
THE NEWSLETTER FOR SERIOUS LIGHTWAVE 3 D ANIM ATORS

'm a LightWave junkie. I've known it fo r awhile and have fin aUy come to
accept it. And why not? UghtWave changed my life. FOllr years ago, I
was working as a purchasing agent for a swimming pool company in
Minnesota. [went to an Ami Expo in Chicago an ti saw Allen Hastings
demonstrating LightWave on the not-yet-released Video Toa~ter. Never
had [seen a 3D package on a personal computer like this! [fell in love
with LightWave and knew [had to have a Toaster no maner whal the
cost.

Not long after, I quit my job and started working fo r a video compa
ny where I soon became the l.ightWave expert. Abou t a year an d a half
later, I moved out to L.A. to work as a LightWave animator in Hollywood.
So it makes sense that I'm interested in lightWave.

Anytime th ere is an al1icl e appearing abo ut lightWave, in any maga
ljne, I make sure to get a copy and read it. The problem .i s that there is
never enough LightWave arti cles out there to satis~' me.

For a while now, I have felt that there has been a g ro\\~ ng need for
more LightWave information. The fell' LightWave articles that appear in
magazines haven't been fulfilling my needs, and I was hoping someone
would come outwilh an all-LightWave publication. Enter Li ghtWal'ePRO.

Li ttle did [know what [was in for.
When Jim Plant , publisher of Video Toaster ['sel', contacted me and

conlinm-d on jr.lgc 1

Page 6

Displacement Mapping
by Grant Boucher
A hand~-on tutoria l that walh through one of the best
new tools ill LightWave 3.0.

Page 11

2~y ~~I~ J!~s Working with Bones
24 profe~~ional tips & trick~ from the Edi tor guaranteed
to make your images better and Bones ea~ier to use,

Page 12

Bones and a Shark Named Bruce
by Erie Barba
A look at how the author/sellQlIesl animator u~es Bones
and other tricks to make a hammerhead shark swim for
broadca~t TV.

U LlGHTWAVEPRO

··Wclcome to I.\\tp" from pg I

told me about the idea for an all-LightWave newslet
ter, I was very excited . [wanted to be a part of it
because it is exactly what I want to read. We hope it
is exactly what yuu want LO read as weU.

So, what can you expect from LightWavePR07
A 101.
Each issue will cover different aspects of

LightWave. You'll learn tricks and tips from
lightWave experts throughout the country. You 'U fol
low along with tutorials that wiU teach)'ou the ins
and outs of your favorite 3D package. We 'll have
product reviews, current news, and inside infOlwa
lion that II~ll keep you up to date lvith the latest buzz
in the world of LightWave computer graphics.

With each new issue, LightWavePRO I\~ll concen
trate on particular sections of LightWave. Expect
future issues devoted entirely to modeling objects
correctly or using surfaces, textures and image maps
to achieve realism. Or how about an issue that deals
lvith lighting, or new Modeler macros? You'll see all
of this and much more ill the months to come.

LightWave is becoming more and more popular and
this publication is going to keep you ahead of the
game.

This premiere issue covers the new object defor
mation features of lightWave 3,0 (or, if you have an
Amiga 4000, LightWave 4000) You'll leam all about
using Bones and displacement maps to modify your
objects in new and interesting ways. B)' the time you
finish this issue of LightWavePRO, you 'll be ready to
"deform with the best of them."

Remember: We want your feedback . Is there a
subject or tutorial you really want to see in a future
issue? Drop us a line at our offices or online on
CompuServe (send E-mail to either myse lf at
71740,2357 or toJim Plant al72242 ,1623)

Thanks for joining us for this first issue, and we
hope to see you come back for more!

John Gross
Editor

In previous versions of LightWave, I used bump
maps for wavy or bumpy illusions.
Unfortunately, the visual quality just wasn't good
enough because the surface was never acrually
bumpy-it was shaded to appear bumpy. With
the introduction of LightWave 3.0, a new tool
called displacement mapping allows surfaces to
actually change shape during an animation.
Need to have waves ripple against the hull of a
boat or a flag blow in the breeze? This is where
a displacement map can help.

Displacement mapping is actually rather
simple to use-you just need to know some
basics. First of all, you cannot displace surfaces
of an object by themselves; the object must be
displaced as a whole. For this reason, the
Displacement Map button is located in the
Objects panel, not the SUliaces panel.

There are five different ways to displace an
object. The first three are different types of
image maps-planar, cylindrical and spherical.
The other two methods are Ripples and Fractal
Bumps. So und familiar) Th ese are the same
options that you had for bump mapping a sur
face under lightWave 2.0; LW 3.0 has the exact
sanle bump mapping options with the addition
of a cubic image map.

For a displacement map to work properly,
it's important to have a lot of polygons in yo ur
object; otherwise, your displacements will not
be smooth. (How often have you seen waves that
were pointy?) The best way to prepare an object
for displacement mapping is to lo ad it into
Modeler and use the Subdivide option (located
in the Polygon menu) to create more polygons.
The polygons need to be tripled first. If your
object is not a Oat plane . you will almost always

want to use the Smooth Subdivide option .
How much should you subdivide? It depends

on how much you are goi ng to displace the
object and how close you want to ge t to it.
Usually, some expetimentation is requirecl.

Once your object has been subdivided and
brought back into Layo ut, it's time to start dis
placing. All of the different displacement tex
nlres have one thi ng in common: texrure ampli
tude. Thi.s simply refers to how far, in meters,
the surface of the object will displace.

Aiter choosing an ax is and size for your
image, set the Texture Amplitude. For best
results, start with low values. You can see the
results of the value \'. h:.·n the object redraws in
the Layout screen. If your amplirude is set too
high , instead of proper displacement, yo ur
object will look li ke a rat's nest

Remember that when you use imaf\es for
)'our displacement , the luminan ce (or bright
ness) values of the image determine the ampli
rude of the displacement Solid white values in
the im age will di splace the object the full
amount of the Texture Amplitude value. Solid
black values wi ll not di splace the objects at all;
values in between white and black wiU displace
accordingly. For example, 50 percent gray will
displace 50 percent of the Texture Amplitude
val ue.

