: How can the ad-
dress lines of the microproces-
sor decode the memory chips?
Solution: We will investigate
thisonthe console breadboard.

+5v

150

CEI
w5V o
haz)
PR -
+5v AlO !
a0 I
e |
|
CE2 I
P an gy N
—— Al — b ® ;
|
ces :
”
A2 — _®_< a2
I
I
CE4 13
”
a3 — —@— 1
4 ‘L .
Lcaeaimas

(o)

The experiment uses the 7442
decoder, but the 7441, the 7445,
the 74145, the 8250 or the 8251
may also be used for this ex-
periment.

Procedure: Refer to Fig. 5.
Fig. 5a shows the 7442 pin-
outs; Fig. 5b shows the 7442
truth table. Notice the row of
zeros (lows) traveling diagonal-
ly across the truth table . . . this
is exactly what we need for chip
enable pins. Put the 7442 on the
console breadboard (don't for-
get power and ground). Use
four jumper wires to represent
the A,, through A,, address
lines. Start with all four inputs
to the 7442 grounded. The LED
marked CE-1 should be on.

Theory: The 7442 is a one-of-
ten (usually written 1:10) de-
coder. It has four input lines
marked A, B, C and D on our dia-
gram. The truth table of Fig. 5b

150
CEl

Ce2

Fig. 4. Delimiting the address decoding problem.

55

shows that with all inputs low,
the 0 output line (pin 1) will be
low. This should turn on CE-1.
This line would, therefore, go to
the first 1K RAM block CE pin,
and would select that RAM
block. (Fig. 5c illustrates
decoding 4K of RAM.)

Now take the A,, jumper wire
high. This should turn on CE-2
and turn off CE-1. This line
(from pin 2 on the 7442) would
go to the second 1K RAM block
and select this RAM block
while, at the same time, the
first 1K RAM block is de-
selected.

If you now encode a binary 2
by taking the A,, line high and
the A,, line low, pin 3 on the
7442 should go low, turning on
CE-3 and turning off CE-2. This
line from pin 3 on the 7442
would go to the third 1K RAM
block and select it while blocks
1and 2 are de-selected.

Finally, if you encode a
binary 3 with both the A,, and
A, lines high, CE-4 will illumi-
nate and CE-3 will turn off. Pin 4
of the 7442 would go to the
fourth 1K RAM block selecting
it while the highs on pins 1, 2
and 3 will de-select the first
three RAM blocks. Thus, we
have a decoder for 4K of mem-
ory chips.

But wait, we did not use all
the outputs of the 7442. What
about the rest of the output
pins?

The 7442 may be operated as
a 1:4 decoder, 1:8 decoder or
1:10 decoder. To use only the
first eight outputs of the 7442,
we do not use the D input to the
7442; we leave it grounded. We
can then operate the 7442 as a
1:8 decoder and use the eight
output pins to decode 8K of
RAM. To operate the 7442 as a
1:4 decoder as we just did in the
experiment, leave the C and D
inputs grounded and operate
the 7442 as a 1:4 decoder to
decode 4K of address space.
We may use all ten out pins of
the 7442 and decode 10K of ad-
dress space with the 7442.

Fig. 6 gives the pin-outs for
several more decoder chips.

Experiment #52
The 74154 Decoder Chip

Problem: To decode more

56

than 10K of address space.

Solution: Use a decoder that
has more output pins.

Procedure: Refer to Fig. 6e,
where the 74154 1:16 decoder is
set up in a test circuit. This
24-pin chip was designed for
address decoding in com-
puters. It has two enable pins,
18 and 19. Use two jumper wires
on these pins to represent the
A, and A, address lines. Any
binary counter may be used to
simulate the A,, through A,, ad-
dress lines. Set up the circuit
with the 74161 counter chip.
Sixteen LEDs are shown moni-
toring the 74154 output lines.

If you do not have 16 LEDs,
then use as many as you can
for the test circuit. Remember
that the console logic probe
may be used for one LED and
that you have eight LEDs in the
console 7-segment readout. If
you have the FND 70 readout,
then it will be necessary to
drive the segments of the FND
70 through inverter sections
since FND 70 requires an active
high to turn on each segment.
The 74154 will decode 16K of

vce p—

e

» 0 & w N - O
~ ® © o o

E=in]

-1 GND

(o) 7442 PIN-OUTS

address space.

Experiment #53
The Traffic Cops

Problem: What is all this stuff
hung on the data bus lines?

Solution: Let’s take a look.

Procedure: Fig. 7 shows the
microprocessor chip and its
eight data lines. It also shows
arrows signifying data travel-
ing both directions on these
data lines. During a read cycle,
the data is traveling from mem-
ory (or input/output devices) in-
to the microprocessor. During a
write cycle, data travels from
the microprocessor out to ex-
ternal devices. Fig. 7b shows a
single data line (D,) and a pair
of open collector NAND gates
acting as traffic cops on the
data line.

Theory: Assume that the
microprocessor is in a memory
read cycle. This means that the
R/W is high. The high on pin 2
of the 7403 will enable this
gate, which means the data to
be read into the processor will
be enabled. This high is also in-
verted to a low by the inverter

INPUTS
]

OUTPUTS
415

—T-1=1=-1=1=1=1=]c]°]o[c[e]c][c]c]e

“T==1=[olololo|-1-]1-|-lolo|clola
-|O|=|0|=|0|=|0O|=|0|~|O|~|O|~|0|>

—=I=1==1=1= === [=]=1=]-lele]

1
1
0
|
|
]
1
1
1
|
|
|
1
1
1
1
|

—I=1=1=1=1=1=1=|={=]=[=]=]|o]=]=]"
—I=1=1=1=1=1=1=|=1=]=[=[e]|-]-]-]|«

6
1
1
1
I
1
|
0
1
|
|
1
|
1
|
|
1

—=l=1=1=1=1=1=lel=1=1=1=1=1=1=1~

I=1=1=1=1=lel=1=1=1=1=1=1=1=1-]*|

—=1=1=1=1=1=Tel=I=[= == =|=]=]=]

1
11
1
!
ol
1o
1
1)
L
!
1)
!
11
11
L
11

o
o
]
|
o
o
]
]
o
o
|
|
0o
)
|
|

(b) 7442 TRUTH TABLE

150

7442

Al2 ol €

A|3°——-—‘—2' 0

@ @ N & B s W N - O

5

(c) DECODING 4K OF RAM

Fig. 5. The 7442 decoder.

section, and the low on pin 5
will disable this gate (taking it
out of the circuit for the time
being).

Next, the microprocessor is
assumed to go into a memory
write cycle. The R/W goes low,
and the low on pin 2 of the 7403
now disables this gate and pin
3 floats on the end of the 2.2k
pull-up resistor. The low on the
RIW line is inverted by the in-
verter section, and the result-
ing high output applied to pin 5
will enable this gate. The data
to be written into memory (from
the processor) will now be en-
abled onto the data bus. This
circuit illustrates how the two-
way traffic on the data bus is
controlled by the *‘traffic cops”
in the circuit. The RIW line and
the inverter control the two
gates and the direction of the
traffic flow.

Fig. 7b is fine for an introduc-
tion and example of controlling
data on a bus going to and from
the processor. However, it isn’t
practical from a design stand-
point (for several reasons).
First, the dual-gate configura-
tion would have to be repeated
for each data line. This means
the R/'W output from the micro-
processor would be driving
eight gates. You'll recall from
an earlier discussion that all of
the microprocessor outputs are
capable of driving only one TTL
gate each. Fig. 7c illustrates a
solution to the problem—the
addition of an inverter, and a lit-
tle reconfiguring. Now the RIW
signal is going into the 7404
(pin 1), which is driving the
eight write gates (only one of
which is shown).

The second, and most impor-
tant, reason why this circuit is
totally unacceptable lies in the
use of the 7403 gates for inter-
facing with the bus. The whole
idea behind a bus system is
that several devices can be
plugged into the bus (i.e., other
gates will be tied to the bus fur-
ther down the line). These addi-
tional gates have a “‘loading ef-
fect” on the bus. Without my
going into a detailed technical
explanation, it will suffice to
say that such systems con-
sume a lot of power and are
noisy (i.e., have glitches and

spikes that can be interpreted
as logic ones or zeros). The
answer to the problem is to use
Tri-state gates for interfacing
to a bus.

Tri-state gates, such as the
8797 shown in Fig. 8a, are
either enabled or disabled.
When they are enabled by a low
on the DISable pins (1 and 15),
the outputs will be determined
by the logic levels (HI or LO) at
the input pins. In other words,
the gates are working just like
any other gates. When they are
disabled (by a high on the DIS-
able line) the gates are effec-
tively disconnected from the
bus. The outputs are said to
have gone into a high-imped-
ance or open condition and do
not present any loading to the
bus (i.e., they are discon-
nected). Fig. 8b is a truth table
for the operation of the 8T97
and Fig. 8c illustrates a typical
bus interface configuration.

In summary, there are three
advantages to using Tri-state
gates when you are interfacing
to a microcomputer bus (one of
which | haven’t mentioned be-
fore). First, lower power con-
sumption; second, less loading
on the bus (thereby maintaining
waveform integrity); and finally,
higher speed (faster switching
fromahigh to low or vice versa).

Note that the 8T97 is a nonin-
verting buffer and has four sec-
tions controlled by one line and
two sections controlled by a
second line. The two sections
may be operated independently
of each other. The DM 8097 and
the 74367 are also the same
type of chip. The 8T97 is more

00 p—e————————t W

o2 p—mm—a—
o’ pmmm—g—-—-e
04 p——_—

0% p—mmm--=a_—=

VOVVMOODVODO-Z

(o)

CONSOLE
CLOCK 2 cLK A 4 AlO 23 a 6 7
IN

oo

.-J 1 | ——C vee p— 16
2 —d 2 | 2 —{o al—s
3= 3 2 3—q5s 84
4 — 4 3 4 —ds6 op— I3
§ —i S 4 S—qr ' p—12
[Y— 6 5 6 —qs 2p—11
7 — 7 6 Ciem——t'® 3p—10
8 —9 8 ?. 8 —{ GND 4p—9
(o) 7441 (b) 7445 (c) 8250 (d) 8251

74145

L. 150

CEI

|

o

E2

|

o
m
o

@,

>
o
m
P

o
m
]

|

.
o
<

o

m

o

®,

o
m
~

i@,

i3 Al 22 8

®,

o
m
©

74161 74154
12 Al2 21 9

®:@®,

o
m

=
3@,

i@,

®E®,

E! 3

4

o

3

Iy

)
@z
m
G

€2

o
m
o

@,

£2

(e) 74154 TEST CIRCUIT

Fig. 6. The 74154 decoder.

READ
DATA

5 u READ DATA
2 2.2x

6 WRITE %
sjo3 DATA X WRITE

DATA

04

(v) (c)
Fig. 7. Traffic control on the data bus.

57

expensive than the others, but
my own experience with these
chips indicates that the 8T97
has more drive capabilities and
proves superior in operation in
the circuit ... justifying its
greater cost.

Other chips are becoming
available for this buffering job
on the data and address buses;
| think that soon we may see a
new family of microprocessors
with the buffers, as well as
RAM and ROM, built into the

chip. In fact, Intel has a new
microprocessor chip, with
many of these capabilities built
in, which will be second-
sourced by Signetics. This
points the way that things are
heading in the subsequent gen-
eration of microprocessor
chips.

Preview

We have looked at the micro-
processor address bus, how de-
coding of the address space
may be accomplished and how
traffic is controlled on the data

\J
‘ i bus.
IS4 o—1 %5 vee
2 15
N 2 20 Dis2
ouT 1 o T
IN 2 o 20 0UT &
DISABLE
P
ouT 2 ot I o2 hss | INPUT|OUTPUT
o o))
6 1"
IN 3 2] Mo ouT 5 ° o ; 3
x
out 3 19 in 4 N : L
1 o] X HI 2
GND o2 2 out 4 1 1 x HI Z
(b) TRUTH TABLE

(e) BT97 PIN-QUTS
DMBO9 7
74367

Next time we will turn our at-
tention to the memory chips,
both ROM and RAM. Using the
7489 (8225), we will set up 64
bytes of memory on the con-
sole breadboard, and also burn
a 7488 (8223) PROM on the con-

sole. Sierra Electronics, Box 11,
Auberry CA 93602, will furnish a
package for us of two 8225s
and two 8223s for $4 postpaid
in the U.S. and Canada. Califor-
nia residents, add 6 percent
sales tax.l

0o

o1

03 |
) TO MEMORY CHIPS

|
|
|

04

— e —— e
_Z.___I_I—-I__X_—L__'_LA__LX
A

0%

:

06

w48 i vy
/
X

Fig. 8. 8T97 data bus buffering.

We speak your

And we're giving you what you want.

e acomprehensive product line. Hardware, assembled or
kits, and software frommajor manufacturers. Plus books and

current literature. Financing available.

e atrained, enthusiastic staff. We'll help you choose or

design the system that's right for you. No high pressure here.

e service when you need it. We won't sell you something

we can't keep running.

@ e a brand new facility

in Pennsylvania.

We'll be able to

serve our South Jersey-
Pennsylvania customers
more efficiently now.

e a bigger, better New
Jersey store. We've

enlarged our showroom
in Iselin. Now there are
more displays you can
__ tryout. There's more

= room to stock the

products you need.

The Microcomputer People.™
Computer Mart of New Jersey
Computer Mart of Pennsylvania

New Jersey Store Pennsylvania Store
501 Route 27 550 DeKalb Pike
Cc30 Iselin, NJ 08830 King of Prussia, PA 19406
201-283-0600 215-265-2580
Tue.-Sat. 10:00-6:00 Tue.-Thur. 11:00-9:00
Tue. & Thur. til 9:00 Fri. & Sat. 10:00-6:00
(our only locations)

58

INNOVEX FLOPPY DISK DRIVE
NEW-FULL SIZE $495 or LESS*

From The Same People Who Brought You The First Diskette and Drive

T0 DESIGN YOUR OWN CUSTOM SUB-SYSTEM FOR LESS:

(1) BUY THE INNOVEX MODEL 410 OR 420 FROM THE MANUFACTURER
AT THE OEM VOLUME PRICE OF $495.

8" Full Size,IBM Compatible,Hard
or Soft Sector Single or Double Density

(2) BUY THE FLOPPY CONTROLLER DESIGNED FOR YOUR SYSTEM

(3) *THEN FOR A LIMITED TIME GET A REBATE FROM INNOTRONICS
HAVING BOUGHT ONE OF THESE POPULAR INTERFACES SPECIFI-
CALLY DESIGNED TO WORK WITH THIS INNOVEX DRIVE:

Peripheral Vision
" Digital Group

WE ARE PROUD TO OFFER THE HIGHEST QUALITY DISKETTE DRIVE
FOR THE FAIREST PRICE POSSIBLE IN THE INDUSTRY

ACT NOW AND SAVE!!!!

Send Check Or Money Order for $495
Less Rebate If Applicable
(proof of purchase required)
INNOTRONICS CORPORATION/DEPT A
BROOKS ROAD
LINCOLN, MASSACHUSETTS 01773
Tel. (617) 259-0600

*Offer Ends 7-1-78

iniTera NERLIN in the Nixed
.hm C160H BV 108V) kc’hl:'!m.

A L

j‘ xa @

Dense Mode: 160H x 100V
Running Man Patterns

ANS8 31 00 01 OE 82 CD C2 74
9650 D1 E1 CD 7A C3 CD A4 CI
.::: 18 CD 47 C2 C3 28 Co 080
N

a74c2
\NS6 74 C2
08358 01

\ES®
1234 5678 1234

The many faces of MERLIN

NERLIN is excePtionall¥ versatile. Some
of the Softuvare ProSroasmable aocdes and
disPle¥ formats are’

norsal ASCII

video

Ri9ht or Left Justified lon9 lines
Two GraPhic modes

Mixed ASCII/GraPhics (toP n lines)

RERLIM is ideal for the swmall sUstes,
Particularl¥ TURNKEY sUsteas. Some of
the MBI Monitor functlions are:
N - HeaorY Modif(V
v

veo"**cosc2vxn)
.01, bed2.96

BEMSE
CRAPNICS
FRON

NINITERN
ASSOCIATES

Super Dense: 320H x 200V
Equation Plotting

3002 REN/ u;ln kgor
3004 CALL 83 REN/ EDIQ (FLIP SCREEN)
3028 I=1
3038 PesL30B9
3035 ¢ 2
'REN/ CALC PATTERNM
REN/ DRAN PATTERN

\ES® 61
'REM/ CALC NEXT PATTERM

===215‘7. 2920 REN/ DELAY

SiA C B E D L H SL SHPLPH

82 20 20 8D 78 356 34 12 00 01 61 00

\Né8 19 CD

\ESS
1234 5678 68AC
\

IA' UNTIL YOU SEE ALL THE
FUNCTIONS CALL 21 OF THENW!)

*REN/ CLEAR

31 =13~
3120 Pe=P8-1290

3138 COTO 3058

4010 REN/ CALULATE PATTERN SUB
4020 H=20+RNDCZ)388 .

4030 L=20+RND(2Z)280

4040 D=10+RNDCZ)3350

Super Dense: 320H x 200V BASIC Program Listing
Line Drawing Output Shown Below

Monitor Debug Usage

Super Dense: 320H x 200V Super Dense: 320H x 200V

3-D Boxes Perspective Drawing

MERLIN (and your S-100 Computer...)
... the graphics development package you’ve been waiting for.

Do these photos suggest an application in your field? Whether you’re into architecture, astro-
logy, music or whatever, you can apply graphics to make your presentations more effective
and your work more efficient.

Real Time Plotting Complex Equation Plotting Fine Line Drawings Pattern Movement
Heart Rate Stock Market Trends Architecture Animation
Navigation Teaching: Mathematics 3-D Projections Games
Spectrum Analysis Circuit Responses Circuit Layouts

MERLIN is also a multipurpose system monitor board with
ROM monitor and editor software, parallel keyboard port, and
audio cassetts storage, besides being your text and graphics
video output device.

MERLIN is supported by expert technical assistance, a con-
stantly expanding series of application notes, and a newly
formed users group.

Write or call today for your free copy of our new catalog, an
index to available application notes, and a list of MiniTerm

Dealers. '

V' / \ \

Assembled and tested MERLINs start at $349, $269 for kits.
Super Dense add-on, firmware, and cassette interface are extra.

MiniTerm Associates, Inc.

Dundee Park, Andover, MA 01810 (617) 470-0525 M40

59

Expand Your KIM

Part 5: A/D interfacing (for joysticks!)

CLOCK

Photo 1. Four channels of A/D, two channels of D/A and an input
port for sense switches.

ANALOG
INPUTS

Photo 2. Circuits are wire-wrapped on a 44-pin board.

60

JUuL

John Blankenship
datamart, inc.

3001 No. Fulton Dr. N.E.
Atlanta GA 30305

N o matter what kind of com-
puter you have, this article
can help you add four channels
of analog input for a fraction of
the cost of other methods I've
seen. If you've been building
the KIM System, this analog
board will complete the project.

| designed the KIM System
with several requirements in
mind for the analog ports: | re-
quired four channels (so that
two joysticks could be inter-

i al
DATA OUT) |
SYSTEM

4 WORD
o L 0aTA IN) 8-8iT/woRD READ CTL | PROCESSOR |
MEMORY 3

END OF o [[MEMORY WRITE
COUNT G| | PULSE
@
1=
o
<
w
=
@
=
1171 |oieiTaL- TWO-BIT
TO-ANALOG COUNTER
CONVERTER

e

2IN 40UT
DECODER

LI

QUAD
COMPARATOR A\l Yy TIPLEXER

DATA

CONTROL 47101 ‘

EDGE
DETECTOR

DATA

Fig. 1. Block diagram of the A/D converter.

faced), with each sampled
often enough to provide rea-
sonable accuracy for use as
a video game input device. To
make the use of these ports
easy, | wanted each to be read
as a normal memory. Finally,
each of the A/D (analog-to-digi-
tal) channels had to be easily
switchable to other devices be-
sides the joysticks.

Besides the A/D ports, | also
wanted at least two D/A (digital-
to-analog) ports to experiment
with music, speech synthesis,
motor control, etc. | also
wanted a port for sense switch-
es to give me a full complement
of methods for interfacing with
my machine. | combined all
these circuits on one board and
labeled it External Interfacing
in my previous articles.

Photos 1 and 2 show the
board itself. Although | was
able to cram the circuit onto a
4'2-inch-square board, | would
recommend epoxying a vector
board on the top to give more
room for the components.

Fig. 1 shows the basic block
diagram for the A/D circuits.
The four-word memory is one of
the major secrets of making
this circuitry both inexpensive
and easy to use. This memory is
made up of two 74LS170 chips
composed of four 4-bit words
each. | chose these chips be-
cause they have separate read
and write controls, thus en-
abling read and write opera-
tions to occur simultaneously.

The A/D circuitry will update
each of these memory loca-
tions with a number that is pro-
portional to the analog input.
The output of the memory chips
is connected to the data bus so
that they appear as standard
memory to the processor.

The eight-bit counter contin-
ually generates sequential
numbers from 0 to 255. A D/A
converter converts these num-
bers to an analog voltage
which, for all practical pur-
poses, is an increasing ramp.
This ramp is fed to four com-
parator circuits that compare
the ramp voltage to the analog
inputs.

The comparators output a
level 1 when the ramp voltage
equals the analog input. Since

the ramp voltage also equals
the number in the eight-bit
counter, it is implied that the in-
stant a comparator fires, the
eight-bit counter contains the
digital equivalent of the analog
voltage being applied to that
comparator.

The remainder of the circuit
has one major function... it
must decide which comparator
fired, and form an address for
the four-word memory so the
eight-bit counter data can be
gated into the appropriate lo-
cation.

| chose to control the write

74L504 *S

address with a two-bit counter.
Since this counter increments
every time the eight-bit counter
completes a full cycle, the ad-
dresses 0, 1, 2 and 3 are being
applied sequentially to the
write address, and each is held
there for the full cycle of the
eight-bit counter.
Additionally, this two-bit
counter is decoded and used to
enable only one of the four
comparators (the one corre-
sponding to the write address)
at a time. The level change in-
dication from the multiplexer is
converted to a narrow pulse

and used to activate the write
line on the memory chips.

As explained above, the four
memory locations are continu-
ally, and automatically, re-
freshed with the digital equiva-
lent of four analog inputs. The
processor needs only to read
these locations for the latest
updates.

Fig. 2 shows the actual sche-
matic of the A/D circuit. The
7493 simply reduces the fre-
quency to a trackable rate. The
1408L8, D/A converter, outputs
a current ramp that is convert-
ed to a voltage ramp by the 741

3.3KEACH

$2
(%) " s g

7493 | *5

74193 o)

(22) |

14)e— 7420) "
(31— ¢
(5)0— 4

@n
(20)

(e

slals|e [H)9le

2|30 3
2
3 |
7 b
e}
|@
>
-5 i I': [2
6 " 4 a
3] [E)
] o1
= ue)
74193 . s v urn)
2’ - . uel
= 2 0as) |
a7pF " . = i Ms8)
ATl — 3.3K EACH
Al
J 9.5
10K SK
- 2
i2[i|iofa [8 |7 |8 |5
13
— -jz H
' 1408L8
& 2 4 7400
E) P Q 8
741 3 [|15 e &
RE T T7 T
ay. -
a 3|7 «12 18K —iC Q
ll 2008 21y .
L3 L3 T
-12
B
10K
——
3 |0
[1
== 10pF v [z s« [s Jo[s 2 | 6
7408
] 0 D
B
ANALOG LM339 & k J
INPUTS s
3 EE

(D) ﬁ_ alE
(2)
}_

({2 '——j

(4) .—t)—]
—4

(8) '——ﬁ

T

(x)
(a) —j_

22K
EACH

w) 1
—4
v

4 CAPS
4TuF
EACH

14 14

7420 &

13

1

7400's 7408

7476 74L5170 7410

I ! J_ O1uF ACROSS _L
T

l.

v

Fig. 2. Schematic of A/D converters.