Ri pples and fractal bumps, the other two
types of di splacement maps, have a few addi
tional values to input Fractal bumps allow for a
frequencies sening which determines how many
"patterns" of blimps will be used. I recommend
values between 3 and 16. The higher the value,
the more "bumpy" your object, but the longer
the render time. For fractal bumps, I also slIg-

gest starting with a Texture Size value of approxi
mately one-tenth of the object size. To determine
tlus , simply press the Automatic Sizing bunon while
in one of the image map textures; then select Fractal
Bumps. The size will carry over.

The Ripples texture has wave values that must be
input. Wave Sources is simply the number of centers
of waves (a value of 1 will have ripples emanating
from one spot only). Wavelength determines the
spacing between the waves, while Wave Speed deter
mines how fast the waves move.

If you need to have looping waves moving for an
animation, use this simple formula to determine the
Wave Speed value: Take the Wavelength and dil'ide it
by the number of frames you ll'ish the wave~ to loop
in and enter that val ue for the Wave Speed. I gener
ally use the object 'S size for the Texture Size when
using Ripples.

Ok, nolY that you have been introduced to dis
placement mapping, how can it be applied to your
work) To get staned, tum the page and foUow the
rutolials by our outstanding contributing writers Mark
Thompson and Grant Boucher.

john Cross is the Editor of lightWave Pro. john
czmen/I)' works as an animator for the NBC televi
sion series seaQuest, DSV.

lIGHTWAVEPRD D

A
long with the new LightWave 3.0 release
comes some wonderful new object defor
mation functions. In keeping with th e
theme of this premiere issue, this article
II·ill focus on one of the truly powerful fea

tures of the LW 3.0 release-displacement mapping.
Working in a concept similar to bump mapping,

instead of merely giving the appearance of bumps,
displacement mapping actually creates them. Or in a
nutshell, it is a method of physically deforming an
object's geometry based on a textural specification.
That texture could ei ther be procedural , such as
LightWave's ripple texture, or image-based. There
are a couple ways this can be accomplished.

For example, Pixar's photorealistic RenderMan
breaks all its plimilives (including polygons) into tiny
sub-pixel fragments which are indi~iduaUy rendered.
In this case, displacement mapping shifts the location
of each of these fragments according to the texture.

LightWave. on the other hand, renders polygons
as a whole singular entity, and therefore, the smallest
unit that can be displaced is the polygon vertices.
This method has faster rendering speed, but requires
higher polygon densities for detailed displacement
maps. Consequently, LightWave is better suited
toward larger, less-detailed maps.

For example, you probabaly wouldn't want to use
the pits in a golf ball for LightWavc displacement
mapping, but creating an uneven, rough terrain
would be a great app li cation. In fact, watch Ste\'en
Spielberg's nell' TV sholl' seaQuest. DSV, and you
will see some examples of LighlWave-generated ter
rain that was created using this feature.

D LlGHTWAVEPRO

Unlike other textures in LightWave, displacement
mapping acts upon the entire object rather than a
specific surface. At Brst this may seem like a limita
tion, but since it is so well-suited as an animation
tool, it is better that the whole object is affected.
While it cerutinly can be used like a surface attribute,
its object animation capabi lities are what reaUy make
it shine. I will give two animation examples that
would otherwise be rather difficult without displace
ment mapping.

Displacement
Mapped Shark

This first example shows how to make a fish
swi nt Without displacement mapping, this would be
a somewhat ardu ous cho re of setting up multiple
morph targets of the fish in various states of body
bend. (Editor's Note' To animatefish, YOll can also
use Bones. For a tlltorial, see Eric Barba's Bones,
and a Shark Named Bl1Ice.) I have done this with a
shark and needed a minimum of four different ver
Sio ns of th e object to morph between to create
acceptable motion. I might add that a good deal of
experimentation was required to get it right.

With displacement mapping, this task is a snap.
First, create a vertical, gradient bnlsh map that goes
from black to white to black. Then use that image as a
planar displacement map on your fish object. Use the
texrure axis that is perpendicular to the side of the fish.
My shark extends along the X axis from tip to rail, so a
Z axis map was used. I sized the texntre to be just a lit
tle bit larger than the object (which was 2.7 meters
long). The pel1inent settings used were:

IIiSIDcemenI Map: PI .. Image Map
Axis: Z
Size: 3m, 3m, 3m
Velocity: 0.13 0 0
_llbIde: 0.25
The velOCi ty controls how fast your fish will wig

gle and the amplitude sets holV much it will be dis
placed in meters, With this done, it is easy to create a
school of fish .

Use the nell' Object Clone feature and make as
mallY copies ;L<; you like. Parent each clone to the
original and move it to a diffel'ent location. Then
modi~' the texntre center for each displacement map
so that all the fish don't swim or II~ggle exactly the
same way. You'll find that this gradient brush map
can be used for a number of displacement applica
tions. Just to experimcnt, I applied it to the DC-IO
object to cre,He th e latest in aviation from "Snake
Airlines" (see Figure O.

T he Green Hills of
Earth

J am quite fond of the next example. It is a simula
tion of a field of tall grass blowing gently in the Ilind.
This example 1V0uid be rather difficult to duplicate
Ilith most other 3D packages. I dreamed up the tech
nique linen an Imagine user on one of the electronic
netwo rks quelied how to model such a scene.

Grass requi res complex modeling. Unlike a neatly
mowed lawn. a grassy field can not simrly be mod-

eled with a single, flat polygon with a good grass tex
ture. Individual grass blades really need to be visible.

I have heard of people trying to tackle this prob
lem by using bunches of transparency-mapped poly
gons, each made to look like a patch of grass. But
this technique heal~ly limits your camera motion (it's
very view dependent) , and when many transparent
surfaces overlap, rendering time increases.

Another method is to model the blades individually
as tall, thin pyramids. But considering the number of
blades needed to fill a field, this many polygons would
rapidly become a burden both in terms of memory
usage and rendering time.

The most successful grass simulations I have seen
were done by Lucasfilrn (now Pixar) back in 1984 using
particle systems. Particles have two key advantages over
polygons for this type of effect: They render much faster
and they consume less memory. Since lightWave sup
ports both one and two dimensional particles (Le.,
points and lines) , this method seems the most 11able.

To model a field of 2D particle grass , go into
Modeler and make a single blade by creating a point at
the origin and another just above it in the Y direction.
The location of the second point will determine the
height of your grass (I used 300mrn or about a foot).
Hitting P will create the blade. While your object is still
simple, hit Q to assign it a surface name.