[

61

(1 o8O

(2)o81

(3)082

(4)D8B3
(5)084

(61085

(7)086

(8)087

5
3

4 3 7 4
16 8

1HOK 1HOK

56K S6K

) 6 s
=
" 10 2 ' 1" 10

oK

10K

110K
56K

NOK 310K

56K | 56K

ouTt

I3
T(H

ANALOG

—

ANALOG
uT

B RESISTORS
47000
EACH

(v) (v «(m)

TO FRONT PANEL
SENSE SWITCHES

(S) (R) (P) (N) (M)

. B
L

ABS (6) o— 7410 N\ ABS(T):
F
’_—/'
NI
(9 (a3l
RAM R/W 1/0 ENABLE

AB7 (8) 00—
R/W(14) o—vf F

Fig. 3. Schematic of D/A converters and input port for sense switches.

op amp. The 7400 labeled B
acts as a one-shot to perform
as the edge detector.

Half of the 7420 is used to de-
code the address bus for pro-
cessor reads. Address decod-
ing will be discussed in more
detail later in this article.

Since the 74LS170s are open
collector, rather than Tri-state
outputs, pull-up resistors are
required for interfacing with the
bus. The DIP switch discon-
nects the joystick inputs. Once
they're disconnected, you can
input other signals to the con-
verter by way of the backplane
jacks (see my earlier articles).

The other two functions, D/A
and sense switches, are de-
tailed in Fig. 3. Since | felt that

Port Function
Dazzler Mode control

Dazzler ON/OFF, Address

Right vertical joystick
Right horizontal joystick
Left vertical joystick
Left horizontal joystick
Sense switches

DI/A port A

D/A port B

the accuracy of the D/A conver-
sion was not critical, | chose
not to use the Motorola D/A
converter chip used in the A/D
circuit. If | had used the Moto-
rola chip, | would have had to
use two eight-bit registers to
hold the data, the two D/A chips
themselves and a current-to-
voltage converter.

| chose to use MOS registers
for my output ports. Since MOS
gates output exactly Vcc and
zero volts for their correspond-
ing high and low levels, | used
them to drive a resistive ladder
directly. Additionally, since
MOS chips represent a very
small load, they can be hung on
the bus without buffering.
(Note: MOS chips do represent

Page Loc
80 OF
80 OE
80 10
80 11
80 12
80 13
80 80
80 20
80 40

Fig. 4. Summary of special addresses used by the KIM-1 System.

62

a relatively large capacitive
load, and hanging themdirectly
on the bus is not good practice
in expandable systems. In this
case, however, | knew exactly
what loads | would be dealing
with and was able to determine
that enough drive capability
was present.)

The 741sin Fig. 3 are used as

AID D

AID C

A/D B

A/D A

D/A B

D/A A
-12

JS REF. Volt.
02

N<XXS<CHWITVZZIrX«ITMTMOO®>»

unit gain amplifiers for buffer-
ing purposes. The 7410 is used
to decode out the address lines
to determine which port is
being used. The sense switch-
es are connected to the inputs
of Tri-state buffers. The out-
puts of these buffers gate the
switch data onto the bus when
enabled.

1 ABO
2 AB1
3 AB2
4 AB3
5 AB4
6 AB5
iF AB6
8 AB7
9 RAM R/W
10 +12
1"
12 +5
13 1/10 ENABLE
14 W/R
15 DB7
16 DB6
17 DB5
18 DB4
19 DB3
20 DB2
21 DB1
22 DBO

Fig. 5. Pin-out designations for the external interface board.

In order to better understand Fig. 5 shows the pin-out
the I/0 functions, you might re- designations for the external
read my article (‘““Expand Your interfacing board. These match
KIM!" Part 3, Kilobaud, Feb- the mainframe wiring done in Address Contents Label Mnemonic
ruary 1978, p. 68) in which | ex- Part 2 of this series. 00 00 LOC PAGE DAT.A STORE POINTER
plain how | decoded part of the In order to insure that . A9:S|e(l) mode and :;l‘*l'}'"g address fl“’[")x‘eﬁg"l‘éﬂ“
addregs lines to indicate an /0O builders of the KIM Sys.tgm ful- 04 8D OF 80 STA MODE
operation, rather than a mem- ly understand how to utilize the 07 A9 90 LDA #$90
ory transfer. joystick interface, | have includ- 09 8D OE 80 STA BEGADDR

All my /O ports (including edashort programin Fig. 5that :Get horizontal joystick position
the four-word memory used for will enable you to draw with the oc AD 1L 89 .START LDA JOYHOR

: . : :Place 4 MSB into 4 LSB and save

A/D) are partially enabled by joystick on the TV screen. The OF 4A LSR
this 1/O enable. Since | know sense switches control the col- 10 4A LSR
how many total ports | de- ors of the two-color dot that is 11 4A LSR
signed for, | only partially moved by the joystick. 12 4A LSR
decoded the low-order address This program serves a useful 13 &5 00 Gece ; s ST LOC
) X - T ;) :Get vertical joystick position
lines. This drastically limited function as an educational en- 15 AD 10 80 LDA JOYVER
the number of ports available deavor, and that's about all. :Check for and set up proper page of screen
on the KIM System, but the However, | do feel that builders display
ease of implementation,aswell of the KIM System will find it 18 30 07 ToP BMI BOTTOM
as the reduction in cost, made useful as a reference. | have 1A A0 20 LDY #5320
) . 2 ° ” : ” 1C 84 01 STY PAGE
it well worthwhile. tried to functionally describe 1E 4C 25 00 JMP CONT

Fig. 4 summarizes the I/0O ad- each section with comments. 21 A0 21 BOTTOM LDY #3821
dresses used uniquely by my This completes the hardware 23 84 01 STY PAGE
system. If you convert these series on my KIM-1 system, 5 OA’RC"“’VC M38 é'(‘)deTeep only lhf\'s‘eLx‘ o
hex addresses to binary, you which now contains 17K of 26 29 FO AND #SFO
can see how the appropriate RAM and supports both BASIC :Combine LSB and MSB into one word and save
address lines are used to en- and FOCAL. I'm also in the pro- 28 05 00 ORA LOC
able each port decoder. cess of implementing a new 2A 85 30 - itchies) int STA L(l)f:

4 2 s Put color (sense switches) 1nto accumulator

There are only twq major dif- language with an ea§e of use 2C AD 80 80 LDA SENSE
ferences between input and and aspeed of operation some- :Prepare for an indirect store using 00 and
output decoding. The first is where between assembly lan- 01 as pointer
that the R/W or the R/W lineis guage and BASIC. 2F A2 00 LDX #300

P ; : : :Store color
h f

used toindicatet edlrecuon'o ngause my system is to be 3 81 00 STA LOC PAGE
the transfer. Second, the write multilingual, | have chosen to :Begin Again
pulse for an output port must avoid ROM in favor of RAM for 33 4C 0C 00 JMP START
be coincident with the trailing all functions except the KIM
edge of the 02 clock. ‘Agalr.1. I monitor. I'm also planning sev- Fig. 6. Sample program for drawing on TV using joystick.
refer you to Part 3 of this series eral surprises that | hope to
for more details. share it the future.®

Datapoint 2200 Computer RAINBOW COMPUTING INC.

North Star Software

Supplier of
Full-Assembled ‘1‘1,..
Maillist e Operating Wave Mate
Maillist is a general purpose mailing label program capable of The Digital Group
producing formatted lists for tractor-fed or Xerox type labels 995 Southwest Technical Products
Maillist will also sort lists for any field. = - Digital Equipment Corporation
Price $39.95 on diskette with manual/stock to 14 day delivery. #2200 VI used Computer Products

P heral lies f
In-out driver eripherals and Supplies from

. 2 3 PerSci Computer Devices
Dos in-out driver is designed to set up mapped memory video : ”
boards in conjunction with hard copy device. The user may E ‘ [Contronix Lear-Siegler
switch output under software control. Any file directory may be Diablo Multi-Tech
Maxell Texas Instruments

listed while in BASIC without jumping to dos. Spacebar will stop
output for line by line listings. Designed for use with 3P +S and
any tv board.

Price $12.95 on diskette with manual/stock to 14 day delivery

Register
Register is a cash register and inventory control program. The |
software will control a point of sale terminal and printer. It will

search inventory for an item, price and ticket it. Register has ‘
provisions for min-max, automatic reorder, and critical list [

Price $299.95 on diskette with manual

e Add $25 packing
e Shipped FOB Washington, D.C. Terms check, MO or
charge
e Guaranteed operating e Program package $49.50
e 8 K memory e Upper and lower case ASCII Display
] e Parallel I/0 e 80 col. screen e dual tape cassette
drives. The Datapoint 2200 VI is a complete self-con-
tained general-purpose computer. May be used as an
intelligent terminal. While they last, with each 2200 we
will ship, at no additional cost, a printer which may be
adapted to run with the processor (no guarantee on
printer). ‘

ALSO AVAILABLE: Datapoint 3000
CRTs $675.00 |

TELECOMMUNICATIONS SERVICES CO.
Box 4117, Alexandria, Va. 22303 T26
703-683-4019 / TLX 89-623

‘Scotch’ Brand Magnetic Media
Specialists in Design, Implementation and
Support of Custom Hardware/Software

for Business, Educational, and
Personal Use
Consulting/Contract/Programming
Operating Systems/Applications Software

Experts in most major computer
software including
CDC, I1BM, PDP
BASIC, COBOL, FORTRAN, PL1
Lisp, Simula, Snobol, SPSS, BMD's
COMPASS, MACRO, 6800, & Z80 assembly languages

All prices are FOB Santa Barbara, California.
Terms COD Residents add 6% sales tax and $1.00 shipping.

10723 White Oak Ave., Granada Hills, Ca. 91344
(213) 360-2171 R10

Alpha Data Systems Aas
Box 267, Santa Barbara, Ca. 93102 = 805/682-5693

63

Sheila Clarke
CyberGrafix

518 N. Brand
Glendale CA 91203

What’s Happening

with the IBM Selectric?

Micro Computer Devices has the answer

rt Childs needed a printer
for a long time. An IBM
Selectric had been Art’'s and my
choice for a couple of years. It
was ideal because of its small
size and beautiful print quality.
However, we both were skepti-
cal about printers available for
use with a computer. In most
cases, either the typewriter
was used and reconditioned or
a lot of interface kit assembly
was required. Like many com-
puter-users, Art can’t afford to
risk having an unreliable unit
requiring continual mainte-
nance; nor does he have time to
assemble a Kit.
When we first heard about

64

the SELECTERM, made by

Micro Computer Devices
(MCD), we were impressed that
someone had finally converted
a brand new typewriter for
microcomputers. Because both
IBM and Micro Computer De-
vices provide warranties for
their respective portions of the
device, we decided to obtain a
SELECTERM.

Art's system consists of an
Altair 8800, dual ICOM floppy-
disk drive, and an ADM CRT ter-
minal. He uses the 3P + S inter-
face board from Processor
Technology. After spending
two hours struggling to deci-
pher the board’'s schematics,

which seemed to be written
solely for hardware types, Art
finally called his engineer
friend, Steve Griffis, who came
over and had everything run-
ning in five minutes. Although
the SELECTERM will interface
to any microcomputer, what if
you can't read the interface
board schematics? Micro Com-
puter Devices is providing a
solution with specific connect-
ing instructions for each inter-
face available on every com-
puter now being sold.

Art's reaction to the printer
was positive from the moment
the two large cartons were
delivered. One carton held the

Selectric and the other con-
tained the electronics package.
He was impressed with the
packing, which held the units
solidly with formed foam to pre-
vent damage caused in ship-
ping. Opening the flap of the
carton, Art uncovered a sheet
that said STOP, with complete
unpacking and typewriter as-
sembly instructions. Art, in too
big a hurry, merely made a men-
tal note that instructions were
there and, consequently, ran in-
to a little trouble securing the
cover latches of the typewriter.
(Sometimes | wonder if anyone
reads anything before making
panic calls to the man-
ufacturer.)

He was also impressed with
the documentation and the
SELECTERM's acceptance of
ASCII. With no conversion nec-
essary, Art began writing a driv-
er. It took him five minutes, us-
ing assembly language for
FDOS-III. He said the only dif-
ference between this printer
and another line printer driver
or hard-copy output driver is
that you might have to put out
some nulls after tabs and line
feed. But it was simple for him
to write the nulls into the driver.
Fig. 1 shows the driver for the
8080 and 3P + S.

Art commented: “The IBM
print quality is nice. And | like
the fact that | can change type
fonts. Putting the whole thing
together—removing it from the
cartons to putting the cover on
the typewriter and hooking up
the cables—was a half-hour
task. The fact that it requires

one parallel port makes it easy.
If you have only one serial port,
which is often the case, you'll
usually lose it to your print de-
vice. Writing the driver and in-
tegrating it into the software
completed the process. All in
all, it was very easy; every-
thing’s been done for you. The
unit runs very cool, the elec-
tronics box is barely warm to
the touch after running con-
sistently for about three hours,
and it runs cooler than the
typewriter itself.”

I'm using the SELECTERM to
prepare this article for Kilo-
baud, | am inputting the text in
the computer, from first draft to
the final, edited version. It's a
pleasure to know | don’t have to
retype this thing two or three
times before | get it right. The
advantages of the SELECTERM
are only evident when | begin to
use it. For example, the sales
literature doesn't tell me how to
input uppercase and lowercase
letters with a terminal that has
only uppercase. So MCD owner
Shelly Howard pointed out the
ADM has switches beneath the
nameplate. Setting the LC EN
switch enables me to input up-
percase and lowercase for
printer output. | did discover,
however, that the switch must
always be returned to the UC

position after using the Insert
mode of the text editor. After
that little switch is flipped, the
CRT may only see uppercase
characters, but when | hit shift
for uppercase characters, the
printer outputs caps where
they should be—just like using
a typewriter.

After using the SELECTERM
for a couple of weeks, Art and |
ran into difficulty getting clear
print—then it jammed. The
problem was a loose motor
mount. Because the typewriter
portion was under warranty,
IBM service came out and fixed
it at no charge.

How It All Began

To find out how his product
came about | spent some time
talking with Shelly Howard.
Like many other small-scale
manufacturers, Shelly knew
relatively little about micro-
computers two and a half years
ago. In fact, he was preparing
his thesis for his PhD on an IBM
Selectric. After gathering suffi-
cient research data, he wanted
it compiled through a computer
and output on a Selectric that
matched the type of his own
typewriter. He was told by two
computer outfits that IBM had
discontinued making its 1/O
device. He was forced to either

If we lift the typewriter up off the baseplate, we see the elec-
tronics added to convert the typewriter to a printer.

scrap his original plans or buy
his own computer. Assuming
the cost of ownership would be
prohibitive, he searched and
discovered the world of
microcomputers. He also
discovered Don Lancaster's TV
Typewriter Cookbook.

Now They Tell Me!

Although he followed the
book's instructions to the let-
ter, Shelly failed to get a unit up
and running. He later discov-
ered the book had been based

TOTAL ERRORS =00

1 0000 : ROUTINE TO DRIVE SELECTERM WITH 8080 AND 3P+ S
2 0000 H
3 0000 DB04 LO: IN 4 ;GET STATUS
4 0002 E601 ANI 1 ;MASK
5 0004 CA0000 JZ LO ;:NOT READY
6 0007 79 MOV A,C ;GET CHAR
7 0008 D306 ouT 6 ;OUTPUT
8 000A FEO09 CPI 9 JWAS IT A TAB?
9 000C CA1C00 JZ LOTAB JYES
10 000F FEO8 CPI 8 yNO - BACKSPACE?
11 0011 CA1700 JZ LOLF ;YES
12 0014 FEOA CPI 0AH :NO - LINE FEED?
13 0016 Cco RNZ ;NO - RETURN
14 0017 H
15 0017 0E00 LOLF: MVI C,0 ;OUTPUT A NULL
16 0019 C30000 JMP LO ;AND RETURN
17 001C :
18 001C Cs LOTAB: PUSH B
19 001D 010004 LXI B,400H ;4 NULLS
20 0020 CDO0000 LOTBI: CALL LO ;OUTPUT
21 0023 05 DCR B ;LAST ONE?
22 0024 C22000 JNZ LOTBI ;NO
23 0027 Cl POP B ;YES - RESTORE B
24 0028 () RET ;AND RETURN
25 0029 J
26 0029 0000 END

Fig. 1. ICOM 8080/Z-80 Reloc-Macro Assembler Ver. 1.0.

on theory only; no one in Lan-
caster's organization had ac-
tually put the theory to prac-
tice. By now Shelly was too
committed to back out, so he
decided to start over with the
help of two design engineers,
Steve Garner and Jimmy Carter
(no, another one).

Months of design develop-
ment, field testing and improve-
ments resulted in production of
a printer with all parts—the
baseplate, actuators, coils,
transformer and linkages—
manufactured by MCD. Finally,
the design was approved by
IBM. That's why IBM service
will come and fix your printer if
anything goes wrong; you can
also buy yearly service
agreements from IBM after the
warranty expires. For this
reason, MCD will not sell the
SELECTERM in kit form. IBM
has only approved the factory
assembled and tested model.

In Full Swing

First shipments of the
SELECTERM were made in
August 1977; currently about
three per day are delivered to
dealers. The target is five per
day, but the cash-flow situation
is tough with MCD in a contin-
ual fiscal squeeze. Though IBM
sanctioned the design, MCD is
treated like any other individual
consumer, as far as open credit
goes. When you buy in quanti-
ty, with no quantity discount, at
the same price | paid for my

65

1st Row - Uppercase: !

1st Row - Lowercase: 1 2

2nd Row - Uppercase: Q W

2nd Row - Lowercase: q w
3rd Row - Uppercase: A S
3rd Row - Lowercase: a s
4th Row - Uppercase: Z X
4th Row - Lowercase: z X

E R T Y U I P %
e r y u i p 3
D F GH J K L

d f g h j k 1

cC vBNM,K6 . ?

c v b nm , & /

Fig. 2. ASCII character set for SELECTERM output device.

Selectric Il, a lot of bucks are
going out the door at one time.
To handle the dilemma, MCD
sells through dealers only, on a
COD basis. Because requests
have been made by some
manufacturers, the firm wants
to produce OEM versions to
specification. Shelly will proba-
bly find investors, or perhaps
release MCD for acquisition by
another company. But he loves
what he's doing: selling and de-
livering SELECTERMs to deal-
ers across the country.

Competition

Presently, only one other
company in the country sells an
IBM Selectric printer with ASCI|
encoding. Other companies of-
fer used Selectrics complete
with interfacing. Even recondi-
tioned units will not qualify for
the IBM Service Agreement.

If you're looking for a good
printer, this could be it. But
take heed that 15 characters
per second may not be fast
enough. Long listings could

take hours. For most home
computerists, however, speed
may not be a determining fac-
tor in making a printer selec-
tion. And the benefits are
numerous: All the basic
features of the printer include
the special typing element, tab
command, back space, vertical
tab, bell, serial and parallel in-
terfacing, cable sets and soft-
ware in PROM within the elec-
tronics. Also included is a
special ASCII typing element
that IBM has produced to MCD
specifications. Fig. 2 shows an
output of the character set.

The price of $1750 appears
prohibitive, until you consider
that you'll be using an extreme-
ly well-designed unit that will
last for years—type fonts are
changed at will, no special
paper is needed, IBM ribbon is
easy to order, and service is vir-
tually hassle-free.

Options

The same extras as those of-
fered by IBM, including dual

When the typewriter cover is off, the SELECTERM looks about like
another Selectric Il. Here it sits alongside Art’s Altair 8800 with
cabling interface to the 3P + S.

pitch and correcting feature,
can be ordered for your SELEC-
TERM. MCD has developed a
noise-reduction feature (recom-
mended if you live in a residen-
tial neignborhood).

Tractor-feed platen and
RS-232 interface are also being
offered as options.

After using the SELECTERM
a great deal for two months
now, Art and | are definitely
convinced that we did a good
thing for his computer. And a
nice plus is that we now have a
second typewriter—that is,
when it's not being used with
the computer.®

P ~

PROFESSIONAL QUALITY
AUDIO CASSETTES

Interactive Trap and Chase games for

boxes. Each box has four micro switches

with 5 feet of cable completely assembled.
Plugs right into your game /O connector.

- -
* g8 6 @ 8 600 6 0 fgees * AI I LE
* 8 668 6 8 6 80 06 -
i f iR | OWNERS
* 8 86 88 [6 6 888 .
* 686 8 8 60eee @08 6 @ gesee ¢
: 886608 s
t NATIOWWIDE CLASSIFIED AD NEWSLETTER % two people. Software allows choice of
* VAILED 1st CLASS EVERY THREE WEEKS * speed and points and requires 8K RAM.
® * Hardware consists of two game control
: ARE YOU LOOKING FOR ? . and specially designed printed circuit
- -
* . LOW COST USED COMPUTER EQUIPMENT *
* _ ADVANCED INE(E,:MA”ON ON NEW PRODUCTS * Control boxes can also be used with the
* - NEW SOFTWARE: UTILITIES/BUSINESS/etc. * game Dragon Maze
* - AWAY TO ASK FOR INFORMATION OR AID * Hardware and software cassette —
- INFORMATION ON COMPUTER CLUB MEETINGS % $49.95. (Texas residents add 5% sales
c IT'"S ALL IN ON_LINE ! tax.) 90 day warranty parts and labor.
s Guaranteed 30 day delivery. Allow time
* 18 ISSUES (1 Yr.)-$3.75 36 1S5.-$7.00 * for processing personal checks. Send
S Sample on nequest, o added to subscrip. ¢ check or money order to:
B & G Interfaces

- -
S 24695 SANTA CRUZ HWY. 3 P.O. Box 59364
. LOS GATOS, CA 95030 - Northhaven Sta.

9z Dallas, Tx. 75229

&

B28

~_FOR TARBELL,DGS,KC,ETC
DON'T WASTE YOUR MONEY
ON CHEAP TAPES.
C)ZXTENSIVE TESTING HAS
RESULTED IN SELECTION
OF THIS TAPE FOR BAUD
RATES IN EXCESS OF 1200
SUPER HIGH DENSITY
HIGH FREQUENCY RESPONSE
LOW NOISE. SIGNAL TC
NOISE RATIO 54 DB
.TExSILIZED POLYESTER
BASE .69 MILS THICK
SONIC WELDED CASSETTE
30 MIN TAPES 3 AT $5.50
10-$15.50,25-$35.00 PPD
e PITTS ENTERPRISES
1516K BOWEN ST.
LONGMONT, CO. 80501

K P24 P Y,

TIMESHARING

The 80-103A works both ways. Your system can call a timesharing service and communicate as an intelligent
terminal OR your S-100 system can be the timesharing system where the 80-103A answers the phone and

communicates with terminals or other processors.

80-103A DATA COMMUNICATIONS ADAPTER

Ny N

" DCHayes'

T LORMRIGNT G 1T

The 80-103A DATA COMMUNICATIONS ADAPTER was developed to function as an S-100 bus
compatible serial interface incorporating a fully programmable modem and Telco interface. These
functions are usually accomplished by the use of two separate modules: 1) a serial 1/0 board, and
2) an external modem. By combining these features on a single board, the 80-103A can offer
microcomputer applications significant cost/performance advantages over other implementations.

e FULLY PROGRAMMABLE FEATURES

e AUTOMATED DIALING AND AN-
SWER

e ORIGINATE OR ANSWER MODE

e 110-300 BIT/SEC DATA RATES

e CHARACTER FORMAT AND PARITY

e ERROR DETECTION

e FULLY BUFFERED, OUTPUTS DRIVE
25 S-100 BUS LOADS

DC Hayes Associates offers a full range of capabilities
for solving your information handling problems.
Whether your problem is large or small, we will apply
innovative techniques for finding the best solution.
Contact us about our products and services.