Now duplicate this single blade into a field. The new
Array tool works nice~' . Enter a dimension of 100 in X
and Z, select Manual offset, and use 100mrn for the X
and Z offset. This generates 10,000 blades in nice, neal,
totally unnatural-looking rows. TIle new Jitter tool is per
fect for adding some randomness to your grass. A jitter
of 100mnl in X and Z, and 30mrn in Y yields a good ran
dom look Now save i~ and your model is complete. See
Figure 2.

Assigning surface attributes will vary lvith the look
you are trying to achieve. Essentially, textured color
and diffuse are all that is needed. In Figme 2, 1 used
a 2mx2mx2m fractal noise texture to modulate dif
fuse between 20 and 60 percent. A brush map was
used for color texturing, but a small (lOn1ln) , frac
tal-noise texture works just as well. However, these
settings alone are not enough-the grass will still
look two-dimensional. Some shadows are needed.

If you try and trace the shadows, however, you
will find that no shadows are cast. That is because
ID and 2D particles have no volume as far as the
shadow tracer is concerned. Fortunately, the new

shadow mapping feature allows par
ticles to cast a shadow, not to men
tion a dramatic increase in render
ing speed. This just means you will
have to illuminate your grass \\~th a
spotlight rather than a distant
source. At this point, some sort of
ground is needed. A big, flat polygon
with a texture similar to the grass
will do fine or you can make it look
more like dirt. Whichever you
choose, it will be mostly hidden by
the grass. Its main purpose is to
serve as a recipient of the grass
shadows.

However, what really makes this
tall grass interesting is making it
blow in the Ilwd. This is where displacement map
ping comes in. By using a procedural ripple dis
placement that starts at the top of the grass and falls
off to zero at the bottom, this illusion is made
extremely simple and quite effective. The follo~ng
settings worked well for my example: ------SIze: lID 0.31m lID

TBX1nCIIder: 5m 0.31 m 5m
FalloH: 0 _0
.... : O.lm
WBveSOlRes:3
W8v8IIQIIh: 2.5
wave Speed: 0.025

TIlese settings cause the top of the grass to move
~th a rippled wave motion , while the bottom stays
completely stationary as if it were being held in place
by the ground. (A nice touch would be to construct
each grass blade out of multiple segments allo~ng
them to "bend" in tlle ~nd, rather than merely tilt as
they do with this simulation.) Unfortunately, the
falloff parameter for all the textures is linear which
means that no anlOunt of grass blade subdil~sion will
allow them to bend. But as you will see, even the
straight blades outlined in this simulation look quite
good because of their close proximity and random
orientation (see Figure 3) . And not only does it look
good, but it renders quite quickly as well. Figure 3,

Figure 3

including the windmill and fence, took just about 10
minutes to render.

A few notes about the grass project. First, the
model produced a grass patch that was only 100
square meters. This was fine for my example (which
had a constrained camera view), but for larger
areas, you may want to either create larger patches
or use several smaller ones . Also, as the grass
becomes more distant from the camera, the density
required for a good illusion is much lower. So when
you create your field, you should place denser grass
patches in front of the camera, and much sparser
patches in the distance .

As you can see, displacement mapping is a truly
powerful new animation 100] and there are many
other uses. When combined with the new Save
Transformed feature, it can even be used as an
advanced modeling tool.

If you come up with any unique uses for displace
ment mapping that you would like to share, drop me
a line and I might use it (and give you credit) in a
future article. Also , if there are any advanced or
high-end techniques that you would like to hear
about or effects you are having trouble creating, feel
free to contact me.

Mark Thompson is president of Radiant Image
Productions, a 3D animation and speCial effects
production house.

Send questions or comments to: Radiant Image
Productions 51 Derry Street Merrimack, NH 03054
or email to:

mark@westford.ccur.coln.

LlGHTWAVEPRD U

W
ith the introduction of lightWave 3,0,
many new features and tools are avail
able to anlmators, One such tool is dis
placement mapping, (Editor's note:
For a brief introduction into the

capabilities of displacement lrUlpping, see A Look
at Displacement Mapping by john Gross),

Let's explore some excellent examples of using
displacement mapping to create extremely advanced
animation techniques that would be difficult, if not
impossible, otherwise.

Image Mapped and
Fractal Waving Flags

In these examples, we will build a Oat plane
object \\~th many polygons for use with two different
wa\~ng flag techniques. The first is a Simple, waving
ridge using an image map and the second will
employ a fractal-noise texture to give us a more
organic, windblown effect. We will also expand on
these examples with some additional professional
techniques,

Building the Flag
In Modeler, create a plane SUitable for displace

ment by using the Box tool in the Object menu. Enter
th e following settings (in meters) in the Numeric
requester:

x
y-
Z -

Low
0.50
0.50
0.00

Hlgb
0.50
0.50
0.00

II LlGHTWAVEPRD

If your fiat plane of polygons is not made of trian
gles, go to the Polygon menu and select Triple.
Everything to be displacement mapped should be
made of triangles, and while 1,800 polygons may
seem small for those of you experienced with the
joys of distorting LightWave objects , this amount
works great for these examples. If more polygons are
needed, set the segments settings (see first table) a
bit higher (be careful not to exceed lightWave's
internal object limit of 65 ,000 polygons per object) ,
Note: If you use too few polygons, you will see the
squared-off edges of your displacing polygons. (Tllis
is very unprofessional unless it's the effect YOli want),
If YOll use too many polygons, mathematical , hard
images will appear as raised crosses in the Fractal
Flag example I detail later. This is analogolls to what
you see ill a Fractal Noise texture map if the contrast
setting is too high. At this time, there is no way to
adjust the virtual contrast of a Fractal Noise
Displacement Map.

While in the Polygon menu, check your normals
and use Flip if they are faCing away from the camera
(the +Z direction). In my test, the polygon's normals
were oriented in the -Z direction , or towards the
camera, when first created so there was no problem.
If YOll are unsure of whether your flag's polygons are
faCing in the correct direction , tum on the Double
Sided feature in LightWave 's Surface panel.

Surfacing the Flag
At dus time, you can apply a new suciace ("Flag" for

example) to our entire object in Modeler or export the nell'
object directly into LightWave and rename the default sulface
to Flag. Either way, we are ready to surlace the objea.

Displacement
Mapping Ips I
Tricks
- Displacement maps are not saved as part of all

object; they are saved as part of a scene, Use
Load From Scene if you wish to load all object
with a displacement map attached.

-The amplitUde of a displacement map is how
far (in meters) the object will be displaced
from the original plalW of the object.

- For displacement maps to work properly, the
object must be subdivided into many polygons.

- When using images for displacement maps,
remember that the luminance values of the
image determine the amount of displacement.
Bright values are more, while darker values are
less. Solid white will displace the full anlplitude
entered while darker ",a1ues wiD displace rela
tively less amounts. Black will displace nothing.

• Cloning an object wiU clone any displacement
maps associated with that object.

- Displacement maps affect entire objects as
opposed to individual surfaces. If you want
part of an object to be non-displacement
mapped, that part must be saved as a separate
object.

- When using gradient spread images for dis
placement maps, you can easily get by with a
one-pLxel-wide (or tall) inlage, assuming that
the gradient spread is linearly constant.

-When using grddient spreads as moving maps,
make sure to have the ends of the spread match
so you do not get a "jump" in the animation.

-J,G,

Surfacing is easy becallse the only settings needed
are Smoothing and whatever texture or image map
we deSire on our flag. Load an image or framestore
of your company logo or the Video Toaster logo. If
you have an image sequence (either framegrabbed
live video or a pre\~ollsly rendered animalion) avail
able on your hard drive, you can place full-motion
video or animations on the flag for very professional
and eXCiting flag effects.

Displacement
Mapping the Flag

For this first exanlple of animating the flag, we
will use an image map. The image map to use is very
easy to build in ToasterPaint (make sure to save your

object and/or scene file if you have to leave
lightWave) . Select black and white as the two end
colors of the palette range requester in the upper
right area of the main control panel. Enter the
Transparency/Warp control panel and select a verti
cal gradient by clicking on the button that looks like
a soda can standing up. Leave the gradient highlight
bar in the middle and return to the main control
screen. Select the Box tool and the FiUed tool and
draw a square box on the paint screen. You should
see it change from black to white to black or white to
black to white, depending on your initial settings. If
you see one solid color, make sure you are still in
Range Mode in the Mode menu.

Cut this brush out with the sdssors (box-shaped sdssors
work best) and save the brush in your lightWave Images
subdireaor)'. If you end up with some black IrdIlds around
your brush map, use an Image Processing program like Art
Department Professional or ImageFIX to crop alVay the
unWdIlted borders. And while you are there, convert ule 24-
bit RGB daJa to 8-bit gray to save disk space and memory
usage in lightWave.

Once back in LightWave, (and after reloading your
object or scene, if needed) go to the Images panel
and load your gradient image. Notice that the thumb
nail shows your gradient spread.

Head to LightWave's Object panel and enter the
Displacement Map requester by clicking on the T
button. Once inside, leave it on Planar Image Map,
but select the Z axis for mapping. Select the gradient
Image as the Texture Image. Now enter the foUo\\~ng
settings:

x Y I
T8XIIft 1IZ8: 0.25 1.0 1.0
TeJdUre...-: 0.075
TexIIft VeIIcIIr. 0.02 0.0 0.0

The Texture Amplitude represents the farthest the
object will displace along the Z axis (because we
chose the Z axis for the map). The Texture Velocity is
the direction and speed the image map travels in
relation to the object.

Orient your flag in the Layout to get a good look at
it. Make a wirefranle preview animation of the first 90
frames or so and notice how simply we created a velY
primitive, waving flag effect. Render any test frame to

see how your texture or inlage map realistically shifts
and changes \~th the flag.

Anchoring One End of
the Flag

The preceding flag is good for a start, but the
right and left edge animate freely, as if they are flap
ping in the middle of space with nothing holding
them down-hardly realistic.

Go back into ule Displacement Map requester on tile
Objects Panel and €l1ter the follOwing sating;:

I1xIn c.IIr: 0.5
TexIIft fIIIIII: 100

Render a \~reframe pre~ew.

0.0 0.0
o 0

We set the center of our texture to the rightmost
(+ X) side of the flag and told the texUlre to faU off,
or fade away, 100 percent for eve!)' meter of distance
away from the center of the texUlre. In other words,
the displacement mapping effect gets weaker and
weaker the farther we move from the texture center.
It is now strongest at the far right + X edge, and is
completely gone by the time it reaches the far left or
-X edge. Texture faUoff is related to the texture center
only, not to texUlre velociry. The ridges continue trav
eling across the flag, left to right, building in intensiry
along the way. Add a flagpole or ship's mast and the
effect is complete.

Getting Fancy: The
Windy Flag

You may still be dissatisfied \\~th the look of the
flag , especially if you are one of these so-called
"organic" artinlators, questing to create anything that
looks and feels like real Mother NaUlre (like me).
Here are some new settings that should reaUy get you
pumping.

Go back to the Displacement Map requester and
change the Texture Type to Fractal Bumps. Enter the
followi.ng settings:

1JXbnJ Size: 0.25 0.25 0.25
1lxbn VeIIcIIy: 0.02 0.0 0.01
fNpKy: 3

Your pre~ous settings for Texrure Falloff, TexUlre

Result of Planar Image Displacment Map

Amplitude, and Tex'lure Center renJain ilie same and should
not have been lost when you changed from Planar Image
Map to Fractal BunlpS. Create a wireframe preview, but this
time edit tile JIag's rotation to 40 degrees on the Pitdl for a
bener look at ilie detail. Render a test frame and I think
you'll be very inJpres,o;ed \\ith your results.

From previous examples, you know why we used
an X velocity, but do you know why I also had you
enter a Z velociry? Try a \~reframe preview \~th just
the X velociry. You'll notice that the bumps, while
very organic-looking, just seem to shift through the
flag from left to right, \\~th no wind-like undulation
whatsoever. The Z velocity causes the fractal noise
texUlre pattern to travel through the flag in two direc
tions, left to right or X, and from back to front or Z.
Since fractal noise is a three-dimensional texUlre for
mula, it changes in aU three directions randomly. If
you force the texture to come towards you, or
through the flag material , the changes in the Z direc
tion add just enough variation to make it look like
real \~nd is responsible for the wa\~ng flag's motion
(See Figure I) . The sanle Plillciples apply to tech
niques for ocean waves and fire.