D C Hayes associate

e STANDARD U.S. FREQUENCIES

e FULL TELCO COMPATIBILITY WHEN
ATTACHED TO DAA

e COMPATIBLE WITH EXISTING TELE-
TYPES AND TIME SHARING MODEMS

e ALL DIGITAL MODULATION AND
DEMODULATION. NO ADJUSTMENTS
REQUIRED.

PRICES:
Assembled 80-103A with 48 hour burn in
and 90 day warranty is $279.95

Bare Board with manual is $49.95
=T

=
mism ACCEPTED

H20

P.0. Box 9884 e Atlanta, Georgia 30319 e (404) 231-0574

67

The Top-Down

Approach

with some practical examples

Dr. Lance A. Leventhal
PO Box 1258
Rancho Santa Fe CA 92067

n Kilobaud No. 14 (“Why

Structured Programming?" p.
84), | discussed structured pro-
gramming, a method for mak-
ing the logic of large programs
simple and repetitive, thereby
making them easier to debug
and test. But a further problem
in writing large programs is
how to put sections of the pro-
grams together. This article
describes a widely used
method called top-down
design, by which the program-
mer starts with an overall
outline of the program and pro-
ceeds to steadily describe each
section in greater detail, debug-
ging and testing along the way
in an integrated manner.

Modular Programming
Obviously, a large program
can only be written by dividing
it into sections. No one (I hope)
would simply write the er‘ire
program and then see if it
worked. Clearly, a better idea is
to write a small section, see if
that works, correct it, write
another small section, and so

68

on. This procedure is known as
modular programming and the
sections of the program are
called modules.

Some typical modules in an
overall accounting, game,
word-processing or instruc-
tional program might be: 1/O
routines, file-handling routines,
mathematical calculations,
string-handling routines, table
searches, sorting routines,
table lookup and list pro-
cessing.

The advantages of modular
programming are clear.

1. You can check the
modules individually and be
sure they work properly. Thus,
you can assume that any errors
in the overall program are in the
connections or the supervisor
program.

2. You can build a library of
modules that will be useful in
othar programs. Many of the
previously mentioned modules
will be needed frequently.

3. You can use modules that
you have previously developed,
found in books or magazine ar-
ticles, or borrowed from
friends. You can also use mod-
ules such as file handlers, code
converters and /O handlers
that comprise part of your mon-

itor or operating system.

4. You can plan program
development and have a
reasonable idea of how much
progress you have made and
what the major stumbling
blocks are.

5. You can eliminate many
simple errors at an early stage.

Modular programming has
serious disadvantages, though.
Somehow, the modules never
quite seem to fit together at the
end. Different modules may use
different registers, memory
locations or subroutines. Some
may wipe out results that
others need or not use data that
others provide. Module integra-
tion often turns out to be a big
task you must struggle with
after everything seems to be
done.

The problem of integrating
modules is independent of the
problem of testing and debug-
ging them. The modules may all
work separately, but still not
work together. The catch is that
the original debugging and
testing checks the workings of
the module out of context (i.e.,
all by itself rather than as part
of a complete program).

In fact, debugging and
testing a module in isolation

can be quite difficult. A game
program, for example, may con-
sist of the following modules:
(1) determine initial conditions,
(2) read and check proposed
move (see if it is valid), (3) deter-
mine new conditions, (4) print
status.

But how can you write the
routine that reads and checks
the proposed move unless you
know the previous state of the
game and can see the new
state? How will you be able to
tell if the MOVE module is work-
ing properly? Typically, you will
have to either manually enter
the required data and examine
the results or write special pro-
grams to perform those tasks.
These special programs (some-
times called driver programs)
can save a lot of manual effort;
however, they introduce extra
work and may act quite dif-
ferently from the real routines
for which they substitute. (Note
that you don't save the driver
programs; you throw them
away when the job is done.)

Clearly, the problem of com-
bining modules is even more
serious in large commercial
programming projects. Not on-
ly can the number of modules in
a project be very large, but also
many programmers may be in-
volved in writing them. Now the
problem is to integrate mod-
ules written by people with dif-
ferent styles, different levels of
expertise, different docu-
mentation methods and dif-
ferent interpretations of tasks.

Top-down Design

Most commercial program-
ming shops now use some ver-
sion of top-down design. This
method differs from the more
traditional bottom-up design
(see Fig. 1) in which the specific
modules are written before
they are integrated into more
complex programs. Top-down
design (see Fig. 2) proceeds as
follows:

1. The overall supervisor pro-
gram is written, debugged and
tested. Major subprograms are
replaced by program stubs that
may produce the answer to a
selected problem, record the
entry or do nothing at all.

2. Eachstubisthen similarly

(1) WRITE THE MODULES

Mi M2 M3

(2) COMBINE THEM INTO PROGRAMS

P

i

OF INCREASING COMPLEXITY

s2

M M2 M3

Fig. 1. The procedure for bottom-up design.

expanded, with debugging and
testing occurring at each step.

Advantages of Top-down
Design

The advantages of top-down
design are:

® |t modularizes debugging,
testing and integration, as
well as coding (the writing of
instructions).

@ |t allows subprograms to be
debugged and tested in the
actual environment of the
entire program. No special
debugging and testing
programs (or drivers) are
needed to provide data or to
interpret results.

@ |t results in overall program
logic being checked first.
This often means that the
programmer can immediate-
ly discover and eliminate in-
consistencies and miscon-
ceptions that otherwise may
be very difficult to find and
correct (after all the
modules have been written).

@ |t provides a systematic
framework for program
development and testing. It
gives the programmer a firm
idea of how much of the task
has been accomplished.

Disadvantages of Top-down
Design

Of course, like all methods,
top-down design has disadvan-
tages. Among these are:

® A suitable program stub
may be difficult to write, par-
ticularly if it must appear in
many different places and
produce many different inci-

dental effects.

® The top-down expansion
may not mesh well with
hardware or already existing
software.

® Errors in the overall program
can have catastrophic ef-
fects on the entire project.
Often critical design deci-
sions must be made early
before you know what prob-
lems exist (or will be
created) at the lower levels.

Furthermore, top-down
design assumes a simple pro-
gram structure with indepen-
dent subsections (i.e., a tree
structure, as shown in Figs. 1
and 2). Some programs
(perhaps even most) can logi-
cally be constructed in that
manner. But there is no proof
that all, or even most, programs
can be. Often programs have in-
terconnections at all levels that
defy simple analysis.

Of course, top-down design
is no panacea; it provides
neither rules nor guidance for:
(1) dividing programs into
modules that can be written in-
dependently of other modules;
(2) writing the modules (here,
structured programming
comes into play); (3) defining or
using data structures...in
many situations, the structure
of the data may be more impor-
tant and more difficult to deter-
mine than the structure of the
program.

But top-down design does
provide a systematic frame-
work, rather than a haphazard
approach. This framework has
been shown to significantly in-
crease programmer productivi-

(1) WRITE THE OVERALL PROGRAM

P

(2) EXPAND EACH SUBPROGRAM, ADDING DETAIL AS REQUIRED UNTIL THE

PROBLEM DEFINITION IS MET

P

l

s2

I

M M2 M3

Fig. 2. The procedure for top-down design.

ty in the commercial world. Fur-
thermore, it seems to result in
programs that have clearer
logic and are easier to test,
debug, extend and use. Of
course, programmers should
never disdain a little bottom-up
design where that method per-
mits better utilization of hard-
ware, existing software or other
resources. The aim of program-
ming is to produce programs that
work, not to follow the tenets of
one methodology or another.

Much of what we have said
so far about top-down design is
vague. Now let us see how it
works in a real example.

The Vote Analysis Program

The purpose of this program
is to count ballots and print the
totals in decreasing order—
starting with the candidates
who received the most votes. C
is the number of candidates,
and the ballots are coded as
follows:

0—a blank ballot (no vote for
any candidate).

1 to C—vote for the indicated
candidate.

C + 1—vote for a write-in
candidate.

C + 2—illegal vote (two or
more candidates marked).

C + 3—special marking for
last (dummy) ballot.

Fig. 3 shows the initial pro-
gram flowchart. The important
variables are: N (I)—number of
votes for candidate |, V—total
number of votes, M (l)—can-
didate numbers for rank-
ordering.

We have not tried here to

make the programs particularly
efficient or to make the I/O
realistic. Rather, we have tried
to show how program develop-
ment proceeds, starting with an
overall skeleton program and
continuing through ever-in-
creasing levels of detail. The
language is a simple version of
BASIC that should run on most
computers.

Initial Program

Fig. 4 contains the initial pro-
gram listing. The three major
sections of the program—
counting, ordering and out-
put—have been replaced by
program stubs that simply
mark those sections that have
been entered. We can test the
overall program logic by enter-
ing a value for the number of
candidates, C, and running the

ALL TOTALS

READ
NUMBER OF
CANDIDATES
)

;

COUNT VOTES

i

ORDER
TOTALS

—

PRINT
RESULTS

Fig. 3. Initial flowchart for the
vote-analysis program.

69

LIST

DIM N(20),M(C20)

REM NUMBER OF VOTES (V) = 0

LET v= 0

REM GET NUMBER @F CANDIDATES (C)
PRINT "NUMBER @F CANDIDATES = "3
INPUT C

REM CLEAR ALL VOTE COUNTERS

FOR I= 1 1@ C+ 2

LET NCID>= O

NEXT 1

REM COUNT VOTES

GesuB 1000

REM @RDER VOTE IOTALS

15

25

LIST

DIM N(20),M(20)

REM NUMBER @F V@TES (V) = 0

LET v= 0

REM GET NUMBER @F CANDIDATES (C)
PRINT "NUMBER OF CANDIDATES = 3
INPUT C

REM CLEAR ALL VOBTE COUNTERS

FOR I= 1 T@ C+ 2

LET NCID>= O

NEXT I

REM COUNT VBIES

50SUB 1000

REM ORDER V@TE T1OTALS

7S GOSUB 2000
85 G@SUB 3000

999 END
1000

READY

80 REM QUTPUT TOTALS

REM VOTE COUNTING PROGRAM
PRINT “"ATTEMPTED VOTE COUNTING"

PRINT "REACHED QUTPUT ROUTINE"

1010

1020 RETURN

2000 REM TOTAL @ORDERING PROGRAM
2010 PRINT “ATTEMPTED ORDERING"
2020 RETURN

3000 REM QUTPUT ROUTINE

3010

3020 RETURN

9999 END

RUN

NUMBER OF CANDIDATES = ?2 O
ATTEMPTED VATE COUNTING
ATTEMPTED OKDERING

REACHED QUTPUT ROUTINE

Fig. 4. Initial listing for the vote-analysis program. All the sub-
programs are left as unexpanded stubs.

program (note the RUN results
at the bottom). In fact, there
v:as a slight error initially
caused by the omission of the
final END statement. This error
was quickly corrected before
any stubs were expanded.

The First Level of Expansion

Fig. 5 is the flowchart of the
expanded vote-counting pro-

Fig. 5. Flowchart for the vote-
counting subprogram.

70

gram. Here there are three
cases to consider:

1. The last ballot (marked
with the number C + 3) is not
counted in the totals.

2. Blank ballots (marked by
zero) are included in the total
number of votes but are not
credited to any category.

3. Other ballots must be
credited to the appropriate
category (i.e., to a candidate,
write-in category or improperly
marked category).

Fig. 6 contains the BASIC
program with the vote-counting
stub expanded. We checked
this program with the data in
Example 1 (see the results at
the bottom of Fig. 6).

Fig. 7 contains the BASIC
program with the output stub
expanded. This program was
also checked with cases 1 and
2. Note the added statement

3020 IF C = 0 THEN 3045

This correction means that if
there are no candidates, the
program does not print head-
ings, a list of candidates or vote
totals. Note that the case

75 GOSUB 2000

80 REM @UTPUT TOTALS
85 GOSUB 3000

999 END

1000

NUMRER @F CANDIDATES
NEXT VOTE 1S? 3
ATTEMPTED ORDERING

READY

RUN

NUMBER @F CANDIDATES
NEXT VOTE 1S? 1

NEXT VOTE 1S? 4
ATTEMPTED @RDFRING

READY

REM VOTE COUNTING PROGRAM

1005 REM FETCH NEXT VOTE (J)

1010 PRINT "NEXT VOTE IS's

101S INPUT J

1020 REM DONE IF VBTE IS ENDING MARK (C+3)
1025 IF J=C+ 3 THEN 1065

1030 REM ADD VOTE TO@ TOTAL (V)

1035 LET v=Vv+ 1

1040 REM IGN@RE V@TE IF BALL@T UNMARKD (J=0)
1045 IF J= O THEN 1010

1050 REM ADD VBTE 10 APPROPRIATE TOTAL
1055 LET NCJI=NCGII+

1060 GOT@ 1010

1065 RETURN

2000 REM TOTAL ORDERING PROGRAM

2010 PRINT "ATTEMPTED ORDERING"

2020 RFTURN

3000 REM @QUTPUT RAUTINE

010 PRINT "RFACHED QUTPUT ROUTINE"
3020 RETURN

9999 END

RUN

20

REACHED @UTPUT ROUTINE

721

REACHED @QUTPUT ROUTINE

Fig. 6. Listing for the vote-analysis program with the vote-
counting subprogram expanded.

without a candidate, although
it seems useless, is by no
means an uncommon situation
in real elections, particularly at
the local level. The results from
this expanded program are in
Fig. 8.

Fig. 9 is a flowchart for the
first expansion of the rank-
ordering routine. The idea is to
keep interchanging pairs of
elements until all pairs are in
the correct order (i.e., largest
number first). Flag F is cleared
initially and set to 1 if an inter-
change is performed. So, if F =

1 at the end of a pass through
the list, another pass is
necessary. If F = 0 at the end,
the list must be in order.
Although this may appear an
unsophisticated sorting meth-
od, itis perfectly acceptable for
short lists like the ones han-
dled by this program. The
number of candidates in an
election rarely exceeds ten.
Note that no sorting is
necessary if there is only one
candidate or are none.

Fig. 10 is the BASIC program
with the ordering routine ex-

LIST
10

DIM N(20),M(20)

15 REM NUMBER @OF VATES (v) = 0

2 LET v= 0

25 REM GET NUMBER ©OF CANDIDATES (C)»

0 PRINT “NUMBER @F CANDIDATES = "3

35 INPUT C

49 REM CLEAR ALL VOTE COUNTERS

45 FOR I= 1 70 C+ 2

D LET NCID= 0

S5 NEXT 1

60 REM COUNT VOTES

65 GOSUB 1000

70 REM ORDER VOTE T@TALS

75 G@SUB 2000

80 REM QUTPUT TOTALS

85 G@SUB 3000

999 END

1000 REM VOTE COUNTING PRGGRAM

1005 REM FETCH NEXT VOBTE (J)

1010 PRINT "NEXT VOTE I1S"s

1015 INPUT J

1020 REM DONE IF VATE IS ENDING MARK (C+3)
1025 IF J=C+ 3 THEN 1065

1030 REM ADD VOTE T@ 1@TAL (V)

1035 LET V=Ve+ |

1040 REM IGN@RE VOTE IF BALLOT UNMARKED (J=0)
1045 1IF J= 0 THEN 1010

1050 REM ADD VRTE T@ APPROPRIATE TOTAL
1055 LET NCJI=NCII+

1060 G@T@ 1010

1065 RETURN

2000 REM TOTAL ORDERING PROGRAM

2010 PRINT “ATTEMPTED @RDERING"

2020 RETURN

3000 REM QUTPUT ROUTINE

3005 PRINT "NUMBER @F CANDIDATES = '3C
3010 PRINT "“NUMBER @F VOTES = '3V

3015 REM SKIP CANDIDATE T@TALS IF N@ CANDIDATES
3020 IF C= 0 THEN 3045

3025 PRINT ""CANDIDATE NUMBER VOTE TOTAL"
030 FOR I= 1 10 C

3035 PRINT TABC 5),1,TABC 25),N(I)

3040 NEXT 1

045 PRINT "NUMBER @F WRITE=INS = "3N(C+ 1)
0S50 PRINT "NUMBER @OF IMPROPER BALL@TS = "iN(C+ 2)
3055 RETURN

9999 END

Fig. 7. Listing for the vote-analysis program with the vote-
counting and output subprograms expanded.

RUN
NUMBER OF
NEXT VOTE
ATTEMP TED
NUMBER OF
NUMBER OF
NUMBER OF
NUMBER OF
READY

RUN
NUMBER OF
NEXT VOTE
NEXT VOTE
ATTEMPTED
NUMBER OF
NUMBER OF
CANDIDATE
1

NUMBER OF
NUMBER OF
READY

RUN
NUMBER OF
NEXT VOTE
NEXT VOTE
NEXT V@TE
NEXT VOTE
ATTEMPTED
NUMBER OF
NUMBER OF
CANDIDATE

1

2
NUMBER OF
NUMBER @F
READY

CANDIDATES
I1s? 3
ORDERING
CANDIDATES
VATFS = O
ARITE-INS = O
IMPROPER BALL®G1S =

0

CANDIDATES = ?2 1
1.S?2 }

1S? 4

ORDERING
CANDIDATES = 1
VOTES = 1

NUMBER VOTE TOTAL

1
WRITE-INS = O
IMPROPER BALLGTS =

CANDIDATES
1S? 1
IS? 1
IS? 2
18?2 5
ORDERING
CANDIDATES
VOTES = 3
NUMBER VBTE TOTAL
2
1

2

ARITE-INS = 0O
IMPROP FR BALLOTS =

Fig. 8. Results from the program of Fig. 7.

0

0

0

CASE 1. NO CANDIDATES, NO VOTES
C=0
V = 3 (ENDING MARKER)
CASE 2. ONE CANDIDATE, ONE VOTE

C=0
V=1
V = 4 (ENDING MARKER)

Example 1.

panded. Note that the inter-

prints the identification

change subroutine is left as a
program stub. It will be ex-
panded later. For some simple
cases for checking this pro-
gram, see Example 2. Fig. 11
shows the results from this pro-
gram. Note that an interchange
was attempted in Case 4, but
not in Case 3.

The Second Level of Expansion

Fig. 12 shows the program
with the interchange stub ex-
panded. Statement 3035 now

number M(l), which is inter-
changed, but statements 2010
and 2033 had to be changed to
give a value to M(l) when there
is only one candidate.

Fig. 12 also contains a fur-
ther expansion of the ordering
routine (see flowchart in Fig.
13) to handle more efficiently
the simple, but common, case
where there are only two can-
didates. Further expansions
could check for erroneous
values of number of candidates

Fig. 9. Flowchart for the rank-ordering subprogram.

INTERCHANGE
NIT), NI #)
Fol

7

LIST

10
15
2
25
30
35
QO
a5
D
S5
&
65
70
75
80
85

999

1000
1005
1010
1015
1020
1025
1030
1035
10 0
10 45
1050
1055
1060
1065
2000

DIM N(20),M(20)
REM NUMBER @F VBTES (V) = 0
LET v= 0
REM GET NUMBER @F CANDIDATES (C)
PRINT "“NUMBER OF CANDIDATFS = "3
INPUT C
REM CLEAR ALL VOTE C@UNTERS
FOR I= 1 10 C+ 2
LET NCID= O
NFXT 1
REM COUNT VOTES
GOSUB 1000
REM ORDER VRTE T@TALS
GOSUB 2000
REM QUTPUT TE@TALS
GASURB 3000
END
REM VOTF COUNTING PROAGRAM
REM FETCH NEXT VOIE (J)
PRINT “NEXT V@IE 1S'"3
INPUT J

REM D@NE IF VOTF IS ENDING MARK (C+3)

IF J=C+ 3 THEN 1065
RFM ADD VBTE 10 TOTAL (V)
LET v=vs 1

REM IGNOKE VOTE IF BALLOT UNMARKED (J=0)

IF J= 0 1KEN 1010

REM ADD VOTE TO APPKOPRIATE TOTAL
LET NCJI=NCIDI+ |

GeTe 1010

RETURN

REM TOTAL @RDERING PROGKAM

Fig. 10. Listing of vote-analysis program with all subprograms expanded by one level.

2005 REM N@ GRDERING NECESSARY IF ZERO @R UNE CANUIDAIES
2010 IF C< 2 THEN 2085

2015 REM ASSIGN MARKERS TO CANDIDATES FOR SBRTING
2020 FPR I= 1 T C

2025 LFT mMcI)=1

2030 NEXT 1

2035 REM SORT VOTE TOTALS

2040 LFT F= O

2045 FOR I= 1 TO C- 1

2050 REM CHECK IF TOTALS ARE IN ORDER

2055 IF NCID)>=NCI+ 1) THEN 2070

2060 REM IF QUI OF OKDER, INITERCHANGE PAIR

2065 GOSUB 29500

2070 NFXT 1

2075 REM D@ ANOTHER PASS IF ANY INTERCHANGES @CCURREUL
2080 IF F= 1 THEN 2040

2085 RETURN

2500 REM INTFRCHANGE TOTALS» MARKERS F@R @RDERING
2510 PRINT "ATTFMPTED INTERCHANGE"

2520 RETURN

3000 REM QUTPUI ROUIINE

3005 PRINT "NUMBER @F CANDIDATES = "iC

3010 PRINT "NUMRER OF V@TES = "3V

3015 REM SKIP CANDIDATE T@ATALS IF NO@ CANDIDATES
3020 1IF C= 0 THEN 3045

3025 PRIN1T "CANDIDAlE NUMBER V@ TE TOTAL™

3030 FOR I= 1 J@ C

035 PRINT TABC 95,1, TABC 25),N(C1)

3040 NEXT I

3045 PRINT “NUMBER @F WJRIIE=INS = "3N(C+ 1)

3050 PRINT "NUMBER OF IMPROPER BALLOTS = "3N(C+ 2)
3055 RETURN

9999 END

RUN
NUMBER OF
NEXT VOTE
NUMBER OF
NUMBER OF
NUMBER OF
NUMBER OF
READY

RUN
NUMBER OF
NEXT VOTE
NEXT VOTE
NUMBER OF
NUMBER OF
CANDIDATE
1

NUMBER OF
NUMBER OF
READY

RUN
NUMBER OF
NEXT V@TE
NEXT VOTE
NEXT VOTE
NEXT VOTE
ATTEMP TED
NUMBER QF
NUMBER OF
CANDIDATE

1

2
NUMBER OF
NUMBER OF
READY

20

CANDIDATES
ISs? 3
CANDIDATES
VOTES = O
WRITE-INS = O
IMPROP FR BALL@1S =

0

CANDIDATES = ? 1
1§? 1

I1S5? 4

CANDIDATES = 1
VOTES = 1

NUMBER VOTE TOTAL

1
WRITE-INS = O
IMPROP FR BALLOTS =

CANDIDATES = ? 2

152 1

IS? 2

IS? 2

IS? S5

INTERCHANGE

CANDIDATES = 2

VATES = 3

NUMBER VATF TOTAL
1
2

WRITE-INS = O

IMPROPFR BALLOTS =

Fig. 11. Results from the program of Fig. 10.

0

0

0

(Sl S]

| [| B

=
o

CASE 4.
FOR NU

L | | | A

<<<<nNZy<<<<n
w
m

R
2
1
2
2
5

CASE 3. TWO CANDIDATES. THREE VOTES (2
FOR NUMBER 1, 1 FOR NUMBER 2)

5 (ENDING MARKER)
CANDIDATES, THREE VOTES (1
1, 2 FOR NUMBER 2)

(ENDING MARKER)

Example 2.

(less than zero or more than the
program can handle) and er-
roneous data (values that are
undefined). Other expansions
could check for ties, handle
cases where more than one
vote is allowed (e.g., vote for
four of the above) and identify
the ballots on which write-ins
were marked.

Conclusion

Top-down design is amethod
for designing, debugging and
testing large programs. It re-
quires the programmer to start
with the overall program logic
and to continue expanding sub-
programs until the task is fully
defined. Each level is checked

72

in its actual working environ-
ment before the next level is at-
tempted. Thus, integration of
modules and system-level
debugging and testing are per-
formed throughout program
development rather than all at
the end. Program stubs replace
unexpanded programs or mod-
ules at each level. Top-down
design is a systematic ap-
proach to writing large pro-
grams. Personal computer
users should carefully consider
its use when attempting com-
plex projects.®

References

1.J. K. Hughes and J.J.
Michtom, A Structured Ap-

LIST
10

DIM N(C20),M(20)

1S REM NUMBER @F VRBTES (v) =0

2 LET v= 0

25 REM GET NUMBFR QF CANDIDATES (C)

30 PRINT "NUMBER @OF CANDIDATES = "3

35S INPUT C

4O REM CLEAR ALL VOTE COUNIEKRS

45 FOR I= 1 T@ C+ 2

9O LET NC(I)= O

SS NEXT 1

& REM COUNT VO@TES

65 G@SUB 1000

70 REM ORDER VOTE TOTALS

75 GOSUB 2000

B0 REM QUTPUT TOTALS

85 G@SuUB 3000

999 END

1000 REM VOTE COUNTING PROGRAM

1005 REM FETCH NEXT VOTE «J)

1010 PRINT "NEXT VOTE 1S";

101S INPUT J

1020 REM DONE IF VOTE IS ENDING MARK (C+3)
1025 1IF J=C+ 3 THEN 1065

1030 REM ADD VOTE T@ T@TAL (V)

1035 LET v=v+ |

1040 REM IGNORE VOTE IF BALLOT UNMARKED (J=0)
1045 IF J= 0 THEN 1010

1050 REM ADD VOTE 10 APPROPRIATE 10TAL
1055 LET NCJI=NCII+ 1

1060 GOT@ 1010

1065 RETURN

2000 REM TOTAL @RDERING PROGRAM

2005 REM DONE IF N@ CANDIDATES

2010 IF C= O THEN 2085

2015 REM ASSIGN MARKERS T@ CANDIDATES FOR SORTING
2020 FOR I= 1 T0 C

2025 LET MCI)=1

2030 NEXT I

2031 REM NO@ ORDERING NECESSARY IF ONLY @NE CANDIDATE
2033 1IF C= 1 THEN 2085

2035 REM SORT VOTE TOTALS

2036 REM HANDLE CASE @F ONLY 140 CANDIDATES SEPARATELY

2038
20 40
20 45
2050
2055
20 60
265
270
75
2080
2085
2090
2095
2100
2105
2110
2115
2120
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
3000
00S
010
015
020
025
3030
035
30 40
30 45
30 50
055
9999

IF C= 2 THEN 2090

LET F= 0
FOR I= 1 T@ C- 1
REM CHECK IF TOTALS ARE IN ORDER

IF NCI)>=NCI+ 1) THEN 2070

REM IF OUT OF ORDER» INTERCHANGE PAIK

GesuUB 2500

NEXT I

REM DO AN@THER PASS IF ANY INTERCHANGES QOCCURKED
IF F= 1 THEN 2040

RETURN

REM ORDER TOTALS FOR TW4@ CANDIDATES ONLY

REM N@ PROBLEM IF ALREADY IN ORDEK

IF NC 1)>=NC 2) THEN 2120

REM IF @QUT OF ORDER, INTERCHANGE

LET 1= 1

GASUB 2500

RETURN

REM INTERCHANGE T@TALS, MARKERS F@R OKDERING

REM MARK THAT INTERCHANGE OCCURRED (F=1)

LET F= 1

REM INTERCHANGE TE@IALS

LET T=NCD)
LET NCI)=NCI+
LET NCI+ 1)=T
REM INTFRCHANGE MARKERS
LET T=M(D)
LET MCI)=MC(]+
LET M(I+ 1)=T
RETURN

REM QUTPUT ROUTINE

PRINT *"NUMBER @F CANDIDATFS = '"3C

PRINT "NUMBER @F VOIES = "3V

REM SKIP CANDIDATE TOTALS IF NO CANDIDATES
IF C= 0 THEN 3045

PRINT *“CANDIDATE NUMBER
FOR I= 1 10 C

PRINT TABC 5),MC1)»TABC 25),N(I1)
NEXT 1

PRINT "NUMBER OF WRITE-INS = "IN(C+
PRINT "NUMBER OF IMPROPER BALLQOIS =
RETURN

END

1)

1

V@TE Te@IAL"™

1)
YiINCcCr 2)

Fig. 12. Listing of vote-analysis program with improved rank-ordering subprogram. The subprogram now handles the case of two
candidates more efficiently.

START

RANK-ORDER
(SEE
? FIGURE 9)

YES

s
NI N(2) DN
?

YES

INTERCHANGE
N(1) AND N(2)

Fig. 13. Flowchart of the improved rank-ordering subprogram.
proach to Programming, Lindamood, “Structured Pro-
Prentice-Hall, Englewood Cliffs gramming: Top-down Ap-
NJ, 1977. proach,” Datamation, Decem-

2. E. Yourdon, Techniques of
Program Structure and Design,
Prentice-Hall, Englewood Cliffs
NJ, 1975.

3.B.W. Kernighan and P.J.
Plauger, The Elements of Pro-
gramming Style, McGraw-Hill,
NY, 1974.

4, E. J. Miller, Jr., and G. E.

ber 1973, pp. 55-57.

5. R. W. Ulrickson, ‘“Solve Soft-
ware Problems Step by Step,”
Electronic Design, January 18,
1977, pp. 54-58.

6. L. A. Leventhal, 8080A/8085
Assembly Language Program-
ming, Osborne and Associates,
Berkeley CA, 1978.

RUN

NUMBER OF
NEXT VOTE
NEXT VOTE
NEXT VOTE
NEXT VOTE
NUMBER OF

CANDIDATES
1S? 1
1S? 1
IS? 2
1S? 5
CANDIDATES
NUMBER OF VOTES = 3
CANDIDATE NUMBER VOTE TOTAL

1 2

2 1
NUMBER @F WRITE-INS = O
NUMBER OF IMPROPER BALLOTS = O
READY

2

RUN
NUMBER OF
NEXT VOTE
NEXT VOTF
NEXT VOTE
NEXT V@TE
NUMBER OF
NUMBER OF
CANDIDATE

2

1 1
NUMBER OF WRITE-INS = 0O
NUMBER @F IMPR@PER BALLOTS = 0
REA DY

Fig. 14. Results from the program of Fig. 12.

"
'~

CANDIDATES ? 2
1s? 1
1S? 2
1s? 2
1S? S
CANDIDATES
VOTES = 3
NUMBER VOTE TOTAL
2

2

73

STRIP UNWRAP

REGULAR
R

wire wrapping

MODIFIED
WRAP

Wire-wrapping, stripping, unwrapping tool for
HOBBY WRAP AWG 30 0n.025 (0,63mm) Square Post.

TOOL [Regular Wrap '\‘ WSU-30 [SG.Qﬂ
[Modified Wrap | WSU-30M | $7.95 |

WIRE-WRAPPING TOOL
HOBBY-WRAP
Model BW-630

- For .025” (0,63mm) sq. post
2\ “MODIFIED" wrap, positive

‘ indexing, anti-overwrapping
device.

Battery For AWG 30 BW-630 | $34.95*
wire For AWG 26-28 | BW-2628 | $39.95*

tool Bitfor ANG30 | BT-30 | $395
COMPLETE Bit for AWG 26-28| BT-2628 | $7.95
WITH BIT

AND SLEEVI USE “C" SIZE NI CAD BATTERIES

(NOT INCLUDED)
==

WIRE-WRAPPING KITS ROLLS OF WIRE

) Wire for wire-wrapping AWG-30
(C;Stfat';sé;??;l;yw"l\/rfjp Tool W5U-30, Vs (0.25mm) KYNAR® wire. 50 ft. roll,

\ silver plated. solid conductor,
Prestripped wire 1" to 4 > easy stripping
lengths (50 wires per package) TG Bhoe Wi

stripped 1" both ends

ng Kit (Blue WK 2 B

WIRE DISPENSER
s With 50 ft. Roll of AWG 30
WIRE-WRAPPING KIT KYNAR® wire-wrapping wire.

g m Cuts the wire to length.
m Strips 17 of insulation.
Contains: Hobby Wrap Tool WSU-30, m Refillable (For refills, see above)
Roll of wire R-30B-0050, (2) 14 gy Blue Wire WD-30-B_]$395
LBRZ | DIP's, (2) 16 DIP's and Hobby Board TR Lococ (3395
e | H.PCB-1. e WO-30.W_153.95

‘ - Red Wirg wD-30R | $3.9.
= &=
= kv

Wrapping Kit [wK-3B (Blue)[$16.95] PRE CUT

PRE STRIPPED WIRE
Wire for wire
wrapping AWG-30
(0.25mm) KYNAR"
wire, 50 wires per
package stripped

Contains: Hobby Wrap Tool WSU-30 M, 1" both ends

Wire Dispenser WD-30-B, (2) 14 DIP's,

(2) 16 DIP's, Hobby Board H-PCB-1,

DIP/IC Insertion Tool INS-1416 and

DIP/IC Extractor Tool EX-1

WIRE-WRAPPING KIT

[ere-WrapomgK@ IWK~48 (B|ue)l$25.991

MINIMUM ORDER $25.00. SHIPPING CHARGE $1.00, N.Y. CITY AND STATE RESIDENTS ADD TAX

OK MACHINE & TOOL CORPORATION

3455 Conner St , Bronx. NY. 10475 ®m(212) 994-6600 @ Telex 125091

74

DIP/IC

INSERTION ™ PIN STRAIGHTENER

STRAIGHTEN PINS RELEASE m INSERT

l 14-16 Pin Dip IC Inserter] INS-1416 l$3.4ﬂ

DIP/IC EXTRACTOR TOOL

The EX-1 Extractor is ideally suited for hobbyist or
lab engineer. Featuring one piece spring steel con
struction. It will extract all LSI. MSI and SSI devices

of from 8 to 24'pins
[s1.49]

Extractor Tool I

DIP SOCKET

Dual-in-line package, 3 level wire-
wrapping, phosphor bronze contact,
gold plated pins .025 (0,63mm) sq.,
.100 (2,54mm) center spacing.

14 Pin Dip Socket 14 Dip | $0.79

16 Pin Dip Socket 16 Dip | $0.89

RIBBON CABLE ASSEMBLY
SINGLE ENDED

With 14 Pin Dip Plug

24" Long (609mm) SEl4.24

With 16 Pin Dip Plug

24" Long (609mm) SE16-24

DIP PLUG WITH COVER

FOR USE WITH RIBBON CABLE

14 Pin Plug & Cover 14-PLG [$1.45
16 Pin Plug & Cover 16-PLG | $1.59

The 4 x4.5x1/16 inch board is made of glass coated EPOXY Laminate
and features solder coated 1 oz. copper pads. The board has provision
for a 22/44 two sided edge connector, with contacts on standard .156
spacing. Edge tacts are dedicated for flexibility.

The board contains a ma\n- of .040 in. diameter holes on .100 inch
centers. The t 76 ¢t hole pads that can accomn
modate any DIP size lrom 640 pins, as well as discrete components
Typical density is 18 of 14-Pin or 16-Pin DIP's. Components may be
soldered directly to the board or intermediate sockets may be used for
soldering or wire-wrapping

Two independent bus systems are provided for voltage and ground on
both sides of the board. In addition, the component side contains 14
individual busses running the full length of the board for complete wir
ing flexibility. These busses enable access from edge contacts to distant
components. These busses can also serve to augment the voltage or
ground busses, and may be cut to length for particular applications.

QUANTITY: 2 PLUGS, 2 COVERS

RIBBON CABLE ASSEMBLY
DOUBLE ENDED

With 14 Pin Dip Plug - 2" Long | DE 14-2
With 14 Pin Dip Plug -4” Long | DE 14-4
With 14 Pin Dip Plug -8" Long|DE 14-8
With 16 Pin Dip Plug -2” Long | DE 16-2
With 16 Pin Dip Plug -4” Long |DE 16-4

[With 16 Pin Dip Plug -8 Long | DE 168

[Hobby Board [H-pee-1 [54.99]

PC CARD GUIDES

PSS
et

sion molded with

= WEU MRS - qu 3 1 tha shock and
T IESS——emTLTTLT

) extrac
tion. Guides ¢ pdate any card thickness
from .040-.100 in

QUANTITY — ONE PAIR (2 pcs.) L

Card Guides | TR-1 |$189]

PC CARD GUIDES & BRACKETS

TRS-2 kit includes 2 TR 1 guides plus 2 mounting
brackets. Support brackets feature unique stanilizing
post that permits secure mounting with only 1 screw

Guides & Brackets I TRS-2 l $3.7?l

QUANTITY — ONE SET (4 pcs.)

TERMINALS

= .025 (0,63mm) Square Post
m 3 Level Wire-Wrapping

s Gold Plated

Slotted Terminal

Single Sided
Terminal

IC Socket Terminal

Double Sided
Terminal

WWT-1 | $2.98
WWT-2 | $2.98
WWT-3 | $3.98
WWT-4 | $1.98

25 PER PACKAGE

PC EDGE CONNECTOR

44 Pin, dual read out, .156" (3,96
mm) Contact Spacing, .025" (0,63
mm) square wire-wrapping pins.

WAC..EdgeConnector l CON-1 [sa.@

P.C.B. TERMINAL STRIPS

The TS strips provide positive screw actwvated clamp
iNR action, accommodate wire sizes 14 30 AWG (1, 8.0
25mm) Pins are solder plated copper. 042 inch (Imm
diameter, on 200 incn (Smm) centers

4-Pole TS- 4 |$1.39
8-Pole TS- 8 |$1.89
12-Pole TS-12 | $2.59

TERMINAL INSERTING TOOL
For inserting WWT-1, WWT-2, WWT-3,
and WWT-4 Terminals into .040

(1,01mm) Dia. Holes.

\p

WIRE CUT AND STRIP TOOL

Easy to operate place wires (up to 4) in stripping slot with
ends extending beyond cutter blades press tool and pull

wire 1s cut and stripped to proper “‘wire wrapping ' length
The hardened steel cutting blades and sturdy construction of
the tool insure long life

Strip length easily adjustable for your applications

DESCRIPTION

ADJUSTABLE
MODEL “SHINER" LENGTH
NUMBER OF STRIPPED WIRE
INCHES TD INCHES

24 ga. Wire Cut and Strip Tool

ST-100-24 18, 1%

26 ga. Wire Cut and Strip Tool

ST-100-26 15, 1"~

26 ga. Wire Cut and Strip Tool [ST-100-26-875 Vs " 115

28 ga. Wire Cut and Strip Tool

ST-100-28 Th* 1%

30 ga. Wire Cut and Strip Tool

ST-100-30 " 118"

THE ABOVE (IST OF CUT AND STRIP TOOLS ARE NOT APPLICABLE FOR MYLENE OB TEFLON INSULATION

MINIMUM ORDER $25.00. SHIPPING CHARGE $1.00, N.Y. CITY AND STATE RESIDENTS ADD TAX

OK MACHINE & TOOL CORPORATION

3455 Conner St Bronx. NY 10475 m(212) 994-6600 @ Telex 125091

75

The North Star

Floppy System

an 11-year-old can build it!

Howie DiBlasi

Director, Vocational Education
Lake Havasu High School
Lake Havasu AZ 86403

H' My name is Mark; | am
I- 11 years old. | just
finished a North Star Floppy
Disk Kit. It was easy; | really
made it. And guess what? It
worked the first time | hooked it
up!”

Mark looked at me and

smiled. He was really proud of
himself, and | was too. If an
11-year-old can put the North

Star Kit together, so can you.

“Hey, Dad, am | going to be
rich and famous because | put
the North Star together and you
are writing about me in
Kilobaud?"

I laughed.
Famous? No.
satisfied? Yes.

Rich? No.
Proud and

Here We Go

| ordered the North Star Kit
and received it in a week from
the Byte Shop in Phoenix.
When | opened the box and ex-
amined the contents, | was im-

pressed with the quality of the
circuit boards and parts. All the
parts were there, and complete
instructions were included.

After looking over the in-
struction manual, | had my son
read it to see if he understood
what to do. He said, ‘“No
sweat,” and at that point |
decided to let him go ahead and
build the kit.

Printed Matter

Four instruction manuals
came with the kit: (1) Minifloppy
Diskette Storage Drive OEM

What you see is what you get. The kit comes complete for the North Star Disk System. The Shugart
disk drive (back right) comes complete and assembled.

76

Manual; (2) North Star Disk
Operating System Manual; (3)
North Star BASIC Manual; (4)
North Star MICRO-DISK
SYSTEM MDS-A Instruction
Manual.

The instruction manual is
divided into three sections:
theory of operation, assembly
instructions and system in-
tegration and schematics. The
manuals are all well written and
detail numerous situations and
how to set things up. It was a
pleasure to read through and
understand the material. Right
on, North Star!

Assembly

All parts were checked off by
Mark, which helped him
become familiar with the parts
and learn their use. As he
checked them, | took a few
moments to explain the func-
tion of the various parts.
Everything was there. Some
kits don’'t always include all
items; but North Star has it all
together.

Mark installed the 47 IC
sockets and soldered them in
place. He had soldered a few
times before so he was familiar
with the correct circuit-board
soldering procedure. He had a
few problems with bridges, but
a little Solder-Wick removed
them. | was pleased to see a
very professional soldermasked
board; properly soldermasking a
board helps to eliminate
problems.

The eight resistors and 40

WOW! Five volts. After the power supply was completed, the con-
nector plug was checked for correct voltages. All OK.

capacitors were then soldered
to the board, and the crystal, 5
volt regulator and heat-sink
hardware followed. It was now
necessary to solder a 34 pin
cable connector to the board.
The MDS Controller board was
plugged into the computer.
Holding his breath, Mark con-
nected the meter, whichread +
5 volts. So far so good.

IC Installation

Mark watched while |
demonstrated the correct way
to install the ICs in the sockets.
| made a quick check to make
sure he had them in the correct
location. The manual then gave
two detailed pages of instruc-
tion for waveforms on a scope.
Since | did not have a scope
available we skipped this step.

Power Board Assembly

The disk drive can receive
power three ways: (1) From +5
and + 12 volts from an existing
power supply; (2) power PC
board to regulate power from
an existing unregulated power
supply; (3) North Star power-
supply option (MDS-PS).

Since | knew we would be us-
ing the North Star with two dif-
ferent computers from one time
to another, | had purchased the
North Star power-supply op-
tion. Mark mounted the
transformer in the cabinet and
hooked up the wires, switch
and fuse to complete the power
supply. Ready to test the power
supply for +5and + 12 volts at
the power plug, Mark hooked
up the meter and checked for
the proper voltages. To our

Disk drive assembly. The power supply is assembled to the disk
drive assembly with two spacers and screws on each side. The unit
is then connected to the case.

Look Dad, | did it! A very proud young man. If he can build the

North Star System, you can. Let’s go.

satisfaction, they were OK.
The last thing to do was to
make two trace cuts on the
MDS controller board and in-
stall two jumper wires. Done!

Final Check

The real test was drawing
near. Mark installed the MDS
controller board in the com-
puter and hooked up the
cables. With the power switch
and computer on and the disk
in the disk drive, Mark typed EX
E900 and hit return. As he did
that | explained that an asterisk
on the screen signaled that
everything was OK. The next
command was GO BASIC. Mark
did that and BASIC was loaded
in 2 seconds. READY appeared
on the screen and we were
ready to program.

Up And Running

Mark and | input a small pro-
gram to make sure everything
was OK. It was. We sat at the
computer for over three hours
inputting programs and run-
ning them. It was getting late,
so we stopped and decided to
input some more programs dur-
ing the next few days.

Summary

Total construction time for
the project was 4 hours and 20
minutes. You could probably
complete it in less time if you
have experience building kits.
Mark took his time building the
kit, but the time spent paid off
because the system worked the
first time.

While Mark was running a
few programs, | looked over the
manuals. North Star BASIC is
an extended version and has
numerous functions. It also has
an edit function to correct er-
rors; it is a joy to use.

The OEM manual gives com-
plete and detailed description
of the disk drive and complete
schematics. The North Star
Disk Operating Systems
Manual features complete in-
structions and operations for
the DOS. It contains descrip-
tions on creating files, types of
files, deleting files, jump
routines, read and write and
many more procedures that are
available for use. All the
manuals are written so you can
understand them. Maybe some
other manufacturers will take a
lesson from North Star.®

77

A Simple Mailing System

a money-making time-saver

Stephen Gibson
PO Box 38386
Los Angeles CA 90038

One of the first tasks a
small businessman wants
his new computer to do is han-
dle the company mailing list. A
review of the many programs
available reveals a big problem:
Unless you have a disk storage
system, you are forever con-
demned to load all those
names and addresses via the
DATA statement.

To read out the list or print
labels, the data is usually read
into a set of variables, then for-
matted to fit your particular
hard-copy printer. If you fill
your memory or want separate
lists, you have to write a whole
new program. To update, you
are forced to list the program to
find where the last DATA state-
ment ended, then change the
read routine.

All this nonsense takes valu-
able time and makes you a

slave to the machine. It would
be easier to write the program
only once, and simply change
the lists. Here are two ways to
do it: (1) the cassette method
and (2) the bare-bones method.
At least one is bound to work
for you.

Sneaky Software
Secrets Revealed

The problem is not how to
structure the ideal list program
in BASIC, but how to save the
names and addresses in a lan-
guage that doesn’'t know how
to save variables. The main pro-
gram should have to be saved
only once.

Surprisingly enough, a num-
ber of rather clever techniques
have been developed to solve
this problem. One method
breaks down the name, a string
variable, and feeds it to tape as
a series of OUT statements.
Another method uses the tape
interface hard-wired in parallel
with the terminal 1/0. Still

The entire system here is an Imsai 8080 with 24K of memory,
ADM-3 terminal, Data Duffer, Teletype...and one efficient
secretary.

378

another chooses a software
method by patching BASIC's
terminal I/O over to the tape in-
terface port, and then outputs
the list via PRINT statements
as though it were the terminal
...very clever, because the

program does all the patching
using POKE statements.

Unfortunately, the advan-
tages of one method of saving
your mailing list over another
are overshadowed by speed
and tape storage problems with
your unit.

Is Speed Your Thing?

Although somewhat slower
than a 250K bit/second floppy-
disk transfer, the lowly cas-
sette is still a good medium for
saving data for later use.
Several cassette interface sys-
tems are available. They differ
widely with respect to speed.

| picked the Tarbell high-
speed interface and coupled it
to the Data Duffer (see Kilo-
baud, March 1978, ““Hear It and

when to abbreviate.

3020
3300
4015
4020
4090
4095

leading spaces.

4022
4023
4039

4088

numbers are hexadecimal.

8K 3.2
Address Byte
04D3 80
04D9 01
04DC 00
04DE 01
04E3 01

Add these lines to the program to let the computer tell you

12 A = 20:REM WIDTH OF TTY LABEL
IF LEN(NAS(N)) > A THEN GOSUB 5000 : GOTO 1040

1050

1060 IF LEN(COS$(N)) > A THEN GOSUB 5000 : GOTO 1055
1070 IF LEN(ADS$(N)) > A THEN GOSUB 5000 : GOTO 1065
1080 IF LEN(CS$(N)) > A THEN GOSUB 5000 : GOTO 1075
1090 IF LEN(ZP$(N)) > A THEN GOSUB 5000 : GOTO 1085
5000 REM

5005 REM LINE LENGTH ERROR

5010 REM

5015 PRINT:PRINT*“LINE TOO LONG!!":PRINT:RETURN

Add these lines to run the program with Mits 3.2 12K BASIC

POKE 1776,110 : POKE 1778,32 : POKE 1784,1
POKE 1776,0 : POKE 1778,128 : POKE 1784,1
POKE 1787,110 : POKE 1789,16 : POKE 1794,111
POKE 1778,0 : POKE 1784,255

POKE 1787,0 : POKE 1789,1 : POKE 1794,1
POKE 1778,128 : POKE 1784,1

Add these lines to modify Mits 3.2 8K BASIC to recognize

13 SP$ = ‘" :REM A SPACE CHARACTER
POKE 528,54 : POKE 529,32 : POKE 530,35
POKE 531,195 : POKE 532,224 : POKE 533,7
POKE 1171,16 : POKE 1172,2

POKE 1171,224 : POKE 1172,7

IF B$ = (ES + SP$) THEN 4090

POKE 528,0 : POKE 529,0 : POKE 530,0
POKE 531,0 : POKE 532,0 : POKE 533,0

Make these patches to Mits BASIC if you get hung up in the
Tape Input routine and need to return to command level. All

Fig. 1. Mits BASIC patches.