Final Flag Ideas
Any image map can be used for displacement

mapping, although only the image's grayscale or
luminance data is relevant (i.e., white is greatest
amount of displacement, while black is no dis
placement, and shades of gray ramp in-between).
If you are not using an image map as both a texture
map and a displacement map, convert the image
map to a grayscale , or 8-bit versIOn with your
favorite image processing package 10 conserve
memory. You might also want to adjust the contrast
or brightness settings while you are there to give a
more pronounced or subdued effect to your dis
placement mapping.

Look into texture map collections like Bill
Wialroski's Textiles from Mannekin Scepter
Graphics or Leo Martin's Pro-Textures from
Merlin's Software for all sorts of fascinating and
unique displacement maps.

Grant Boucher is a freelance LightWave ani
mator in Orlando, Fla., whose ciients include
Nickelodeon StudioslMll' Networks and WOPL-FOX
3510rlando among others.

LlGHTWAVEPRO U

T
his article will deal with water, specilicall)'
with the many different ways swimming
pools can be created with lightWave 3.0.
We will look at everything from elaborate
raytraced versions to quick and dirty wave

effects. While not every water possibility is covered
here, hopefully, this article \\~ll solve many of your
most difficult water-related problems.

Buildinv Our Simple
Swimming Pool

Make a Box in the Modeler with the follow
numeric settings (in meters) :

Law
X -5
Y -5
Z -5

• 5
o
5

...
1
1
1

Select the two rightmost bottom points in the Face
view (5, -5 , -5 and 5, 5, 5) and move them up to
about Y = -2. This should create a slanted bottom
and sides for the swimming pool. Select the top poly
gon of the box and cut and paste this polygon into
another layer. Apply the surface name of Water to
this lone polygon. Retum to your main pool object,
!lip all the polygons so all their normals face inward
and apply the surface name Pool Walts to this object.
Export both objects to UghtWave as Pool Walts and
Pool Water, respectively.

Surfacing the Pool
Walls

The easiest way to create underwater reflections on
the pool walls is to use UghtWave's underwater texnlre.

III LlGHlWAVEPRD

For a realistic effect, remember that less light reaches
the bottom of the pool then reaches the upper walls.
To add a touch of style, you may want to add tiles to the
pool walls above and below the water line.

Now, to achieve the darkening effect, we want to
use a Falloff of some kind; however, we can't com
bine the underwater texture as a surface \\~th the tile
as a surface. How can we have our reflections and
tile them too? Set the color and texture nature of the
pool walls \\~th normal surface map settings, while
using the underwater procedure with luminosity
mapping to create our underwater reflection high
lights. Diffuse mapping with falloff can cause whatev
er surface the pool walls have to get darker the far
ther down we go. Try the following senlngs:

SIItlce Color 0 2IIJ 2.
I.IIItIOSlty Map 0%

1lXbftType IhIIMd8r
Tex1nSlze 10 1 10
TeXbft Value m
wave SOIJIC8S 4

1IIfuse", 0%
TeXbftType PIa.Map
TexbftAxls Z
TeXlftlmage A 1Nb
'JdIII.SIze 10 5 10
TeX111'8 Fda" 0 10 0

Move the pool water object Ollt of the scene tem
porarily and render a few tests of the pool walls tex-

ture. Add your own tiles or texture attributes to the
pool walls surface color.

Surfacing the Pool
Water: A Quick and
Dirty Method

Assuming you're not interested in watching waves
lap IIp and over things (that's the next example), a
simple ripple bump map can do wonders for a swim
ming pool. Enter these settings:

o 2IIJ 2IIJ
1110%

ReIIecIIvIty 33%
ReIIIcIed Image None
....., 1M
Color FIlter ~
SID1IiIg ~ --TextnType lIaRS

TeXbft SIze 10 1
WMSlIRes4

10

In the Effects panel, tum Solid Backdrop off so
we are using the default em~ronmental settings for
Zenith, HOrizon, Ground, and Nadir. These \\@ work
just fine this example (remember that pool and
ocean water get much of their color from the sky
above them).

Put your Pool Water object back into place at the
top of the Pool Wall and render a test. The pool may
not look totally realistic , but it is about as good as

SaveYour
ationFrom Bee
Eaten

You know how an animation can
take on a life of its own. Some
times it takes forever. Or it costs
too much. Or a tape machine
mistakes it for lunch.

The DPS Personal Animation
Recorder™ solves these and other
animation-production problems.
For just $1,995, it gives you the
reliability and capabilities of
systems costing thousands more.

A plug-in AMIGA ® card, the
Personal Animation Recorder
functions as a single-frame

recording deck. With it, you can
digitally record your animation
onto a dedicated hard disk'·' and
play it back in real time.
Which means you can create 3-D
animation without the expense
and aggravation of tape decks.
The Personal Animation Recorder
will even genlock to your system.

Because the Personal Animation
Recorder operates in a totally
digital environment, you won't be

. ~
••••••••• ••••••••• ,•• ',. . .. ~ ...

[JIGITAL
PROCESSING SYSTEMS INC.

If you want to look your best

bothered with the time base error,
jitter, skipped frames, or botched
edit points you encounter with
traditional animation recorders.

Since your animation is
recorded in a component digital
4:2:2 format, you can produce an
infinite number of first-generation
tape copies. Plus, the Personal
Animation Recorder features
outputs for true component analog
video (Betacam®, MII@), composite
and S-Video (Hi8® / S-VHS).

Rescue your productions from
the jaws of traditional animation
systems. Produce quality
animation for a fraction of the
usual cost with the DPS
Personal Animation Recorder.

In the U.S. call (606) 371-5533 Fax: (606) 371-3729 In Canada call (416) 754-8090 Fax: (416) 754-7046

~ lia rd drive 001 Included DPS Pcn;onal Amm<llion R\."COrdcr' " I" a Irade mArk of Diglla l Pro~':t.~ing Syslcms. Inc . ,\.\.t IGA J: i~ a rcgistc fvd t r-ddcm:uk of Cunlnlodorc-..... mi.ta . Inc
Il iSc nnd Betaca m' a rc r<'-jtilootc rcd tradcm'lfks of $.:m y CQrp. ~f ll II' is 3 rc lti~tcrC'd tr.n.lcm:trk o i Punasonic 8 m_deMt

you are going to get without ray tracing and/or adding
a lot of polygons (see below). You might want to
make the Pool Water less transparent (about 75%),
if raytracing is tota.lly out of the question.

To Trace or Not to
Trace

The above water shortcuts are desirable because
they avoid the time-consuming process of ra)1racing.
However, for superior water effects, you should
change the Refractive Index of the Pool Water sur
face above to 1.33 and turn both Trace Refraction
and Trace Reflections on in the Camera panel. Yes,
the rendering time will jump Significantly, but the
results will be photorealistic, even from close up.

Creating Real Waves
Most animators want real waves--ones that come

up and over the sides of the pool and anything in
it-that have true depth. Assuming you are either a
masochist, a perfectionist, have 40 Toaster 4000s at
you r command, or are beta testing a Screamer,
here's how to do it.

We 're going to discuss displacement mapping for
wave effects. First you need to either Triple and
Subdivide (Faceted) the Pool Water object until it
reaches 32,000 polygons, or create a new Pool
Water Object that is divided into 180 segments per
side and then Tripled into triangles. Replace the old
Pool Water object with our new Pool Water32K ver
sion and return to the layout. Use the same Pool
Water surface settings above, without the ripple
bump map. Then proceed to the Objects panel and
enter the Displacement Map requester.

Enter the exact same settings for the tipple bump
map used earlier in this requester II~th a Texture
Amplitude of approximately 0.066. Render a test or
two and see if you like it.

Why doesn't the Ripple displacement map work
exactly like the ripple bump map, only taller?
Whereas bump mapping fakes the appearance of
depth with powerful shading algorithms, displace
ment mapping actually distorts the object's shape (by
moving its vertices) in three-dimensions.

There is one problem: We only want the ripples to
distort the polygons in the Y direction, not shift them
along the X and Z directions as well. There are two
solutions. The first option is to ignore it. Try a Fractal
Bump displacement map II~th a Tex1Ure Size of 0.25,
0.25, 0.25 lvith the same Texture Amplitude as above.

This will cause waves to lap around, over, and through
any objects which are placed in and around the pool
water. However, this technique does not match our
underwater surfaces and works bener in ocean envi
ronments than in closed spaces like pools.

The second option is to render the underwater
texture as a normal surface map on a polygon that
fills the entire screen, using a separate polygon and
scene file . Render a sequence of this texture animat
ing, with white on black surface colors, and save
them to your largest hard drive. Then, using the
same Pool Water32K object we built before, this time
try the Planar Image Map Texture Type (Y axis) in
the Displacement Map requester and use the Image
Sequence of the ripples we just rendered as your
Displacement Texture Map. Noll' the ripples will only
animate vertically and if everything was lined up cor
rectly on your end, the Pool Walls' underwater tex
rures should line up perfectly with those of the Pool
Water. Count on rendering times in the hours per
frame, but the results should look professional. Save
this one for a real moneymaker.

A Compromise
Shortcut

Cheating can save you lots of rendering time and
might just give you the results you are looking for.
Why not use a Pool Water object comprised of 2,000
or 8,000 polygons lvith the Ripple displacement map
procedure above at the same time as adding a Ripple
bump map with the same settings to the surface of
the water?

Set the Displacement Map Amplitude to around
0.33. The displacement map will give the waves just
enough height and depth, while the bump map gives
it realistic detail.

Beneath the Waves
What happens when the camerJ. goes beneath the

waves? What kind of techniques can be used for
undenvater realism?

First, the Non-Linear Fog settings in the Effects
panel work very well to cloud objects as they move
away into the distance. This is more likely to be use
ful in ocean environments, but a little bit of fog
under the pool water might be just what you need.

Set your Fog Color to 0, 200, 200 or your favorite
distant water color, and the Maximum Fog Distance to
20 meters. While in the Effects panel, rum on Animated
Dither and change the Dither Intensity setting to

4xNormai. This lvilJ add a silty look to everything ren
dered beneath the waves.

Any creatures who are traveling beneath the water
lvilJ need to have light reflections on them just like the
pool walls. Use the exact same underwater texture set
tings as you used for the Pool Walls surface lUminOSity,
but apply those settings to the surface color.

For example, a shark's skin would have a Surface
Color of 0, 100, 100 and an Underwater Texture Color
of 200 , 200, 200. Make sure you turn World
Coordinates on, othenvise, the underwater texture will
move lvith the shark instead of over him. Why not use
the underwater texture lvith luminosity mapping like
we did lvith the Pool Walls? With surface color map
ping, the shark will shade narurally based on your Ught
source. If you luminosity map him, his belly will have
reflections that are just as bright as his topside.

Diffuse and reflection maps could also be used
under tlle right circumstances. If you want the light
reflections to get dimmer as the shark gets deeper in
the pool and brighter as he reaches the surface , use
the same diffuse map settings as the Pool Walls.
Don't forget to turn Double Sided on in your Pool
Water surface setting. You won't see the bottoms of
the waves lvithout it.

For Crazy People
Only

In the previous examples, l'a)1raCed shadows cast
photorealistic wave shadows on the bottom of the pool
and anything swimming beneath the waves. That means
you could eliminate the Undenvater Texture settings on
the Pool Walls object entirely lvith srunning results. I
dare you to try.

It should be obvious that in most cases the ripple
bump map versions of pool water should be suffi
cient. On the other hand, if you have rendering time
to burn and need a profeSSional look to your work,
add some rawacing. However, it is also possible to
physically model real wave effects with LightWave's
own built-in procedures. With clever texture map
ping of your own, you should be able to improve on
the methods described herein.

Grant Boucher is a free-lance LightWave ani
mator in Orlando, Fla. He can be reacbed on
many national 3D electronic bulletin boards or
write to him at: LightWave Pro, c/ o Avid
Publications, 273 N. Mathilda Ave., Sunnyvale, C4
94086

LlGHTWAVEPRD III

Without bones to hold you Up.' you would
lay there like a lump of pudding.
Without bones in LightWave, your
objects can lay there like, well, objects.
LightWave 's Bones allow you to

reshape an object during the course of an animation
without the need for morphing. Bones allow
LightWave users to imbue objects with lifelike char
acteristics, and provide some mini-modeling capabil
ities in the lightWave Layout screen.