12K 3.2
Address Byte
06F2 80
06F8 01
06FB 00
06FD 01
0702 01

See lt!")as areliable way to use
cassettes without the hassle of
a seemingly endless wait for a
load or the fear that data was
lost because a switch was off
or a knob twisted the wrong
way. The Tarbell manual sug-
gests a variable-saving method
in which the terminal I/O is soft-
ware patched to the cassette
1/0 for a transfer. The routines
in the mailing-list program
make these patches to Mits 3.2
8K BASIC (see Program A). The
normal Mits TTY I/O convention
of status port “0" and data port
“1" is used. Patches to Mits 3.2
12K BASIC are also listed in
Fig. 1. If you don’t have Mits
BASIC or a Tarbell, there's still
hope; you can use the bare-
bones method described later.

Hard-Copy Hassles

Registration is the key ingre-
dient for alignment of the
labels on your printer. A sprock-
eted feed mechanism is almost
a necessity. Of course, you can
simply cut your labels out with
a large paper-cutter, but the
peel-off-type labels are more
convenient and better looking.
You need the sprocket feed to
make them work properly. You
might even consider custom
labels with fancy artwork or the
company logo.

| had quite a time finding off-
the-shelf labels for my old
sprocket-fed Teletype. Almost
everyone sells ready-made
forms for larger printers. There
are a few companies that spe-
cialize in stock or custom la-
bels from camera-ready artwork
(see accompanying ‘‘Sources
for More Information”).

If you do start with a Tele-
type, by all means change the
ribbon! Use a carbon ribbon
rather than the stock cloth one
—the printing looks so much
better. Unique type fonts are
also available for the Teletype.
Even the Teletype can be made
to look as good as an IBM Se-
lectric ... as long as you don't
mind all caps—not an earth-
shaking problem for a simple
mailing system such as this.

You will have to change the
platen if your Teletype is a fric-
tion-feed model. The modifica-
tion to your machine is simple
and inexpensive. I'm not advo-

cating the Teletype as the ideal
printer for this system; my com-
pany just happens to have one.
Besides being slow, it's noisy!
Eventually, | had to stick ours
off in a room by itself to drown
out the clatter. The advantages,
of course, are that the machine
is reliable and inexpensive.
Used machines abound, and
service is readily available.

Simple Program Does It All

Only four routines make up
the cassette program. In the
listing in Program A, lines 1 to
50 initialize the program. A gen-
erous 10,000 bytes are cleared
away based on an average line
length of 20 characters, with 5
lines given to each company

and a list size of 100 com-
panies. The variables S and L
represent the maximum size of
the list and the current list size,
respectively. The subscripted
variables in line 25 are dimen-
sioned to the size of the list. Of
course, you can set this value
higher for a larger list if your
memory capacity will permit it.
The command level routine
prints suitable prompts for
those unfamiliar with the pro-
gram. A branch is made at line
155 based on the value of C.
To enter names at line 1000,
the list counter L is in-
cremented by 1 and a test is
made to see if the list size is
greater than 100 names. It
might be later on, so we must

check it out. If so, the list
counter is decremented back to
100 and a return is made to the
command routine. In line 1030,
a message indicates that the
number symbol (#) can be used
to exit the routine. A FOR/
NEXT loop inputs the names
and addresses into the sub-
scripted variables.

You might wish to make the
prompts different for your ver-
sion. Instead of “ZIP...,"” for
instance, you might want the
program to print ““COUN-
TRY ...,"” if you mail overseas.
Or you could eliminate “ZIP"
(ZP$) altogether and squeeze it
into the CITY/STATE line.

If # is typed in line 1045, a
branch is made and the list

1 REM

2 REM **** MAILING LIST ****

3 REM

4 REM BY STEPHEN GIBSON 1/10/77

5 REM RUNS ONLY ON MITS 3.2 8K BASIC

6 REM AND TARBELL CASSETTE INTERFACE
7 REM

8 REM INITIALIZE

9 REM

10 CLEAR 10000 :REM CLEAR SPACE FOR LIST
15 S = 100 :REM MAXIMUM LIST SIZE

20 L = 0:REM CURRENT LIST SIZE

25 DIM NAS(S),CO$(S),ADS$(S),CS$(S),ZPS(S)

30 E$ = “# :REM END OF LIST CHARACTER

35 OUT 1,26 :REM CLEARS SCREEN

40 PRINTTAB(20);“*** THIS IS MAILING LIST ***”
50 PRINT

100 REM

105 REM COMMAND LEVEL ROUTINE

110 REM

115 PRINT*PLEASE ENTER YOUR COMMAND:"":PRINT

120 PRINT“ENTER NAMES INTO LIST
125 PRINT*“PRINT-OUT OF LIST

130 PRINT*STORE LIST ON TAPE

135 PRINT“READ LIST FROM TAPE

140 PRINT
145 INPUT“COMMAND";C
150 IF C >4 THEN 115

1”
2»
3
4”

155 ON INT(C) GOTO 1000, 2000, 3000, 4000

REM

REM

REM ENTER NAMES ROUTINE

L=L+1
IF L > 100 THEN 1400

1025 PRINT*IF YOU WISH TO EXIT THIS ROUTINE . . . ”
1030 PRINT“TYPE ONE OF THESE ‘# ,THEN ‘RETURN’.”
1035 FOR N = L TO 100 :PRINT:PRINT*NUMBER "";N:PRINT
1040 INPUT‘*NAME : "NAS(N)

1045 IF NAS(N) = “#” THEN 1300

1047 IF NAS(N) = “\"” THEN N=N-2:GOTO 1100

1050 REM

1055 INPUT*‘COMPANY : ";COS(N)

1060 REM

1065 INPUT“ADDRESS : ";ADS(N)

1070 REM

1075 INPUT“CITY & STATE : "";CSS$(N)

1080 REM

1085 INPUT*“ZIP : " ZP$(N)

1100 NEXT

1200 L = 100 : GOTO 1500

1300 L = N - 1:GOTO 1600

1400 L =L -1

1500 PRINT:PRINT“THE LIST IS FULL.”:PRINT

79 8

1600
1700

2005
2010
2015
2020
2025
2030
2035

2045
2050
2055

2065
2070
2075
2080
2085

2095

3005
3010
3011
3012
3013
3014
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3200
3300
3400
4000
4005
4010
4011
4012
4013
4014
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4200
4300

PRINT:PRINT*YOU HAVE "’;L;**NAMES ON THIS LIST.”

GOTO 100

REM

REM PRINT-OUT ROUTINE

REM

REM PRINT

PRINT*‘1) LINE UP LABELS IN PRINTER.”’
PRINT

PRINT*‘2) TURN ON PRINTER.”

PRINT

PRINT*‘3) TYPE ANY LETTER, THEN ‘RETURN’.”
PRINT:INPUT“WAITING . . . ";W$§

FOR X = 1 TO L STEP 3
Y=X+1:Z=X+2

PRINT TAB(0) ; NAS(X) ; TAB(2S) ;
PRINT TAB(0) ; COS$(X) ; TAB(25) ; COS(Y) ; TAB(51) ; COS$(2)
PRINT TAB(0) ; ADS(X) ; TAB(25) ; ADS(Y) ; TAB(51) ; ADS$(Z)
PRINT TAB(0) ; CS$(X) ; TAB(25) ; CS$(Y) ; TAB(51) ; CS$(2)
PRINT TAB(0) ; ZPS$(X) ; TAB(25) ; ZPS$(Y); TAB(51) ; ZP$(Z2)
PRINT:PRINT

NAS(Y) ; TAB(51) ; NAS(Z)

REM ,~

REM STORE ON TAPE ROUTINE
REM
PRINT:PRINT*1) PLACE NEW CASSETTE IN RECORDER."
PRINT:PRINT*‘2) PUT IN RECORD MODE AND ZERO COUNTER.”
PRINT:PRINT*‘3) WAIT A FEW SECONDS TO ALLOW A LEADER.”
PRINT:INPUT*‘4) TYPE ANY LETTER, THEN ‘RETURN’.”";W$

S$ = CHRS$(195) + CHR$(230)

POKE 1233,110 : POKE 1235,32 : POKE 1241,111

FORN = 1 TOL

D$(1) = NAS(N)

D$(2) = COS$(N)

D$(3) ; ADS(N)
D$(4) = CSS$(N)
D$(5) = ZP$(N)

FORJ =1TOS5S

FOR K = 1 TO 100 : NEXT K

BS = S$ + D$(J)

PRINT B$

NEXT J

NEXT N

FORT =1TO3

BS = S$ + ES

FOR K = 1 TO 100 : NEXT K

PRINT B$

NEXTT

POKE 1233,0 : POKE 1235,128 : POKE 1241,1
GOTO 100

REM
REM READ FROM TAPE ROUTINE
REM
PRINT:PRINT*‘1) PLACE CASSETTE IN RECORDER.”
PRINT:PRINT*‘2) SET COUNTER AND PUSH PLAY.”
PRINT:PRINT‘‘3) ALLOW TIME FOR LEADER.”’
PRINT:INPUT*‘4) TYPE ANY LETTER, THEN ‘RETURN’.”;W§
POKE 1244,110 : POKE 1246,16 : POKE 1251,111

POKE 1235,0 : POKE 1241,255

FOR N = 1TO 101

FORJ =1TOS

OUT 110,16
INPUT BS$

IF BS = ES THEN 4090
D$(J) = BS
NEXT J

NAS(N) = DS$(1)
CO$(N) = D$(2)
ADS$(N) = D$(3)
CS$(N) = D$(4)
ZP$(N) = DS(5)
NEXT N

POKE 1244,0 : POKE 1246,1 : POKE 1251,1

POKE 1235,128 : POKE 1241,1

L=N-1

PRINT:PRINT*“THIS LIST HAS "*;L;** NAMES ON IT.”:PRINT
GOTO 100

Program A. Program listing for A Simple Mailing System. Here are the routines you need to patch
Mits 8K 3.2 BASIC to load or save your mailing list using the Tarbell high-speed cassette interface.

A e

counter L is decremented by
one (1) and a return is made to
the command routine. Some-
times | make mistakes when en-
tering a name (my secretary
never does). | find it convenient
to be able to type a character
that tells the program to go
back one name and start over.
Line 1047 does it all. | chose a
backslash, but you should feel
free to choose your own char-
acter to personalize this pro-
gram. You could insert this line
after every input if you'd rather
check your work aline at a time.

Another useful addition is to
print a space, for example,
where the name goes in the
event you have a company
name, but no one individual to
mail to. A space is a logical en-
try. Don't try it unless you add
the appropriate lines from Fig.
1 because Mits BASIC ignores
leading spaces. The listed
POKEs change the input rou-
tine to add a space if a carriage
return is received. | found it
convenient to print the current
list size in line 1600 before ex-
iting this routine.

The printout routine must be
tailored to your particular print-
er. The program format given is
for a standard Teletype using
peel-off labels spaced three
across. Lines 2020 to 2045 give
instructions. The variable W$ is
only a buffer to wait until you
are ready to print. Extra PRINT
statements in line 2085 ad-
vance the form to the next set
of labels. To print your labels
three at a time for the popular
machine-gun mailings, simply
substitute the lines in Fig. 2.

The store (on tape) routine at
line 3000 begins the really use-
ful aspects of this program. Itis
here that the names and ad-
dresses only are fed to tape. In-
structions are given in lines
3011 to 3014. WS is still only a
wait buffer. S$ is set to the
value of the Tarbell start and
sync bytes. POKEs to Mits
BASIC are then made in line
3020 to shift the terminal I/0 to
the cassette /O port. The
names and addresses are
placed in a D$ buffer, then out-
put with the start and sync
bytes as B$ via PRINT
statements.

John Craig

Editor

Kilobaud Magazine
Peterborough NH
03458

John Craig

Editor

Kilobaud Magazine
Peterborough NH
03458

Wayne Green
Publisher

Kilobaud Magazine
Peterborough NH
03458

Instead of this format . . .

Wayne Green
Publisher

Kilobaud Magazine
Peterborough NH
03458

You might want this . . .

John Craig

Editor

Kilobaud Magazine
Peterborough NH
03458

Wayne Green
Publisher
Kilobaud Magazine
Peterborough NH
03458

Stephen Gibson
Famous author
PO Box 38386
Los Angeles CA
90038

John Craig

Editor

Kilobaud Magazine
Peterborough NH
03458

Wayne Green
Publisher

Kilobaud Magazine
Peterborough NH
03458

Then substitute these lines . . .

2050 REM 3-UP FORMAT
2055 FORN =1TOL

2060 PRINT TAB(0); NAS(N); TAB(25); NAS(N); TAB(51); NAS(N)
2065 PRINT TAB(0); CO$(N); TAB(25); CO$(N); TAB(51); COS(N)
2070 PRINT TAB(0); ADS(N); TAB(25); ADS(N); TAB(51); AD$(N)
2075 PRINT TAB(0); CSS(N); TAB(25); CS$(N); TAB(51); CS$(N)
2080 PRINT TAB(0); ZP$(N); TAB(25); ZP$(N); TAB(51); ZPS$(N)

Fig. 2. Instead of this format . ..

The delay loop in line 3060
bears some explanation. When
data is brought back into the
program, allow time for BASIC
to reinsert the data into the ap-
propriate subscripted variables
by implementing a delay during
the output sequence. You
could, perhaps, shorten the
delay, but you might lose some
of yourdata. A value of 100 for T
allows plenty of safety.

The End of List character, ES,
must also be output. The com-
puter will look for this charac-
ter when the list is played back
into the machine to set the list
counter. This particular ar-
rangement allows lists of vary-
ing size and the addition of
more names to a short list.

Beginning on line 3090, ES$ is
linked to the start and sync
bytes and output three times.
Why three; isn’t once enough?
That's right. But suppose you
had a dropout on the tape. It
does happen on old cassettes,
particularly cheap ones. Even if
you use top-notch cassettes,
you may still lose a byte be-
cause your recorder’'s slow
AGC attack time may turn the
beginning of a byte to garbage.

| proved it writing this program.

The computer missed the E$
on playback. It just sat there
waiting. It was very annoying
...especially because the pro-
gram had POKEd the /0 away
from my terminal to the cas-
sette interface. | had no way to
talk to my machine except via
the system monitor and the
front panel to patch things up
between my computer and its
program. The pandemic Mur-

phy's Law says you won't need
to use the patches | made if |
list them in Fig. 1. | output the
E$ three times, rather than
once, and beat old Edsel Mur-
phy by even a New York sec-
ond! (That's easy for me to say,
you say.) The routine ends by
POKEing BASIC back to normal
/10 and jumping to the com-
mand routine.

The tape input routine is very
similar. Instructions are given

in lines 4011 to 4014. The /O is
POKEd to the cassette port just
as before, and data is input by
another FOR/NEXT loop. It is
useful to print out the size of
the list after the 1/0 is POKEd
back because not all lists will
be set at the maximum size.
You will then be able to add to
the current list by using the in-
put routine. Then save the
whole thing as a full list.

The Bare-Bones Method

Suppose you have a compu-
ter and a Teletype, but neither
speaks Mits BASIC nor recog-
nizes Tarbell format. If your
Teletype has a paper-tape
punch (most do), you can still
benefit from this system.

Start by making those nifty
mods to the Teletype, especial-
ly the ribbon. Then enter the
program in Program B. The vari-
ables are the same as the cas-
sette program, but the prompts
are different and the save and
read routines are left out.

Next, run the program and
enter the names and ad-
dresses. When you print the
list, simply turn on the paper-
tape punch at the same time.
You will have an exact copy of
the printout, as well as a set of
labels, on paper tape. You can
then reprint the list by using the
Teletype in the local mode and
reading off the paper tape. Turn
on the punch again while print-
ing if you need a spare copy of
your list. Use a separate punch
if you have one.

1 REM

2 REM **** BARE BONES MAILING LIST ****
3 REM

4 REM BY STEPHEN GIBSON 12/11/76

5 REM RUNS ON ASR-33 TTY OR SIMILAR

6 REM PRINTER WITH PAPER TAPE PUNCH

7 REM

8 REM INITIALIZE

9 REM

10 CLEAR 10000 :REM CLEAR SPACE FOR LIST

15 S= 100 :REM MAXIMUM LIST SIZE

20 L = 0:REM CURRENT LIST SIZE

25 DIM NAS(S),CO$(S),ADS(S),CSS(S),ZP$(S)

30 ES$ = “‘#” :REM END OF LIST CHARACTER

35 OUT 1,26 :REM CLEARS SCREEN

40 PRINTTAB(20);*“*** THIS IS MAILING LIST ***”

50 PRINT
100 REM

105 REM COMMAND LEVEL ROUTINE

110 REM

115 PRINT*“PLEASE ENTER YOUR COMMAND:"":PRINT
120 PRINT“ENTER NAMES INTO LIST = 1"
125 PRINT*“PRINT-OUT OF LIST =2

140 PRINT

a1 &

145 INPUT“COMMAND"";C

150 IF C > 2 THEN 115

155 QN INT(C) GOTO 1000, 2000
1000

REM

1005 REM ENTER NAMES ROUTINE

1010 REM

1015 L=L+1

1020 IF L > 100 THEN 1400

1025 PRINT“IF YOU WISH TO EXIT THIS ROUTINE . . . "’

1030 PRINT“TYPE ONE OF THESE ‘# , THEN ‘RETURN".”

1035 FOR N = L TO 100 :PRINT:PRINT*“NUMBER "";N:PRINT

1040 INPUT*NAME : "";NAS(N)

1045 IF NAS(N) = *“‘#" THEN 1300

1047 IF NAS(N) = *“\” THEN N=N-2:GOTO 1100

1050 REM

1055 INPUT““COMPANY : ",COS(N)

1060 REM

1065 INPUT‘ADDRESS : " ADS(N)

1070 REM

1075 INPUT“CITY & STATE : "’;CS$(N)

1080 REM

1085 INPUT“ZIP : " ZP$(N)

1100 NEXT

1200 L = 100 : GOTO 1500

1300 L = N - 1:GOTO 1600

1400 L =L -1

1500 PRINT:PRINT*THE LIST IS FULL.”:PRINT

1600 PRINT:PRINT**YOU HAVE "";L;** NAMES ON THIS LIST.”

1700 GOTO 100

2000 REM

2005 REM PRINT-OUT ROUTINE

2010 REM

2015 PRINT

2020 PRINT*‘1) MAKE PAPER TAPE LEADER IN ‘LOCAL’ MODE."”
2025 PRINT

2030 PRINT**2) SWITCH PRINTER TO ‘LINE’ AND LINE UP LABELS.”
2035 PRINT

2040 PRINT*3) TYPE ANY LETTER, THEN ‘RETURN".”

2045 PRINT:INPUT*WAITING . .. ";W$§

2050 FOR X = 1 TO L STEP 3

2055 Y=X+13Z =X +2

2060 PRINT TAB(0) ; NAS(X) ; TAB(25) ; NAS(Y) ; TAB(S1) ; NAS(Z)
2065 PRINT TAB(0) ; CO$(X) ; TAB(25) ; COS(Y) ; TAB(S1) ; COS(Z)
2070 PRINT TAB(0) ; ADS(X) ; TAB(25) ; ADS(Y) ; TAB(S1) ; ADS(Z)
2075 PRINT TAB(0) ; CS$(X) ; TAB(25) ; CSS$(Y) ; TAB(S1) ; CS$(Z)
2080 PRINT TAB(0) ; ZP$(X) ; TAB(25) ; ZPS(Y); TAB(S1) ; ZP$(2)
2085 PRINT:PRINT

2090 NEXT

2095 GOTO 100

Program B. Listing for the bare-bones version of the program. The format is set for a Teletype. Sim-
ple adjustments can be made to fit other printers. A paper-tape punch is used to save the list. The

Teletype is run in local mode to print additional lists.

This particular method is in-
expensive and does not take
any time at all to load or make
because the paper-tape copy is
punched as you print the list!
How easy can something be?

If It Works . . . Modify It!

Suppose your names are
longer than your labels. When
do you abbreviate? Adding the
appropriate lines from Fig. 1
allows the computer to count
the number of input characters.
The LEN function, if you have it
(Mits does), can test against
the size of your line. If the test
is valid, GOSUB to an error mes-
sage. Further modifications in-
clude another module to read a

ESZ

whole letter from cassette us-
ing the POKEs given. Then print
a personalized copy to each
customer on the list.

You can now consider sen-
tence structures like “and in
closing, ‘Mr. Jones,' we'd like to
offer...,” just as the big mail-
order operations do it! Still an-
other useful modification is a
cassette tape directory of your
lists ... a good idea when you
get up to a thousand. An ex-
cellent example of this method
appeared in 73 Magazine (“The
Soft Art of Programming,”
Parts 1-3, Oct-Dec 1976, by Rich
Didday) and was reprinted in
The New Hobby Computers, 73
Inc., 1977.

We don't have to confine our
list to names and addresses.
Adding a few more variables in
the program allows the luxury
of obtaining other important
data from our list, such as
types of merchandise each cus-
tomer wants or has ordered.
You might choose to save im-
portant dates for each custom-
er—write a simple routine to
search the current list and pop
out names that need collection
letters, birthday greetings or
warranty follow-up letters. The
personalized form letter, men-
tioned before, could be printed
just for those on the list who
need it. All you need do is add
to the routines given.

Perhaps you can begin to see
that what started as a simple
system could easily be expand-
ed into a first-class data base
for your business. You can start
with the program given and up-
grade from there, even to disk.
You lose nothing by starting
now with just the list. In fact,
you may gain in the long run be-
cause you will be able to tailor
the program to your own needs.
The really important proce-
dures will be yours, thereby
ending forever that locked-in
feeling you get with someone
else’s software.

If you know that feeling or
need an upward compatible
mailing program for your busi-
ness, you should get this pro-
gram up and running and begin
to save time and money now
while planning for the future.®

Sources For More Information

High-speed cassette
interface.

Teletype labels and
ready-made forms for
printers.

Custom labels for any
printer.

Teletype sprocket feed
kits and special type
fonts. Also carbon
ribbons for Teletype.

Tarbell Electronics

20620 S. Leapwood Ave. Suite P
Carson CA 90746

(213) 538-4251

Uarco Incorporated

2600 Wilshire BI. Suite 408
Los Angeles CA 90057
(213) 380-2595

Avery Label Company

777 E Foothill BI.

Azusa CA 91704

(213) 969-3311

TTS

2928 Nebraska Ave.

Santa Monica CA 90404
(213) 829-2611

THE SSB *150
FLOPPY DISCOUNT

Affordable

The tribe at Smoke Signal Broadcasting took our
BFD-68 disk system and scalped the price, but
not the features to create the ABFD-68 (Affordable
Basic Floppy Disk). We appreciate the fact that
the computer hobbyist gave us our start and we
haven't forgotten you.

$649 Assembled

Compare Price. Our SS-50 bus compatible disk
system is $150 less than the assembled price of the
leading S-100 disk system. And you can at least
double that savings when you buy one of the
computers manufactured by MSI or SWTPC that
use the superior 6800 microprocessor.

Programmable

The BFD-68 is well known for its fine software. The
system comes with the best disk operating system
available and we offer a multitude of other com-
patible software products. These include a BASIC
interpreter with disk file handling capability. By
the way, our DOS now easily handles true random
access files as well as sequential. Also, we have a
super fast BASIC compiler for business applica-
tions. In addition, a Text Editor, 2 Assemblers, a

Trace Disassembler useful for program debugging
and an Object to Source Code Generator are all
stock items available forimmediate delivery.