So, how do Bones work? First, of course, you have
to Stalt widl an object It's a good idea to use an object
whose polygons have been tripled. Bending and twisting
an object with non-l1iangular polygons causes render
ing elTOrs to occur as the object's polygons are twisted
out of shape.

The whole concept of Bones is rather simple.
After loading an object and adding bones, the bones'
rest positions are determined. Any time a bone is
moved from its original rest position, the object (or
parts of the object) move along with it. The longer
the bone, the more influence it has on an object (in
Illost cases). Bones that do not move help to anchor
other parts of the object

To simply demonstrate the power of bones, J will
use the Beethoven bust object that is included with
LightWave. This object should be loaded into
Modeler any non-triangular polygons tripled before
modifying it with bones. Once the object is loaded
into LightWave, selecting the Beethoven bust as the
current object and clicking on the Objed panel, then
clicking on the Object Skeleton button, will reveal
the Bones panel for the bust. The Bones panel Illay
also be accessed by selecting the object, clicking on
the Bone button as the current item, then pressing p
on the keyboard. The Bones panel is where bones
are added to an object.

IIlI LlGHlWAVEPRD

When you first start experimenting, try using only
a few bones. We will use two bones for the bust.
Once bones are added, they can be named for identi
fication. This is a good idea, especially if your object
will have many bones. After nanling your bones, it's
time to return to the Layout screen to set the bone's
rest length, position and direction (wllich can also
be set numerically in the Bone panel) .

Upon returning to Layout, a single bone \\~ll be
seen as a meter-long stick shaped like two pyramids
put base-to-base. Don't be confused by the shape.
The fat end does not exert any more influence than
the skinny end-it's just a reference for the pivot
point of the bone. You 'll also notice that both the
bones are located at the center of the grid and seen
with dotted outlines. When a bone has a dotted out
line, it is not active and is exerting no influence on
the object. Selecting the Bone button (shift-b) allows
bones to be edited in the same way objects are, with
one exception: Bones have a rest length. Since bones
always start out with a one meter rest length, they
may be too long or shOl1 for some objects. Changing
the rest length of the bone determines the range of
inlluence it has on an object. This influence range is
a kind of cold-capsule-shaped area around the bone
and can be restricted by inputting an influence range
value in the Bone panel and selecting the Limited
Range button.

After the bone's rest length is adjusted (which
can be changed at any time) and its pOSition and
rotation determined, two things need to be done.
First, pressing r instructs LightWave that this position
is the rest position of the bone. At this point the bone
receives a solid outline indicating it is an active bone.
Second, a keyframe should be created for the bone
in this position at franle O. If no keyframe is created,
the bone will snap back to its original position; but

because you set the rest position, it will start to warp
the object.

For our simple bone experiment, the two bones
(BottomBone and TopBone) were keyframed at frame
o with the following parameters:

MM
IIIIIDII8.- -0.4

D.lfili Y
U Z

TUI8IIe D.D X
D .• Y 0.. Z

... Rest lIIIIIII
X 10.8 H
1.0 P
D.I B
0.0 H 0.4

-115.8 r
D.. B

D .•

Notice that the bottom bone is located parallel to
the shoulders. This bone acts as the anchor for the
base of the bust as the top bone rotates around to tilt
the head. In most applications, it would be necessat)'
to have many bones anchorulg the base of the statue.

Now, \~th two bones associated with tllis object it
is easy to see what happens when the top bone is
moved around-the head moves along with it. The
base of the bust is anchored by the bottom bone and
stays pretty much in place. Remember that the longer
the rest length of bones, the more influence they will
have on the object (if Limited Range is not selected).
The top bone can be moved, rotated, sized or
stretched and keyframes can be created for the bone
to make the head bow and move around. Create
keyframes for the top bone with the follOWing
Heading rotation values:

o 15
D.I 45 .•

31
0.0

45 BO
45.0 U

After creating these keyframes for the headulg of
the top bone, generate a \~reframe pre~ew of the 60-

frame animation (make sure to creale a keyframe for
your camera at a good viewing angle) .

It's easy to see that a few bones are all thai are need
ed to give the bust believable character-type motions.
Just three to four bones can animale a walking bust
one for each "foot" and a couple for "arms."

To ac hieve a different level of reali sm, a
lightWave skeleton can be built for an obj ect that
more closely represents an actual skeleton. The
bones of the skeleton can be parented to one anoth
er so that moving one bone \ViU move all the children
bones as well. (Editor's Note: see Eric Barba 's and
Ken Stranaban's articles in this issue.)

can be used for. For instance, you may be designing
a rocky cliff to be used in an animation. The cliff may
need to jut out in certain select areas to support tele
phone poles. In stead of bringi ng th e cliff into
Modeler and modi~ing it there, you could add a few
bones to the cliff object, give them a limited range of
influence and set their rest positions in the appropri
ate places. Moving the bones away from their rest
positions wiU cause the cliff to jut out in the direction
of the bone movement.

that slightly stretches in width; flapping the muscles
of a heart valve; making curtains blow in the breeze;
stretching soap bubbles blown out of a mouth; boil
ing a pot of water; bulging the eyes of a cartoon
character; warping a spaceship as it enters warp
drive; melting an object into a pool of liquid; and
causing a "sinkhole" to appear in a ground plane.

Bones can give remarkable life to your animations.
Start off simple and use just a few bones to start deform
ing your objects. Before you know it, you'U be makiIlg
full-fledged skeletons right and left.

Of course, character animation is not all bones

Here's a few more of the many things you can use
bones for: making a cow speak by moving small
bones around the lips; making the same cow brealhe
by haling one large bone in the middle of the cow jobn Gross is the Editoro!LightWavePRo.

241ips for working with Bonesl
• Bones affect the points of an object, not the object's polygons.
For this reason, it is important to use objects with tripled poly
gons in order to a\'oid any rendering errors as the points of a
polygon are mo\'ed about.

• E\'ery bone in an object affects e\'ery point in the object. The clos
er a bone is to any given points, the more those points are affect
ed as the bone is mo\'ed. for this reason, placing some bones as
"anchors" will cause nearby points to not be affected by the influ
ence of other bones which are farther away. This, of course,
changes if you use the Limited Range feature for bones.