A word processor will be available very soon.

Reliable

We delivered our first mini-floppy disk system a
year ago — 6 months ahead of any other 6800
based mini system. Thus, we've had twice the
experience in building reliability into the system.
Our NEW disk controller was designed using all
we have learned in the past year about system
reliability.

The ABFD-68 contains all the built in reliability
of our regular BFD-68 plus you save money by
supplying your own cabinet and power supply
for the disk.

Available
We've shipped literally tons of our BFD-68 disk
system in the past year and have learned to keep
our production up with demand. Give us a call and
chances are we'll be able to ship you the new
ABFD-68 from stock and charge it to your Master

Charge or Visa card. Better yet, ask us for the name

of the computer store nearest you that carries our
complete line of computer products.

SMOKE SIGNAL BROABCASTING

P.O. Box 2017, Hollywood. CA 90028 « (213) 462-5652

83

Dr. Adam Osborne
Osborne & Associates, Inc.
PO Box 2036

Berkeley CA 94702

Number Crunching:
Two Hardware Solutions

faster and smoother than software

eople attempting to use

microprocessors in scienti-
fic applications are probably
the first to discover that micro-
processors do indeed have limi-
tations. A microprocessor’s
ability to execute instructions

in microseconds may, on the
surface, sound very impressive,
and it is—until you try to han-
dle trigonometric functions,
logarithms, exponentiation or
even multidigit multiplication
and division.

| ADDRESS BUS

MICROPROCESSOR

| DATA BUS

| CONTROL SIGNALS

!

DATA DATA
IN out

SELECT
LOGIC

1/0 PORTN

ARITHMETIC [*—

PROCESSOR

Fig. 1. An arithmetic processor in a microcomputer system.

-

CONTROL SIGNALS

CONTROL
LOGIC

8 BCD DIGIT
REGISTERS

INSTRUCTION
CODES (6 BIT)

TN < |x

) DIGIT ADDRESS
(4 BIT)

) DIGIT OUTPUT
(4 BIT)

Fig. 2. MM57109 arithmetic processor functional logic.

84

Trigonometric and logarith-
mic functions are generally re-
ferred to as ‘“‘transcendental”
functions. Writing a microcom-
puter program to handle trans-
cendental functions is far more
difficult than the most complex
payroll system could ever be. In
fact, designing a program that
will generate truly accurate
transcendental functions is a
formidable task. The problem
with these functions is that
over limited ranges they
change rapidly. Programs that
generate transcendental func-
tions must generate very ac-
curate answers, particularly in
the fast-moving range, because
on rare occasions you will want
to subtract almost identical val-
ues—and a small difference be-
tween two large, erroneous
numbers may be completely
wrong.

Therefore, when examining
arithmetic processors, you
must look at the accuracy of
results in the fast-moving
numeric range. If you are ac-
customed to evaluating chips
simply on the basis of cycle
times and programmable op-

tions, you now have an impor-
tant new consideration—the
method used to generate
results.

Two arithmetic processors
will soon be available: the
MM57109 from National Semi-
conductor and the AMS9511
from Advanced Micro Devices.
About the only thing these two
devices have in common is that
they both perform approx-
imately the same transcenden-
tal functions, and each is
treated as a support device
within a microcomputer
system.

Suppose, for example, you
want to compute the natural
logarithm of a number. You will
transmit the number, as data,
to an arithmetic processor, ad-
dressing it as an 1/O port. At
some later time you will read
back the answer, as data being
input from an 1/O port. This use
of an arithmetic processor is il-
lustrated conceptually in Fig. 1.

The primary difference be-
tween the MM57109 and the
AMS511 is that National Semi-
conductor's MM57109 is a cal-
culator chip; it looks nothing

—NEW INSTRUCTION ACCEPTED
| BY MM57109
\J

=
READY —I__——L_—— (OUTPUT FROM

‘.
|

(MM57109)

ACKNOWLEDGE

|
PREVIOUS !
OPERATION |
COMPLETED |
BY MM57109

MM57109 WAITS

FOR NEXT

INSTRUCTION

t)___[— (INPUT TO
: MM57109)
.

| MICROPROCESSOR TRANSMITS

| NEW INSTRUCTION TO MM57109

Fig. 3.

like the typical microprocessor
support device. The AM9511, in
contrast, is immediately
recognizable to any ex-
perienced microcomputer user
as a typical microprocessor
support device.

Let's look at each part in
turn. The discussion that
follows will give you some idea
of part capabilities; however,
detailed operating procedures
are not provided.

MM57109

Fig. 2 illustrates the general
logic organization of the
MM57109. The most important
characteristic of this part is
that it operates on binary-
coded decimal (BCD) numbers
up to eight digits long.
Numbers may be handled in
fixed-point or floating-point for-
mat. A fixed-point number is
eightdigits long, with adecimal
point located at any digit boun-
dary. Thus, numbers in the
range 99999999 through
.00000001 may be represented.

Floating-point numbers have
the form:

(= 0.XXXXXXXX)EXP(£ YY)

X and Y represent any decimal
digits. Thus, any number in the
range 1 x 10+99 through 1 x
10— 99 can be represented,
with eight digits of accuracy.
As you might expect, you
must operate the MM57109 by
transmitting data and com-
mands to it. Results are re-
ceived as data. Commands are
summarized in Table 1. Note
that the"{VlM57109 is not a fast
device.; Execution times are
shown based on a ten-micro-
second microcycle, the recom-
mended maximum rate for this
device. It takes at least four
milliseconds to enter a single
eight-digit number (in fixed- or
floating-point notation), while
trigonometric functions may

take almost a second to
resolve.

In order to cope with these
relatively slow times, all data
communications between the
MM57109 and a microproces-
sor use request/acknowledge
handshaking control signal
protocol. Upon completing any
operation, the MM57109 out-
puts a ready signal true. Nor-
mally the microprocessor will
hold an acknowledge input
false to suppress any new
operations. Upon detecting the
true ready, the microprocessor
will transmit a new command
to the MM57109 and set the
acknowledge input true. This is

READY

INT

je—— AO

DEVICE
SELECT
LOGIC

 ——— L]

ACKNOWLEDGE

SELECT

MEMR

Fig. 4.

illustrated in Fig. 3.

This handshaking scheme
readily lends itself to almost
any microprocessor; the ready
“true” signal can be used to re-
quest an interrupt, while the
acknowledge can be tied direct-
ly to a combined MM57109 de-
vice-select and write-control
signal. For 8080A signals, this
is illustrated in Fig. 4.

The method of transmitting
control commands to an
MM57109 device differs mark-
edly from the standard method
used within microcomputer
systems. The standard method
(which is used by the AM9511)
takes the device-select logic

output to a select pin, then has
a control/data discriminator
that usually constitutes part of
the device address. Memory-
read and memory-write control
signals then become simple
control strobes that accom-
pany an address-activated
select logic. Fig. 5 illustrates
this.

There are three ways you can
enter data to the MM57109; in
each case the register stack is
pushed and data is written into
the X register (see Fig. 6).

The first data entry method is
approximately equivalent to
calculator-keyboard entry; sep-
arate commands identify the

Table 1. MM57109 instruction description table (*indicates two-word instruction).

EXECUTION
EXECUTION TIME
TIME (MICROCYCLES)
(MICROCYCLES) (WORST-CASE

MNEMONIC* (AVERAGE) VALUES) DESCRIPTION

0 238 Mantissa or exponent digits. On first digit (d) the

1 238 following occurs: Z-T

2 238 Y—Z

3 238 X-Y

4 238 d—=X

5 238 See description of number entry on page 11.

6 238

7 238

8 238

9 238

DP 152 Digits that follow will be mantissa fraction.

EE 151 Digits that follow will be exponent.

Ccs 166 Change sign of exponent or mantissa.

Xm = Xmantissa
Xe = Xexponent
CS causes — Xm-Xm or — Xe—~Xe depending on
whether or not an EE instruction was executed
PI 1312 after last number entry initiation.
EN 552 3.1415927—X, stack not pushed.
Terminates digit entry and pushes the stack.
The argument entered will be in X and Y.
Z=T
Y-Z
X-Y

NOP 122 Do nothing instruction that will terminate digit
entry.

HALT 134 External hardware detects HALT op code and
generates HOLD = 1. Processor waits for HOLD
= 0 before continuing. HALT acts as a NOP and
may be inserted between digit entry instructions
since it does not terminate digit entry.

ROLL 905 Roll Stack.

» %
T Y
N,

85

86

XEY

XEM

MS

MR

LSH

RSH

ECLR
JMP*

TJC*

TERR*

TX=0*

TXLTO*®

IBNZ

DBNZ

IN*®

652

812

839

1385

173

22700
22300

21400

208

191

278

277

197

2314

2314

395

Pop Stack.
Y-=X
Z-Y
T-Z
o-T
Exchange X and Y.
Xe—Y
Exchange X with memory.
X+—M
Store X in Memory.
X-=M
Recall Memory into X.
M-X
X mantissa is left shifted while leaving decimal
point in same position. Former most significant
digit is saved in link digit. Least significant digit is
zero.
X mantissa is right shifted while leaving decimal
point in same position. Link digit, which is normal-
ly zero except after a left shift, is shifted into the
most significant digit. Least significant digit is
lost.

Add Xto Y. X + Y= X.On +,-,x,/ and YX in-
structions, stack is popped as follows:
Z-Y
T—=Z
o-T
Former X, Y are lost.
Subtract X from Y. Y - X=X
Multiply X times Y. Y x X = X
Divide Xinto Y. Y + X=X
Raise Y to X power. yX - x
Add X to memory. M + X =M
On INV +,-,x and / instructions, X, Y, Z, and T
are unchanged.

Subtract X from memory. M — X - M

Multiply X times memory. M x X - M

Divide X into memory. M + X =M

1 + X-X. On all F (X) math instructions Y,Z,T and
M are unchanged and previous X is lost.

VX=X

X2 - x

10X = X

eX = x

InX—=X

log X=X

SIN(X) = X. On all F(X) trig functions, Y,Z,T,and M
are unchanged and the previous X is lost.
COS(X) = X

TAN(X) = X

SIN= 1) = X

cos—1(x) = x

TAN = 1(X) = X

Convert X from degrees to radians.

Convert X from radians to degrees.

Clear all internal registers and memory; initialize
/O control signals, MDC = 8, MODE = floating
point. (See initialization.)

O — Error flag

Unconditional branch to address specified by sec-
ond instruction word. On all branch instructions,
second word contains branch address to be load-
ed into external PC.

Branch to address specified by second instruc-
tion word if JC (lg) is true (=1). Otherwise, skip
over second word.

Branch to address specified by second instruc-
tion word if error flag is true (= 1). Otherwise, skip
over second word. May be used for detecting
specific errors as opposed to using the automatic
error recovery scheme dealt with in the section on
Error Control.

Branch to address specified by second instruc-
tion word if X = 0. Otherwise, skip over second
word.

Branch to address specified by second instruc-
tion word if |X| < 1. Otherwise, skip over second
word. (i.e., branch if X is a fraction.)

Branch to address specified by second instruc-
tion word if X < 0. Otherwise, skip over second
word.

M+ 1- M If M = 0, skip second instruction
word. Otherwise, branch to address specified by
second instruction word.

M - 1- M If M = 0, skip second instruction
word. Otherwise, branch to address specified by
second instruction word.

The processor supplies a 4-bit digit address (D_M-
DA1) accompanied by a digit address strobe (DAS)

decimal digits 0 through 9, the
decimal point and signs for the
mantissa and exponent—if
floating-point format is
specified.

The other two input tech-
niques transmit data to the X
register under program control.
An IN instruction is executed
once for entry of an entire num-
ber, while an AIN instruction is
executed once per digit of a
number being entered. In each
case the number is entered into
the X register after the stack is
pushed, as illustrated for key-
board entry. Following execu-
tion for the IN or AIN instruc-
tion, digits are entered as data.
Input is clocked by an output
control signal accompanying
the 4-bit digit address il-
lustrated in Fig. 2.

Handshaking protocol simi-
lar to the ready-acknowledge
sequence illustrated for in-
struction input controls data
entry. Thus, it is relatively easy
for any microprocessor to work
asynchronously with the
MM57109.

MMS57109 data output is con-
trolled by an OUT instruction
which is equivalent to the IN in-
struction.

MMS57109 data input and out-
put philosophy contrast sharp-
ly with normal microprocessor
protocol. Observe that the
MM57109 requires the micro-
processor to input an ap-
propriate control command,
after which the MM57109 out-
puts strobe signals to time data
input or output. Thus, the
MMS57109 is not behaving like a
standard peripheral device,
rather, it becomes temporary
bus master while inputting or
outputting data.

In a normal microcomputer
system, the microprocessor
will input or output data from a
support device just as it would
for read/write memory. The
device is selected via an ap-
propriate /0 port or memory
address, then a read or write
control signal causes the data
transfer to occur; this is how
the AM9511 works.

National Semiconductor lit-
erature describes the MM57109
as either a stand-alone micro-
processor or as an adjunct to

another microprocessor. In re-
ality, the MM57109 is not a
practical stand-alone micropro-
cessor. It should be used only
in conjunction with another
microprocessor because the
MM57109 has no internal mem-
ory-addressing logic. A pro-
gram counter, if present, must
be implemented externally, us-
ing some appropriate register
whose contents get triggered
when appropriate timing sig-
nals are output by the
MM57109. Branch instructions,
though identified in Table 1,
really do not exist; they simply
create a control signal that ex-
ternal logic must use to clock
an address into the external
program counter.

By the time you have config-
ured the necessary additional
logic to surround a stand-alone
MM57109, you will probably
find it is cheaper and a good
deal faster to use some simple
microprocessor, even if its sole
function is to monitor and con-
trol MM57109 operations.

AM9511

Now let’s look at the AM9511.
Functional logic for this device
is illustrated in Fig. 7. The most
important difference between
the AM9511 and the MM57109
is that the AM9511 is a binary
device. All data operations
within the AM9511 handle
binary data; in contrast, the
MM57109 handles only BCD
data. AM9511 data may be
specified in fixed-point or float-
ing-point format. Fixed-point
numbers may be single- or
double-precision; in each case
they are treated as signed
binary numbers. A single-pre-
cision fixed-point number is il-
lustrated in Fig. 8.

This is standard signed
binary data. Thus, single-preci-
sion fixed-point numbers may
range in value from — 32768 to
+32767. Double-precision
fixed-point numbers are 32 bits
wide, and again use standard
signed binary data format.
Thus, a double-precision
number may have values in the
range —2147483648 through
+2147483647.

Floating-point numbers are
all 32 bits wide, and are inter-

for each digit to be input. The high order address
for the number to be input would typically come
from the second Instruction word. The digit is in-
put on D4-D1, using ISEL = 0 to select digit data
Iinstead of instructions. The number of digits to be
input depends on the calculation mode (scientific
notation or floating point) and the mantissa digit
count (see Data Formats and Instruction Timing).
Data to be Input is stored in X and the stack is
pushed (X = Y = Z - T). At the conclusion of the
input, DA4-DA1 = 0.

out* 583 Addressing and number of digits is identical to IN
instruction. Each time a new digit address is sup-
plied, the processor places the digit to be output
on DO4-DO1 and pulses the R/W line active low.
At the conclusion of output, DO4-DO1 = 0 and
DA4-DAT1 = 0.

AIN 284 A single digit is read into the processor on D4-D1.
ISEL = 0 is used by external hardware to select
the digit Iinstead of instruction. It will not read the
digit until ADR = O (ISEL = 0selects ADR instead
of I5), indicating data valid. F2 is pulsed active low
to acknowledge data just read.

SF1 163 Set F1 high, i.e., F1 = 1.

PF1 185 F1is pulsed active high. If F1 is already high, this
results in it being set low.

SF2 163 Set F2 high, i.e., F2 = 1.

PF2 185 F2 is pulsed active high. If F2 is already high, this
results in it being set low.

PRW1 130 Generates R/W active low pulse which may be
used as a strobe or to clock extra instruction bits
into a flip-flop or register.

PRW2 130 Identical to PRW1 instruction. Advantage may be
taken of the fact that the last 2 bits of the PRW1
op code are 10 and the last 2 bits of the PRW2 op
code are 01. Either of these bits can be clocked in-
to a flip-flop using the R/'W pulse.

TOGM 157 Change mode from floating point to scientific
notation or vice versa, depending on present
mode. The mode affects only the IN and OUT in-
structions. Internal calculations are always in
8-digit scientific notation.

SMDC* 163 Mantissa digit count is set to the contents of the
second instruction word (=1 to 8).

INV 166 Set inverse mode for trig or memory function in-
struction that will immediately follow. Inverse
mode is for next instruction only.

preted as in Fig. 9. The man- e
DEVICE
tissa and exponent are both CHIP SELECT =—————— SELECT
binary numbers; therefore, K
numbers in the range *(2.7 x CONTROL /DATA ;gm N——
1020 to 9.2 x 10-18) may be WRITE STROBE
represented. .
P Fig. 5.
Observe that the AM9511 has
a smaller range of valid
numbers than the MM57109.
You might argue that the NEW!DATA = X D
o Y --
AMS9511, by handling numbers C- z D
in the exponential range 10-20 E I =
through 1018, must surely have T Lost
a range adequate for any ap- :
9 q ¥ -ap Fig. 6.

plication. This is not always
true.

In particular, chemical-en-
gineering and astronomical
computations frequently han-
dle numbers outside the range
allowed by the AM9511. The
principal advantage of the
AM9511 over the MM57109 is
that the former is much faster.
Table 2 summarizes AM9511 in-
structions. Notice that the in-
struction sets for the two
devices are approximately

CHIP SELECT ————————s{

CONTROL /DATA SELECT ——————ef

< DATA BUS
CONTROL SIGNALS

Fig. 7. AM9511 arithmetic processor functional logic.

CONTROL

LOGIC

STACK

COMMAND REG

STATUS REG

8 X 16-BIT

87

ITTTTTTTTTTTTT Jo]e—am numeer

t

NUMBER

SIGN

Fig. 8. A single-precision fixed-point number.

equivalent; however, based on
a 500-nanosecond clock, for
the AM9511 it is more than 100
times faster than for the
MM57109. Also, the AM9511 is
incredibly easy to incorporate
into almost any microcomp?'ter
system. Control signals, data
buses and address buses are
typical of an 8080A support
device. The AM9511 is selected
via the chip-select (CS) and C/D
inputs. This is the standard
method used in any 8080A sup-
port device to access data con-
trol and status locations as two
memory addresses or |/O ports.

The standard read and write

control strobes are used to in-
put or output data. Thus, the
CS, C/D, RD and WR controls
together identify events as in
Table 3.

Data and instructions are in-
put via the bidirectional data
bus; results and status are out-
put via the same bus. While the
AM9511 is busy executing any
operation, a PAUSE signal is
output low. At the end of the
operation the END control sig-
nal is output low. The micropro-
cessor acknowledges the END
output by inputting EACK low.

Any command output to the
AM9511 can, in addition to all

Gl [T T TRl TTTTITTTITTITITTITITITTTTT0

I

ti MANTISSA

\
L

EXPONENT
———— EXPONENT SIGN

MANTISSA SIGN

Fig. 9.

cs cIib RD WR Function

1 X X X Device not selected

0 0 0 1 Read data from device

0 0 1 0 Write data to device

0 1 0 1 Read status from device

0 1 1 0 Write command to device
Table 3.

other options, specify a service
request to follow completion of
the AMS511 operation. During a
service request, CPU. will pro-
cess AM9511 results before ini-
tiating a new AM9511 opera-
tion. If a service request is
specified, when the AM9511

COMMAND CLOCK

MNEMONIC CYCLES COMMAND DESCRIPTION (1)

SADD 17 Adds TOS to NOS. Result to NOS. Pop Stack

ssus 30 Subtracts TOS from NOS. Result to NOS. Pop Stack

SMUL 92 Multiplies NOS by TOS. Result to NOS. Pop Stack

SDIv 92 Divides NOS by TOS. Result to NOS. Pop Stack

DADD 21 Adds TOS to NOS. Result to NOS. Pop Stack

DSUB 38 Subtracts TOS from NOS. Result to NOS. Pop Stack

DMUL 208 Multiplies NOS by TOS. Result to NOS. Pop Stack

DDIV 208 Divides NOS by TOS. Result to NOS. Pop Stack

FADD 56-350 Adds TOS to NOS. Result to NOS. Pop Stack

FSuB 58-352 Subtracts TOS from NOS. Result to NOS. Pop Stack

FMUL 168 Muitiplies NOS by TOS. Result to NOS. Pop Stack

FDIV 17 Divides NOS by TOS. Result to NOS. Pop Stack

SQRT 800 Square Root of TOS. Result in TOS.

SIN 4464 Sine of TOS. Result in TOS.

cos 4118 Cosine of TOS. Result in TOS.

TAN 5754 Tangent of TOS. Result in TOS.

ASIN 7668 Inverse Sine of TOS. Result in TOS.

ACOS 7734 Inverse Cosine of TOS. Result in TOS.

ATAN 6006 Inverse Tangent of TOS. Result in TOS.

LOG 4490 Common Logarithm (base 10) or TOS. Result in TOS.

LN 4478 Natural Logarithm (base e) of TOS. Result in TOS.

EXP 4616 Exponential (e¥) of TOS. Result in TOS.

PWR 9292 NOS raised to the power in TOS. Result to NOS. Pop Stack.

NOP 4 No Operation

FIXS 92-216 Converts TOS from floating-point to single-precision fixed-point format.
FIXD 100-346 Converts TOS from floating-point to double-precision fixed-point format.
FLTS 98-186 Converts TOS from single-precision fixed-point to floating-point format.
FLTD 98-378 Converts TOS from double-precision fixed-point to floating-point format.
CHSS 26 Changes sign of single-precision fixed-point operand on TOS.

CHSD 34 Changes sign of double-precision fixed-point operand on TOS.

CHSF 16 Changes sign of floating-point operand on TOS.

PTOS 16 Push single-precision fixed-point operand on TOS to NOS.

PTOD 20 Push double-precision fixed-point operand on TOS to NOS.

PTOF 20 Push floating-point operand on TOS to NOS.

POPS 10 Pop single-precision fixed-point operand from TOS. NOS becomes TOS.
POPD 12 Pop double-precision fixed-point operand from TOS. NOS becomes TOS.
POPF 12 Pop floating-point operand from TOS. NOS becomes TOS.

XCHS 18 Exchange single-precision fixed-point operands TOS and NOS.

XCHD 26 Exchange double-precision fixed-point operands TOS and NOS.

XCHF 26 Exchange floating-point operands TOS and NOS.

PUPI 16 Push floating-point constant “n" onto TOS. Previous TOS becomes NOS.

Notes: 1. Nomenclature: TOS is Top Of Stack. NOS is Next On Stack.
2. All derived floating-point functions destroy the contents of the stack. Only the result can be
counted on the be valid upon command completion.

3. Format conversion commands (FIXS, FIXD, FLTS, FLTD) require that floating-point data format be
specified (command bits 5 and 6 must be 0).

Table 2. AM9511 instruction description table.

88

completes any operation it out-
puts a low service-request sig-
nal. The CPU acknowledges
this signal with a service-ac-
knowledge input. Thus, the
AM9511 allows the micropro-
cessor to differentiate between
an AM9511 operation that does
or does not require further
handling by the CPU.

When you compare the
AM9511 and MM57109 devices,
selection should be based on
the following trade-offs:

1. The MM57109 is a BCD de-
vice and will therefore be easier
to use in a purely decimal ap-
plication.

2. The MM57109 has a larger
numeric range; however, you
should be sure that the exten-
sive AM9511 numeric range is
insufficient before you go to
the MM57109 based upon this
criterion.

3. The AM9511 is significant-
ly faster than the MM57109.
There may be applications in
which the AM9511 must be
selected based on its speed,
even if BCD-to-binary and
binary-to-BCD conversions are
required.

4. The AM9511 fits naturally
into any 8080A microcomputer
configuration; its bus and con-
trol signal interface is abso-
lutely compatible with the
8080A. In contrast, the
MM57109 is a calculator part
that will need multiplexing and
de-multiplexing circuits sur-
rounding it.

Whether you choose the
AM9511 or the MM57109, you
will be making the right choice
if your alternative is to write
your own transcendental-
function calculations.®

ELECTRONIC SYSTEMS

P.O. Box 9641 San Jose CA 95157
(408) 374-5984

GENERATOR

Part no. 101
e Converts serial to parallel and

parallel to serial

e Low cost on board baud rate
generalor

e Baud rates: 110, 150,

300, 600, 1200, and 2400

e Low power drain +5 volts and
-12 volts required

e TTL compatible

e All characters contain a start
bit, 5 to 8 data bits, 1 or 2 stop
bits, and either odd or even
parity.

© All connections go to a 44 pin
gold plated edge connector

© Board only $12.00; with parts
$35.00

RS~-232/TTL
INTERFACE

P =

o

—_—

UL

i

Part no. 232

e Converts TTL to RS-232, and
converts RS-232 to TTL

e Two separate circuits

® Requires -12 and +12 volts

e All connections go to a 10 pin
gold plated edge connector

® Board only $4.50; with parts
$7.00

DC

POWER
SUPPLY

Part no. 6085
© Board supplies a regulated +5
volts at 3 amps., +12,-12, and -5

volts at 1 amp.

e Circuit has filters, rectifiers,
and regulators.

© Power required is 8 volts AC at
3 amps., and 24 volts AC C.T. at
1.5 amps.

© Board only $12.50

Part no. 111

TAPE
INTERFACE

® Play and record Kansas City
Standard tapes

e Converts a low cost tape
recorder to a digital recorder

e Works up to 1200 baud

e Digital in and out are TTL-serial
® Output of board connects to
mic. in of recorder

e Earphone of recorder connects
to input on board

® Requires +5 volts, low power
drain

e No coils

Part
no. 107

RF
MODULATOR

e Converts video to AM modu-
lated RF, Channels 2 or 3

® Power required is 12 volts AC
C.T., or +5 volts DC

© Board $7.60; with parts $13.50

TELEVISION
TYPEWRITER
Yo g N e 5

P-@\-'-'E‘-O-l [-]
f=ey ye— .5. d

Part no. 106

e Stand alone TVT

e 32 char/line, 16 lines, modifi-
cations for 64 char/line included
e Parallel ASCII (TTL) input

e Video output

¢ 1K on board memory

° ()ulplll for compuler con-
trolled curser

e Auto scroll

e Non-distructive curser

e Curser inputs: up, down, left,
right, home, EOL, EOS

e Scroll up, down

® Requires +5 volts at 1.5 amps,
and -12 volts at 30 mA

© Board only $39.00; with parts
$145.00

SK
STATIC :
RAM ’ \
Part no. 300

e 8K Altair bus memory

o Uses 2102 Static memory chips
e Memory protect

e Gold contacts

o Wait states

® On board regulator

® S-100 bus compatible

e Vector input option
e TRI state buffered

)
)
=

e Board only $22.50; with parts
$160.00

To Order:
Genay

, .
VISA
e o)

TIDMA

Part no. 112

e Tape Interface Direct Memory
Access

® Record and play programs with-
out b(m(slrup loader (no prmn)
has FSK encoder/decoder for
direct connections to low cost
recorder at 625 baud rate, and
direct connections for inputs and
outputs to a digital recorder at
any baud rate.

e S-100 bus compatible

e Board only $35.00;

with parts $110.00

Apple 11 =
Serial I\O [<S mm.
Interface

Part No. 2

® Baud rates up to 30,000

® Plugs into Apple Peripheral

connector

e Low-current drain

® RS-232 Input and Output
SOFTWARE

e Input and Output routine from

monitor or BASIC to teletype or

other serial printer.

® Program for using an Apple 11

for a video or an intelligent ter-

minal. Board only — $15.00;

with parts — $42.00; assembled

and tested — $62.00.

MODEM
T

Part no. 109
e Type 103
e Full or half duplex

® Works up to 300 baud

® Originale or Answer

® No coils, only low cost com-
ponents

e TTL input and output-serial

e Connect 8 ohm speaker and
crystal mic. directly to board

e Uses XR FSK demodulator

® Requires +5 volls

® Board $7.60: with parts $27.50

Mention part number and description. For parts kits add **A™ to part number. Shipping paid for orders
accompanied by check, money order, or Master Charge, BankAmericard, or VISA number, expiration
date and signature. Shipping charges added to C.0.D. orders. California residents add 6.5% for tax.
Parts kits include sockets for all ICs, components, and circuit board. Documentation is included with

all products. Dealer inquiries invited. 24 Hour Order Line: (408) 374-5984.

E21

Ken Barbier

Borrego Engineering

PO Box 1253

Borrego Springs CA 92004

Money Manipulations

keep ahead of
those cash-flow problems

1REM CASH FLOW PROGRAM 29 JULY 77
T AS=“SSTHE. T
8 BS=“FFFF"

9 PRINT:PRINT:PRINT

10 PRINT“INVESTMENT MINUS DRAW”

11 PRINT* QUARTERLY STATEMENT”

15 PRINT

20 PRINT*PRINCIPAL: $: INTEREST: %/YR: DRAW: $/MO.”
21 PRINT* INTEREST EARNED SHOWN BY QUARTER TOTAL"
22 PRINT* DRAW IS CURRENT MONTHLY RATE, INFLATED”
25 PRINT:PRINT

30 M=0

31 Y=0

35 C=2

40 INPUT “PRINCIPAL=":P

50 INPUT “INTEREST=":I

60 INPUT “DRAW="":D

61 INPUT “INFLATION="":A

62 A=A/1200

70 1=1/1200

80 PRINT:PRINT:PRINT

90 PRINT“MONTH PRINCIPAL EARNED DRAW”

100 E=P*1

110 P=P+E

120 P=P-D

125 IF P <0 THEN 190

130 M=M+1

135 D=D*(1+A)

137 Y=Y+E

138 IF M=123 THEN 180

140 IF M > 240 THEN 1200

141 IF C=0 GOTO 144

142 C=C-1

143 GOTO 100

144 C=2

146 PRINT USING B$:M::PRINT *;

150 PRINT USING AS:P,Y.D

151 Y=0

170 GOTO 100

180 PRINT:PRINT:PRINT: PRINT

181 GOTO 141

190 PRINT:PRINT:PRINT:PRINT:PRINT

1200 END

Fig. 1. Cash Flow program listing. Written in 12K Extended BASIC,
it can be run on smaller BASICs by changing lines 146 and 150 to:
150 PRINT M,P,Y,D. Lines 7 and 8 can then be dropped. The
output will not be so nicely formatted, however.

90

You say you're getting
ready to punch your
boss’s lights out, but you're
not sure your life savings will
support the wife and kiddies
until you get out of jail? Or
maybe you're just getting old
(like me) and think it's time
to retire, but you want to be
sure you have enough loot
stashed away to supplement
Uncle Sam’s pittance and pro-
vide enough to live on —
forever and ever. Or perhaps
you are ready to throw in the
towel at the boiler factory
and open your own computer
store ... and want to know
how long you can hold out
until the first cash customer
comes walking in. Well, tell
you what I'm goingtodo. ..

Computing Cash Flow

The Cash Flow program
listing in Fig. 1 assumes that
an initial investment is made
at a fixed rate of interest
(compounded monthly). But
instead of simply figuring
compound interest, Cash
Flow assumes that we will be
drawing on these reserves, for

reasons such as those listed
above. Furthermore, life be-
ing what it is, the amount we
have to withdraw will be sub-
ject to inflation, so the pro-
gram takes this factor into
account as well. Since Uncle
Sam insists we pay income
tax on the interest paid on
our investments, we will also
need a statement showing in-
terest earned. While the pro-
gram will not fill out your
income tax form for you, it
will, considering all these
factors, tell you how long
your loot will last.

For example, let’'s take a
look at a typical Cash Flow
run (Fig. 2). Dick and Jane
have both been working and
diligently squirreling money
away. They have accumulated
forty kilobucks and would
like to use it to finance an
early retirement. What they
need to know is whether or
not the money will hold out
until social security helps
them out (assuming it doesn’t
go broke first).

Being conservative, they
will invest the money in in-

sured savings, which, for our
example, we will assume pays
5.75 percent per year, com-
pounded monthly. They have
moved into a less expensive
house, but there are still pay-
ments to make. Now, our
couple must figure the maxi-
mum amount per month that
they will have to draw from
their savings to live on. This
fictional account shows that
they have arrived at a figure
of $750 per month, which
certainly should be enough to
feed two mouths.

Next, we throw in a little
magic. D. and J. have con-
sulted their financial expert,
and he assures them they can
expect an inflation rate of 3
percent per annum to apply
to the commodities they will
be consuming. This figure
sounds low today, but if
coffee, new cars, etc., are
avoided it is not too unrealis-
tic.

All the above conditions
established, we load Cash
Flow, which is written in
Altair BASIC, 12K Extended,
Version 3.2. Instructing it to
run, we are informed that we
will be provided with a quar-
terly statement, and we are
asked to enter the amount of
principal (in dollars); the
interest rate (in percent per
annum); the amount we wish
to withdraw (in dollars per
month); and the expected
annual rate of inflation. Hav-
ing received these variables,
Cash Flow proceeds to pro-
duce the quarterly-statement
table shown in Fig. 2.

Since this is a quarterly
statement, the number of the
month for which the figures
apply will increment by
three. The amount of princi-
pal remaining at the end of
that month is shown in the
next column. The third col-

umn shows the total interest
earned for the previous

quarter, which is what we will
have to pay income tax on.
This last column shows our
draw for the current month.
This amount always increases
because we have to assume
that inflation will continue to
spiral.

When all of the money is

used up, Cash Flow will ter-
minate, and we will have to
go back to work. We see that
Dick and Jane can survive for
about five years. Well, maybe
they'd better try to cut costs
a little. Then we can try the
program again, using a lower
Draw figure.

When this program was
first run, the nice round num-
bers in the cents column
under Principal raised sus-
picion. The BASIC manual
states that single-precision
numbers are printed with a
maximum of six decimal dig-
its, and we are asking BASIC
to work with seven digits! So,
we should add the following
line to our program: 2
DEFDBL P.

Now when we run the
program with the same vari-
ables, we get the output
shown in Fig. 3, since Princi-
pal is computed in double
precision. We can see the
pennies and nickles, but the
results don’t change! This is
because we had sufficient ac-
curacy to begin with, the
internal representation of our
principal being in binary bits,
which don’t exactly relate
evenly to six-decimal digits.
Qur initial accuracy was bare-
ly sufficient, though, so it
would be a good idea to leave
the second line in our pro-
gram, in case a rich uncle dies
and leaves more money to
play with.

Since Dick and Jane are
only 23 years old (surprise!)
they have decided to post-
pone the early retirement and
keep on working and saving.
Now they can use the same
program to estimate how
their savings will grow if left
untouched. If no money is
drawn from the investment,
Cash Flow becomes a
straightforward compound-
interest program, as we can
see in Fig. 4.

Here, we set draw and
inflation to zero, and Cash
Flow gives a quarterly state-
ment of earnings and accumu-
lation for our savings ac-
count. The program gets tired
and quits after 20 years. Dick
and Jane probably will,
too! m

INVESTMENT MINUS DRAW
QUARTERLY STATEMENT

PRINCIPAL: $: INTEREST: %/YR: DRAW: $/MO.
INTEREST EARNED SHOWN BY QUARTER TOTAL
DRAW IS CURRENT MONTHLY RATE, INFLATED

PRINCIPAL=? 40000

INTEREST=? 5.75

DRAW=? 750

INFLATION=? 3

MONTH PRINCIPAL EARNED DRAW

3 $38311.30 $566.95 $755.64

6 $36581.20 $542.48 $761.32

9 $34808.90 $517.41 $767.05
12 $32993.80 $491.73 $772.81
15 $31135.00 $465.43 $778.62
18 $29231.70 $438.49 $784.48
21 $27283.30 $410.92 $790.38
24 $25289.00 $382.69 $796.32
27 $23247.80 $353.80 $802.31
30 $21159.10 $324.23 $808.34
33 $19022.00 $293.97 $814.42
36 $16835.70 $263.02 $820.54
39 $14599.20 $231.35 $826.71
42 $12311.90 $198.96 $832.93
45 $9972.66 $165.83 $839.19
48 $7580.74 $131.95 $845.50
51 $5135.21 $97.31 $851.86
54 $2635.15 $61.90 $858.26
57 $79.62 $25.69 $864.71

Fig. 2. Sample Cash Flow run. This printout shows how long an
initial investment of $40,000 will last while earning 5.75 percent
interest, but being drawn on at the rate of $750 per month, inflated
3 percent per year.

INVESTMENT MINUS DRAW
QUARTERLY STATEMENT

PRINCIPAL: $: INTEREST: %/YR: DRAW: $/MO.
INTEREST EARNED SHOWN BY QUARTER TOTAL
DRAW IS CURRENT MONTHLY RATE, INFLATED

PRINCIPAL=? 40000

INTEREST=? 5.75

DRAW=? 750

INFLATION=? 3

MONTH PRINCIPAL EARNED DRAW

3 $38311.32 $566.95 $755.64

6 $36581.21 $542.48 $761.32

9 $34808.94 $517.41 $767.05
12 $32993.78 $491.73 $772.81
15 $31134.96 $465.43 $778.62
18 $29231.74 $438.49 $784.48
21 $27283.34 $410.92 $790.38
24 $25288.97 $382.69 $796.32
27 $23247.83 $353.80 $802.31
30 $21159.12 $324.23 $808.34
33 $19022.01 $293.97 $814.42
36 $16835.66 $263.02 $820.54
39 $14599.24 $231.35 $826.71
42 $12311.86 $198.96 $832.93
45 $9972.66 $165.83 $839.19
48 $7580.75 $131.95 $845.50
51 $5135.22 $97.31 $851.86
54 $2635.15 $61.90 $858.26
57 $79.62 $25.69 $864.71

Fig. 3. A double-precision run. The net results have not changed,
but would for larger principals. Double precision results in a more
accurate printout, but the program takes longer to run.

INVESTMENT MINUS DRAW
QUARTERLY STATEMENT

PRINCIPAL: $: INTEREST: %/YR; DRAW:
INTEREST EARNED SHOWN BY QUARTER TOTAL
DRAW IS CURRENT MONTHLY RATE, INFLATED

$/MO.

PRINCIPAL=? 10000
INTEREST=? 6

91

DRAW=? 0
INFLATION=? 0

8080 & Z 80 Users
MONTH PRINCIPAL EARNED DRAW
3 $10150.75 $150.75 $0.00
\ / 6 $10303.78 $153.02 $0.00
9 $10459.11 $155.33 $0.00
a an 12 $10616.78 $157.67 $0.00
“ 15 $10776.83 $160.05 $0.00
b“, q 18 $10939.29 $162.46 $0.00

21 $11104.20 $164.91 $0.00
= g 24 $11271.60 $167.40 $0.00
lS ere e 27 $11441.52 $169.92 $0.00

30 $11614.00 $172.48 $0.00

\ 33 $11789.08 $175.08 $0.00
N 36 $11966.81 $177.72 $0.00
39 $12147.21 $180.40 $0.00
Can our com uter 42 $12330.33 $183.12 $0.00
45 $12516.21 $185.88 $0.00
read and solve 2y 812896.42 g 2000
o 3 54 $13090.83 $194.42 $0.00
this problem by itselj? o7 s 220082 $0.00
$1 a $ 32 $0.00
“ON THEIR VACATION, TOM AND 66 $13898.25 320641 $0.00
: : . ;
69 $14107.77 $209.52 $0.00
DICK VISITED A FARM. WHILE 72 $14320,44 $212.68 $0.00
75 $14536.33 $215.88 $0.00
THERE, THEY NOTICED A PEN 78 $14755.46 $219.14 $0.00
81 $14977.90 $222 .44 $0.00
CONTAINING CHICKENS AND 84 $15203.70 $225.79 $0.00
87 $15432.89 $229.20 $0.00
PIGS. TOM SAID THERE WERE 3 90 $15665.55 $232.65 $0.00
93 $15901.71 $236.16 $0.00
TIMES AS MANY CHICKENS AS | 96 $16141.43 $239.72 $0.00
99 $16384.76 $243.33 $0.00
PIGS. DICK SAID HE COUNTED 102 $16631.76 $247.00 $0.00
105 $16882.49 $250.73 $0.00
100 LEGS IN THE PEN. HOW 108 $17136.99 $254.51 $0.00
MANY CHICKENS WERE IN THE 11; $17395.34 $258.34 $0.00
11 $17657.57 $262.24 $0.00
9,, 117 $17923.76 $266.19 $0.00
PEN- 120 $18193.97 $270.20 $0.00
123 $18468.24 $274.28 $0.00
126 $18746.65 $278.41 $0.00
129 $19029.26 $282.61 $0.00
132 $19316.13 $286.87 $0.00
135 $19607. $291.19 0.00
- - 138 81990;.‘3? $295.58 20.00
with NLOS/1, it can! 16 2020205 Foons 8000
144 $20507.51 $304.56 $0.00
147 $20816.66 $309.15 $0.00
= 50 i o A
NLOS/1 is a cassette-based 168 gl e i
2 e [P} 156 21772.37 323.3 5
system requiring a minimum 159 :22100.59 :328.22 23.33
H 162 $22433.76 $333.17 $0.00
of 12K’ a Se"a’_ I/0 board and 165 $22771.95 $338.19 $0.00
any cassette interface. The 138 3221”"2“ $343.29 $0.00
» 1 $ 63.70 $348.47 0.00
system comes complete with 174 $23817.42 $353.72 :o.oo
a fully documented set of as- 160 Saiciond s 20.00
i 2 183 $24910.89 $369.96 $0.00
_sembly Iangua_ge source list 186 $25286.43 $375.53 $0.00
ings. The cost is only $50.00. 189 $25667.62 $381.20 $0.00
192 $26054.57 $386.94 $0.00
195 $26447.34 $392.78 $0.00
STOP 198 $26846.04 $398.70 $0.00
201 $27250.75 $404.71 $0.00

PROGRAMMING 204 $27661.55 $410.81 $0.00
207 $28078.56 $417.00 $0.00

210 $28501.84 $423.29 $0.00

YOUR COMPUTER, 213 528931 51 $429.67 50.00
216 $29367.66 $436.15 $0.00

ED UCA TE IT' 219 $29810.38 $442.72 $0.00

o 222 $30259.78 $449.40 $0.00

ORDER TODAY' 225 $30715.95 $456.17 $0.00
M 228 $31178.99 $463.05 $0.00

231 $31649.02 $470.03 $0.00
234 $32126.13 $477.11 $0.00

\74d 7Y » AR 237 i :
CYBERMATE ., San - B X

RD #3 BOX 192A Fig. 4. Compound-interest run. If Draw is set to zero, Cash Flow

NAZARETH PA 1 8064 becomes a straight compound-interest computation. Here, $10,000 was
invested at 6 percent for 20 years. Changing program line 140 can vary

this time limit.

92

WWIERIO COME ON UP AND
W@M SEE ME SOMETIME

Give your 6800 computer the gift of sight! The Micro Works Digisector” opens up a whole new
world for your computer. Your micro can now be a part of the action, taking pictures like this
one to amuse your friends, watching your home while you're away, helping your household
robot avoid bumping into walls, providing fast to slow scan conversion for you hams the
applications abound

The Micro Works Digisector 1s a completely unique device; its resolution and speed are un-
matched in industry and the price is unbeatable anywhere. The Digisector and a cheap TV
camera are all you'll need to see eye to eye with your 6800. Since operation is straightforward
you don't have to be a software wizard to utilize the Digisector’s extensive capabilities. The
Micro Works Digisector board provides the following exclusive features

+ High Resolution—a 256 x 256 picture element scan

Precision—64 levels of grey scale

Speed—Conversion times as low as 3 microseconds per pixel

Versatility—Accepts either interlaced (NTSC) or non-interlaced (Industrial) video input

Compactness—Utilizes 1 1/0 slot in your SWTPC 6800 or equivalent

Economy—The Digisector is a professional tool priced for the hobbyist

The Digisector (DS-68), like all Micro Works products. comes fully assembled. tested and
burned in. Only the highest quality components are used, and the boards are double sided
with plated through holes, solder mask and silkscreen. All software is fully source listed and
commented. The Micro Works is proud to add the DS-68 to its line of quality computer acces-
sories for the hobbyist. Price 169.95

The Micro Works 6800 series of computer accessories also includes U2708 EPROM Software 29.95
PSB-08 PROM System Board 119.95 Casette tape 9.95
regulated + 12 volts 124 .95 UIO Universal | /O Board 24 95

B-08 2708 EPROM Programmer 99.95 X-50 Extender Board 29.95
regulated + 12 volts 104 .95 X-30 Extender Board 22.95

Visa and Master Charge Accepted

P.O0.BOX 1110 DEL MAR,CA. S2014 714-7568-2887 M31

-

A Name To Remember...

44 PIN 5 VOLT
4.5” x 6.5 CARDS

RAM, PROM, EPROM, PARALLEL I/O, SERIAL I/O, A/D, D/A, CPU

Watch For New Product Releases

25 SOUTH 300 EAST - SUITE 215 SALT LAKE CITY, UTAH 84111-714/752-1374

93

Strings and Things

BASIC conversion techniques

Richard Roth

TSA Software

5 N. Salem Road
Ridgefield CT 06877

You have advanced far
enough in programming to
use character strings; yet,
when you try to run a program
using character strings from a
book or article, you find half of
them don’t make any sense. If

so, or if you are interested in
handling characters in general,
this article is for you.

A character string, basically
a one-dimensional array or vec-
tor of characters, is a sequence
of characters one after
another. What distinguishes it
from a vector of numbers is that
it is used as a whole, rather
than a character at a time.

In a game, the program may
ask for someone’s name, but it

DIM AA(3)

READ AA(1), AA(2), AA(3)
DATA ‘SALLY’, ‘JOE’, ‘SPOT’
PRINT ‘A GIRL IS’, AA(1)
PRINT ‘A BOY IS’, AA(2)
PRINT ‘A DOG IS’, AA(3)

Example 1.

HP BASIC

HP
Data General (DG)
North Star

Computer Science Corp.

Table 1.

DEC BASIC

DEC
Mits/Microsoft
BASIC-E
Tymshare
Micro-polius (?7?)

94

doesn’t care that JOHN is a J
followed by an O, H, N. The indi-
vidual letters are considered a
unit. In contrast, a mailing-list
program that prints a list by
last names scans MARYbbJ.b-
JONES to find the last word. It
does this by scanning the char-
acters until it finds a sequence
of characters followed only by
blanks. A space (represented
by b or blank) breaks the se-
quence of characters that com-
prise a word. We call such a
break character a delimiter.
Commas and periods also
break the sequences of words
into smaller units—phrases
and sentences. A smaller unit
of a character string is called a
substring. Another special fea-
ture of character strings is
length; a unit called NAME can
vary from ED to STASTICOVICH.
Usually, we fix a maximum
length, but often we want to
know the current length.

The problem arises when you
want to use strings in BASIC,
originally intended to work with
numbers. Of course, a letter
can be represented by a num-
ber, such as A=1,B=2...o0r
by the ASCII character set. In

ASCII, digits (0-9), letters and
special characters (such as
Bell or Return) are all repre-
sented by a single integer from
0 through 127 (funny—it just
fits in one byte!). In working
with such simple numbers,
BASIC wastes space because it
is prepared for many digits of
precision and doesn't know
how simple a number is. Deal-
ing with varying length and the
string as a unit requires some
built-in features. In the scienti-
fic language FORTRAN, the
programmer must have a whole
set of special subroutines to
deal with strings.

When BASIC was first devel-
oped by Dartmouth's Kemeny
and Kurtz, the only strings
allowed were literals in print
statements for title and labels
such as: 100 PRINT “X="X. In
early versions of BASIC, such
as GE-635 Mark | Timesharing,
extensions were added to allow
the storage of strings, which
were handled like single num-
bers. However, no advanced
capability was available. A
string array was specified by
giving it a two-letter name. All
one could do was print the

HP

100 DIM N$(30),L$(10)
110 S #0 (state is beginning)
120 C=1 (character 1)

160 C=C+1
170 GO TO 140

210 L§=N$§(S+1)

130 N§=“‘SALLYbbJ.b JONES”
140 IF C>LEN(N$) GO TO 200
150 IF N$(C,C)=“b"”’'THEN S=C

200 REM Now S =Char of last space

DEC

100 REM
110 S=0
120C=1

160 C=C+1
170 GO TO 140
200 REM

210 L$ =RIGHTS$(LS,S+1)

Example 2.

130 N§S=*‘SALLYbbJ.bJONES"
140 IF C>LEN(NS$) GO TO 200
150 IF MID$(NS,C,1)=“b”THEN S=C

whole string. (See Example 1.)

This extension was short
lived, but it set the stage for
what we now have. The idea of
uniquely specifying a string
name became more prevalent,
and ‘$’ was finally accepted as
the last character of a string
name. But we are still plagued
by the questions: How does
one specify a single character
of a string; and how does one
specify a matrix of strings?
Two primary approaches devel-
oped—one by Digital Equip-
ment Corporation (DEC) and
the other by Hewlett-Packard
(HP) in the HP-200 series.

DEC emphasized many
strings grouped as a matrix;
and so A$(1) became the first
element in a string matrix. HP
emphasized each character in
the string; and so A$(1) became
the first character of string AS.
These approaches led to a ma-
jor difference in string han-
dling. DEC BASIC requires a
special way of getting a single
character of a string, while HP
BASIC must handle a string ar-
ray specially. Table 1 shows a
summary of the different
BASICs.

From now on | will refer to the
two schemes simply as HP or
DEC, even though most
schemes | will be referring to
have not been written by either
company.

What's It All Mean?

The issue involves how one
deals with strings. For simple
strings, such as printing the
name of a single game-player,
there is (almost) no difference
(see Table 2).

Since HP BASIC uses the
subscript notations to refer to
substrings, DIM specifies the

length of the string. DEC BASIC
uses DIM to indicate how many
strings in a string matrix; if no
DIM occurs, it is just a single
string (also called a scalar
string, as opposed to a matrix).

DEC BASIC has no way of
specifying maximum string
length. They allow a maximum
limit, usually 255 characters,
set by the BASIC designer. HP
BASIC tends to allow length
limited only by memory size.
Since HP BASIC knows how big
astring can get, it canreserve a
fixed space. DEC BASIC must
constantly shift the strings
around as lengths change. In
this respect, HP BASIC enjoys
a speed advantage.

Character Manipulations

There are two levels of ma-
nipulations—character and
string. Each scheme of BASIC
has its own home ground:
character for HP and string for
DEC. Getting at a single
character is required for many
functions. An early example
suggested extracting a last
name to alphabetize a mailing
list. Example 2 shows this in
both schemes.

To get at the fifth character
of a string, HP BASIC uses only
N$(5,5), while DEC BASIC uses
MID$(NS$,5,1). In our example,

character at a time from the
string N$ with the name, until it
gets to the end. Each time it
sees a blank, it saves the char-
acter number in S. With no trail-
ing blanks, the program, when
it reaches line 200, S will point
to the last blank. So the last
name is S+ 1 through the end.
(For simplicity, lam assuming a
statement can follow an IF-
THEN statement, as in most
current BASICs.)

Table 3 shows how togetata

specific character. By HP rules
the first subscript is the start-
ing character, the second is
ending character: if A$=
“ABCD", then A$ (2,3) = “BC".
If no second subscript exists,
then the rest of the string is
used: if A$ = “ABCDEF"” then
A$(3)=‘'CDEF". DEC uses
functions MID$, RIGHTS,
LEFTS (as shown in the table)
for the string A$ =""ABCDEF".
Single-character string func-
tions are shown in Table 4.

String Manipulations

While DEC BASIC has awk-
ward functions when dealing
with substrings, HP BASIC has
a far greater problem when
many strings must be manipu-
lated. It has no way to handle a
group of strings of variable
length. In the HP-3000 BASIC
this was remedied in an elegant
manner—especially true to
BASIC syntax; unfortunately,
only HP-3000 and Computer
Science have implemented this

HP

DIM AS$(30)
INPUT AS
PRINT “HELLO”, A$

RUN
?SAM (CR)
HELLO SAM

Table 2.

DEC

INPUT AS
PRINT “HELLO", A$

RUN
?SAM (CR)
HELLO SAM

DEC

MID$(AS,2,2) = “BC”’
LEFT$(AS, length)
LEFTS$(AS,3)=““ABC”

MIDS(AS, starting char, length)

RIGHTS(AS, starting char)
RIGHT$(AS,3) = “CDEF”’

(Note: The parameter for RIGHTS is starting
character in DEC BASIC-plus, but length
from the right in Mits BASIC and BASIC-E.)

HP

AS8(2,3)
AS(1,3)
AS(3)

the program considers one Table 3.
Function HP DEC
Length LEN(A$) LEN(A$)

Substring - 1 char at 1

AS(LI)

- N chars at |

-CharItoJ AS(L,))

- Char I to end AS(D)

- Char 1 to Char I AS(1,1)
Table 4.

MID$(AS,1,1)
AS(I,I+N-1) MID$(AS,I,N)
MIDS$(AS,I,J-1+1)
RIGHTS$(AS,I)
LEFTS$(AS,I)

95

in their BASICs. They have
added:

DIM S(3)$(5)
A$=5(1)3(3,4)

The first subscript is a matrix;
the second, a substring.
Similarly, the first DIM value is
matrix size; the second is max-
imum length.

Most people with HP BASIC
can handle (with difficulty) a
form of string matrix. Imagine
the string V§, length 100, to be
made of ten substrings, each
ten characters long. The key is
to fill out each string to a full
ten characters; otherwise, the
larger string will have holes.
Creating one of those holes by
putting in a shorter string will
chop off the rest of the larger
string. This also makes all the
pseudomatrix elements a fixed
length, which is annoying but
better than no string matrix.
For example, the fifth string in
string matrix V$ is extracted by
using: S58=V$(4°L+1,5"L)
(this is for a matrix starting at
element 1). Two simple user
functions will ease this calcula-
tion (see Example 3).

Concatenation

The second major functionin
string manipulation is concate-
nation, i.e., combining two
strings to make one. For exam-

ple, “HEL" +"“LO" ="HELLO"
(using DEC concatenation op-
erator). HP has no common,
direct way of doing this. Both
+ and, are allowed in some HP
BASICs as concatenation oper-
ators. If no operator exists, HP
BASIC allows a rather strange
use of the subscript/substring
to do this (see Table 5). At the
L1 and L2 calculations, X$ is
kept at full length and need not
be refilled.

When using HP form strings
for pseudostring matrices or
concatenation, one must be
very careful to fill out each
string assignment where the
subscript/substring is on the
left side, i.e., S$(1,4)=AS$. An
improper assignment may
chop off the end of the string on
the left. This varies between
HP-style BASICs, for example:

AS(5,9)=BS$ where LEN(BS$)<4
AS$(5)=B$

In both cases, the length of A$
might become 5+ LEN(BS).
(Data General had this problem
before Release 3 RDOS BASIC,
whereas, North Star Release 2
does not have the problem.)

Commands, Special Characters,
Numbers and Input/Data
There are several less impor-
tant differences that relate to
assorted areas that vary be-

DEF FNL(X)=(X—-1)*L + 1/DEF FNH(X)=(X*L)
AS$(FNL(X),FNH(X)) references element X where:
X =subscript, L =length and AS is pseudomatrix.

Example 3.

tween both schemes, all ver-
sions. Commands vary from
BASIC to BASIC, for example,
NEW or SCR (scratch), which is
used to clear out an old pro-
gram.

Getting special characters
into and out of strings requires
special care. Normally, a bell,
for example, cannot be entered
into a string. Some BASICs
allow the code to be typed in a
quoted literal. This can cause a
problem because a listing will
not show the character or, even
worse, it will do the function
(for example, turn on the paper-
tape punch). One scheme by
DG allows a special form in
literal <#> in which the number
is the internal form of the
special code. For example, <7>
is an ASCII BEL Code. The more
common version allows a func-
tion, usually CHRS$, that con-
verts the numeric value to a
string of the same character
(BELL Code=CHRS$(7)). The
reverse function is ASC for
ASCII value, where ASC(“A")
=65 (the value of the letter A in
the ASCII code). (Some BASICs
use an ASCII null (true 0 byte) to
indicate the end of a string. So
A$(10) = CHR$(0) will chop off
the string at 9 characters—if
your BASIC does this.)

A similar conversion from in-
ternal to character string form
is often available for numbers,
too. NUM$(A)="0.0" if A=0or

VAL(A$)=0 if A$="0.0". If
your BASIC does not have a
formatted print, these are
useful in doing special output
or input formatting. Read your
manual before trying these
functions; they might not do
what you would expect. De-
pending on the BASIC, the
following sequence could give
a lot of trouble.

10 A=10

20 A$=NUMS(A)
30 F$=“FILE" +A$
40 OPEN FILE F$

Some BASICs format a
“NUMS$" call exactly like output
and put a space before the nu-
meric string. For example, F$ =
“FILEB10""—not “‘FILE10"
Some special functions allow
any string, expression or literal,
while others must be a simple
variable. (The difference be-
tween internal form of a num-
ber and ASCII byte or a charac-
ter string can be confusing for
the novice. 10 is not the same
as ‘10" and if you are not sure
why, find someone who knows.
For example, a BEL code is an
ASCII 7, not 7.0 or “7"'—the dif-
ference depends on the func-
tion required.) Because it is not
clear which is the ‘‘obvious
way,"” both exist (see Example
4). DEC style says when the IF
condition is true execute the
rest of the statement; if it is
false, continue on the next line.

HP
100
110 GO TO 400
DEC

100
110 GO TO 400

IF A=B THEN PRINT “EQUALS"/GO TO 300

IF A=B THEN PRINT “EQUALS"": GO TO 300

Example 4.

AS = ““BCDEFAF”
INSTR(1,AS,**AF"")=6
INSTR(1,AS,"*ABD"")=0
INSTR(6,AS,"F")=7

(from DEC BASIC-PLUS

Example 5.

(6th char position)
(not found)
(start looking at 6th char)

DEC
10 A$=*“HEL" 10
20 B$S=*LO" 20
30 SS=AS+BS 30
40 PRINT “STRING="",S§ 40
Run 50
STRING =HELLO 60
70
80
90

100 PRINT *““STRING ="",S§

Table 5.

HP

DIM X$(80)

X$="* '* (80 blanks)
AS$ =*“HEL”

B$=*LO"

L1=LEN(AS)

L2 =LEN(BS)

XS$(1,L1)=AS$

XS$(L1+1,L1+L2)=BS
S$=X$(1,L1+L2)

Run
STRING=HELLO

5-190 — Dimension and Functions
200-299 — Read in names and Data Statements
300-499 — Swap names, last name first
500-699 — Bubble sort alphabetically
700-899 — Print sorted list

Table 6.

QR

Most HP BASICs only allow a
line number after THEN. North
Star says if true, execute the
rest; if false, skip only the
THEN clause, not the line. HP-
style BASIC may or may not
print “EQUALS,"” but it will
always go to line 300; DEC style
will only go to line 300 if
“EQUALS" is printed; other-
wise it will go to line 400.

Another feature of some
BASICs is a string search,
which locates a substring in a
larger string (see Example 5).

Back to Reality

Let's condense all this dis-
cussion into one example
which compares a list sort in
HP-style and DEC-style BASIC.
To add character functions we

enter the list first name first
and sort it first name last. Both
are listed in Programs A and B
and have approximately cor-
responding line numbers (see
Table 6).

For the HP-like BASIC, we
used North Star BASIC, which
took 22 seconds from run to
ready; the DEC-like BASIC was
BASIC-E, which took 10 sec-

onds (but it's a partial com-
piler). Neither time reflects a
great sort but it works and il-
lustrates our discussion here.
(Fig. 1is a run of the program.)

Peculiarities of the HP-like
version are primarily related to
the pseudomatrix required be-
cause the names functions
FNL and FNH are used to cal-
culate the start and end charac-

READY
LIST

330 C=1

510 F=0

550 F=1

850 END
READY

335 REM LOOP UNTIL END MARK FOUND
340 IF F$(C,C)="'$"" THEN 380

350 IF F$(C,C)=*b" THEN S=C

360 C=C+1

370 GOTO 340

380 REM REVERSE FIRST & LAST NAMES
390 FI1$=F$(1,S-1)
400 F28=F$(S+1,C-1)
410 F$=F28+*“,"” +FI1$
415 REM PUT BACK IN MATRIX (NOTE FULL 30CHARS SO NO LEFT-OVERS)
420 NS$(FNL(N1), FNH(N1)) =FNAS(F$)
430 NEXT NI

500 REM BUBBLE SORT, LOOP UNTIL NO SWAP ON A PASS

520 FOR I=2TO N9
530 IF N$(FNL(I),FNH(I))>=NS$(FNL(I - 1),FNH(I - 1)) THEN 590
540 REM SWAP

100 REM WRITTEN IN NORTHSTAR BASIC (RELEASE 2)
110 READ N9
120 DIM N$(N9*30), F$(30),F18(30),F28(30),A$(30)

130 REM USE FUNCTIONS FOR PSEUDOMATRIX OF STRINGS
140 DEF FNL(X)=(X-1)*30+1 \ DEF FNH(X) = X*30

150 DEF FNAS(AS)

160 IF LEN(A$)>=30 THEN RETURN AS$
170 A$=AS$+“b” \ GOTO 160 \ FNEND
200 REM IN NAMES

205 PRINT ** **** NAMES ****** \ PRINT
210 N$=‘""\ REM CLEAR MATRIX

220 FOR I=1TO N9

230 READ F$

235 PRINT F$

240 F$=F$+“$” \ REM MARK END OF NAME FOR REVERSE ROUTINE
250 F$=FNAS(F$) \ REM FILL NAME TO 30 CHARS

260 N$S=NS$+F$
270 NEXT I

280 REM DATA
282 DATA 10
284 DATA ““SALLY JONES”, ““SAM SMITH”, ““‘JOE SMITH"', “TIM CAMBELL", “ED HILL"

286 DATA “‘STEVE MOODY", *“ROGER HEAD", ““SHIRLEY JONES", *‘ISSAC DEAR", “RICH KING"
300 REM RE-ORDER LAST NAME FIRST
310 FOR N1=1TO N9

320 F$=NS$(FNL(NI),FNH(N1))

\ REM FIRST NAME
\ REM LAST NAME

/ REM REMEMBER A SWAP WAS DONE

560 FS$=NS$(FNL(I),FNH(I))
570 NS(FNL(I),FNH(I)) = NS(FNL(I - 1),FNH(I - 1))
580 NS(FNL(I-1),FNH(I-1))=F$
590 NEXT I

600 IF F>0 THEN 510
800 REM PRINT SORTED LIST
805 PRINT \ PRINT \ PRINT ‘‘ **** SORTED NAMES **** \ PRINT \ PRINT
810 FOR I=1TO N9

820 F$=NS(FNL(I),FNH(I))
830 PRINT F$

840 NEXT I

\ REM KEEP TRYING TILL NO SWAPS

Program A. Mailing list (HP style).

97

MAILING. BAS WRITTEN

10 READ N9
15 DIM NS$(N9)
REM READ IN NAMES

FOR I=1TO N9
READ NS$(I)
PRINT NS§(I)
NEXT I

DATA 10

REM RE-ORDER LAST

FOR N1=1TO N9
C=1:F$=N§(NI):
REM LOOP UNTIL
IF C>L THEN 365

C=C+1
GOTO 330

F1$ = LEFT$(F$,S -

F2$ = RIGHTS(FS$,L
F§=F28+*,” +FI$

NEXT NI

F=0
FOR I=2 TO N9
IF NS(D>NS$(I-1) T
REM SWAP
F=1 : REM
F$=NS$(I)
N$(I)=NS$(I-1)
NS$(I-1)=F$
NEXT I

PRINT : PRINT : PRIN
FOR I=1TO N9
PRINT NS$(I)

NEXT I

IF F>0 THEN GOTO 500
REM PRINT SORTED LIST

IN BASIC-E (11/6/77)

5 REM WRITTEN IN BASIC-E
7 REM GET NUMBER OF NAMES

PRINT ** **** NAMES ***+”

DATA SALLY JONES, SAM SMITH, JOE SMITH, TIM CAMBELL, ED HILL
DATA STEVE MOODY, ROGER HEAD, SHIRLEY JONES, ISSAC DEAR, RICH KING

NAME FIRST

L = LEN(FS)
LAST CHAR AND MARK LAST BLANK

IF MID$(F$,C1)=“b" THEN S=C

REM ACTUALLY SHUFFLE NAMES

1) : REM FIRST NAME

REM NOTE RIGHT$(NAME,LENGTH)

-S) : REM LAST NAME

REM FILL OUT LENGTH SINCE 3 CHAR STR<4 CHAR STR
N$(N1)=F$ + LEFTS$(**

*,30-LEN(F$))

REM DO SIMPLE BUBBLE SORT
: REM LOOP UNTIL NO SWAPS ON A PASS

HEN 590

REMEMBER SWAP

: REM TEST FOR DONE

T * #*** SORTED LIST ****”

Program B. Mailing list (DEC style).

ferent ways of using strings in
BASIC, both are common
enough to have a following, but
the most useful one is the one
on your computer. Which is bet-
ter? It's not for me to know;
however, | have used both long
enough to know that strings
make a program really fun to
use—even if it's abusiness pro-
gram. That is because we talk
in strings, not numbers. Like
other computer users, | have
braved strings in FORTRAN
(which has no strings) and
thrilled to a real string lan-
guage like SNOBOL (running
on a 360/65 in 250K). You use
what you have! And hope some-
one's coming along with some-
thing better. Until then, keep on
coding!'®

References

1. Data General Extended
BASIC User's Manual, Rev 6,
Feb. 1975.

2. DEC PDP-11 BASIC-PLUS
Language Manual, July 1975.
3. Altair BASIC Reference Man-
val, 1975.

4. Tymshare BASIC Tycom-X
Manual, March 1973.

5. CTSTS BASIC Reference (IN-
FONET, Computer Sciences
Corp.), May 1974.

6. Timeshare BASIC/2000 Level
F Reference Manual (Hewlett-
Packard), Feb. 1975.

7. North Star BASIC Version 6
Manual, Feb. 1977.

8. Personal Notes from GE-635
Mark | Timesharing, Oct. 1968.

ters of a name element of 30
characters in the pseudomatrix
N$ of names. FNAS is used to
fill a name out to 30 characters.
Since a pseudomatrix element
must be a fixed length, $is used
at the end of a name on initial
entry so the first namellast
name swap tells where the
name ends.

The DEC-style version looks
much nicer, primarily because
it accepts a tab character while
being typed in and thus is
easier to format (called pretty-
print). It is wise to do this if you
can since it makes the reading
of the program easier.

Line 380 uses the RIGHT$
function. This particular BASIC
has the second parameter as

98

the length, so RIGHTS returns
the right n-most characters
(i.e., RIGHT$(""ABCDEF",3)=
“DEF"). Yet a true DEC-written
BASIC will return from the nth
character to the end (i.e.,
RIGHT$('"*'ABCDEF'",3) =
“CDEF"). Line 395 illustrates
one of the nice things about a
DEC-like BASIC—string ele-
ments of variable length. This
particular BASIC says a long
string of As is greater than a
short string of Bs, i.e., AAA>
BB. Well, to each his own.
(Note: This is specific to this
BASIC (BASIC-E), not to all
DEC-like BASICs.)

Summary
We have looked at two dif-

EEs

SALLY JONES
SAM SMITH
JOE SMITH

TIM CAMBELL
ED HILL

STEVE MOODY
ROGER HEAD
SHIRLEY JONES
ISSAC DEAR
RICH KING

%

CAMBELL, TIM
DEAR, ISSAC
HEAD, ROGER
HILL, ED
JONES, SALLY
JONES, SHIRLEY
KING, RICH
MOODY, STEVE
SMITH, JOE
SMITH, SAM
READY

Fig. 1. List sort.

NAMES

SORTED NAMES

*EEx

*EEx

e NOT A KIT
* 8v@15A, +16v@3A power
* Rack mountable «
* 15 slot motherboard
e Card cage
e Fan, line cord, fuse,
switch, EMI filter
* Desk top version option
* 8v@30A, +16v@10A option
* SS-50 bus option
* voltage monitor option mounted

model $200

Desk
top model
$235

Write or call for a copy of our
detailed brochure which includes
our application note
BUILDING CHEAP COMPUTERS.

INTEGRAND

8474 Ave. 296 « Visalia. CA 93277 » (209) 733-9288
We accept BankAmericard/Visa and Master Charge

YOUR BEST BUYS ARE AT

mputer..
Orne OF NEW

JERSEY
240 WANAQUE AVE.,
POMPTON LAKES, N.J. 07442

(201) 835-7080
Telex-130-376 ey back.
micro~-mini computer center

STORE HOURS: MON-FRI.6:30p.m.to 10 p.m. SAT.10 a.m. to 6 p.m.

AUTHORIZED DEALER FOR:
e Southwest Technical Products Corp. © Seals Electronics, Inc.
e Jim-Pak Electronic Components © PolyMorphic Systems e Micro-Term
e Ohio Scientific e Technico, Inc. * Hayden Books ® Kim-1 © Sanyo

LOOK AT THESE PRICES!

Only at Computer Corner of N.J.
TECHNICO TMS 9900 -16 Bit Processor
Super Starter System T-9900-SS-U

Regularly $299 NOW $269°
Also the

New Netronics ELF I, RCA COSMAC microprocessor,
minicomputer for only $139.95 wired & tested!

VERBATIM Removable Magnetic Storage Media—
Minidiskettes mos2s01 mps2s10 19 1025 26100

MD525-16 450 425 375

Standard Size ro3s-1000 FD32-1000 19 10.25 26100
Diskettes FD65-1000 550 525 475
TO ORDER:

Send check or money order and include $1.00 for shipping, 1.00 (optional) for
insurance, and please include sales tax if you are a New Jersey slate
resident Phone orders accepted with Mastercharge or Visa

NORTH STAR

DISK ASSEMBLER
and
DISK EDITOR

Both programs read and write disk files; file size not
limited by memory. Assembler will assemble up to
ten source files at a time; permits modular pro-
gramming with programs easily relocated by
reassembling at the desired address. Editor does
not use line numbers; it searches for strings. Lines
may be inserted, deleted and displayed. Large disk
source files allow programs to be fully commented.

ASSEMBLER/EDITOR on disk
with users manual...$30

COMPUTER SYSTEMS DESIGN

1611 E. Central Wichita, KS 67214

DEALERS INQUIRIES INVITED
\ C46 j

16K Statlc RAM

,._ S-lOO Systems

NEW %
LOW PRICES
330 kit

s365 "ssembled

Very Low Power—650MA+5V; 90MA+12V;
16MA-5V
Applications Notes—6800 and 6502 Sys.
Low-profile sockets for all chips
Solder mask; silk screen; plated through holes
Each 4K addressable to any 4K boundary
Fully buffered S-100 bus—gold-plated contacts
® NEC uPD 410 D memories
COD, Master Charge, B of A, Visa Accepted
Orders shipped prepaid. California residents
add 6% sales tax.

ANDENBERG DATA PRODUCTS

PO BOX 2507

SANTA MARIA, CALIFORNIA 93454 805-937-7951 V14

99