• The area of influence exerted by a bone is "cold-capsule" shaped
around the bone. The skinny and thick ends of the bone do not
exert any more or less influence, they are merely there for refer
ence.

• The rest length of a bone can be changed at any time. Once
changed, the new rest length is the same for aU frames of the ani
mation-even if it was changed on the last trame.

• After changing the rest length of a bone, there is no need to cre
ate a keyframe. New rest lengths are automatically recognized.

• Bones always stay with an object no matter where the object is
mo\'ed. It's as if they were parented, without ha\,ing to actually
parent them.

• An object's bones are sa\'ed as part of the scene file. They are not
sa\,ed as part of an object.

• Bones may be parented to other bones within the same object.
They may not be parented to an object or to another object's
bones.

• Choosing a bone, and then pressingp will present the bone panel
and ;IUtomatically select the chosen hone as the current hone.

• It is usually easiest to position all of your bones while they are
inacti\'e, create initial keyframes, and then go dlrough the whole
bone list and set the rest position for each.

• TUnIing off the Bone Active button in dIe Bone panel for an object
will deacti\'ate a bone until it is selected again.

• Do not confuse rest length with size. TIle rest length determines
the area of influence while the size of the bone will actually
change the shape of the object. Always change the rest length to
set the influence. Sizing a bOlle is seldom done.

• Adding only one bone to an object and not gi\'ing it a restricted
influence range achieves the same results as if there were no
bones. Mo\'ing the bone around in this case is the same as mov-

ing the object around.
• Turning off the Show Bones button in the Options panel will only

show the currently chosen bone.
• Need to ha\'e a lot of bones in your object? Don't worry, there's

no limit to the number of bones an object may contain (actually
there is a limit-32.000-but who's counting?).

• Don't assllme that you always need to ha\'e bones arranged in a
"skeletal formation" for all objects. Sometimes it helps to think
of bones as handles sticking out of the back of a puppet. It is also
easier to move parented bones if they stay in the same rotation as
originally loaded into Layout.

• When working with parented bones, always parent all the bones
first and then mo\'e them.

• Mol'ing parented bones is easiest if YOIl tum off the X and Y axes
and only move along the Z, then rotate the bone into position.
The bones wiII always mo\'e along the Z axis of their parents, so
it is easy to mo\'e many bones in a string qUickly.

• Like the grid, bones will never be seen in a rendered image.
• To transfer one object's bones to another object, simply replace

the first object with the second. The original bones will stay, but
may need to ha\'e their rest lengths changed to match the new
object.

• Selecting Limited Range in the Bone panel will cause a bone's
influence on an object's points to gradually weaken the farther
away the points are from the bone. When you reach the edge of
the range value, the bone will ha\'e no influence.

• Limited Range is best used when using only one or a few bones in
an object. If you are using many bones, you will often achie\'e
more realistic motion hy not selecting limited Range.

• A bone with a \'ery short rest length (.01 for example) and a lim
ited range wiII have a spherical influence range, whereas a bone
with a long rest length (10 meters for example) and a limited
range will have a cold-capsule-shaped rest length.

• Modifying an object with bones and then selecting Sa\'e
Transformed in the Objects panel allows you to sa\'e the object in
its current state of transformation as a separate object. Different
shaped objects can be sa\,ed by saving it transfonIled at different
key frames.

-J.G.
1m

LlGHTWAVEPRO m

The Shark 00 the lell has bones, while the Shark on the right does not.

III LlGHTWAVEPRO

B
ones can be used in a number of ways to cre
ate motion for many types of effects. In trus
article I will explain the techniques I used to
create the motions for a hanunerhead shark
for use in the NBC television series seaQuest,

DSV. I will refer 10 the shark as Bruce, as this was the
name given 10 the mechanical shark used in the movie
Jaws, and I think it's appropriate.

The first step is to model and load Bruce (you can
use your own object). I modeled Bruce so he was fac
ing into the positive Z axis (like a verude). Next, bones
were added. When added, they should point in the
right direction at first, so you don't have to rotate
them.

Because a shark's movement is most often a side
to-side thrasrung, we must first create a bone structure
similar to a shark's vertebrae (if it had one). After
loading in the bones one at a time, and naming them
as we go along. (I named them Shark bone I, Shark
bone 2 etc ..), the rest length needs to be set.

I used 13 bones because a very fluid motion was
needed, while causing linle distortion to Bruce's poly
gons . The total length of Bruce was divided by I3 to
obtain the correct rest length for each bone. As each

bone's length was adjusted, I also parented it to the
previous bone (bone 2 to bone 3 to bone 4, etc.).
Now you can position them with the tail of the bone
pointing toward the tail of the shark.

The simplest way to proceed is to move the first
bone into position (all the other bones will remain on
top of the first one). The bones need to be lined up
along the center of Bruce, both in the Z plane and the
X plane. To move the bones along the Z Axis simply
disable the X and Y Axis and drag them along. As the
bones are lined up closer to the tail, they must be
rotated on their pitch to foUow the tail properly. As
you rotate a bone, any children to that bone will of
course rotate as well, so it is very easy to move a bone
along the Z axis until its head meets the tail in front of
it and then rotate it into place and continue. See
Figure I.

After hilling R to set the rest position for each
bone, create a keyframe at zero for each bone.
Depending on the fluidity of the motion needed ,
more or less bones may be appropriate. For the
LightWave version of Darwin, seC/Quest 's resident
dolphin, I have used as many as 24 bones. Other
effects can be done with one or two bones, but for
fluid character motion , more is usually better.

To ensure good rendering quality, it is also
important to note that your object's polygons should
be lIipled If you don't, you may end up lvith render
ing errors due to non-planar polygons as the object
is "boned" about. In cases of severe distortion and
or bend.ing, you 11~1I also need to subdivide the areas
most affected. Of course this lvill have to be done in
Modeler. It was necessary to do this to Bruce, espe
cially in the tail section.

Every bone affects all points in the object (assum
ing you do not have Limited Influence activated) and
the longer the rest length, the stronger the influence.
The more bones you have to anchor parts of the
object that should not move, the less trouble you will
have keeping your object in place. Remember that
the shorter the rest length of the bones, and the
more bones in the object, the smoother the motion
wil! generally be. You can also limit the range of
inOuence if necessalY, but with this many bones in
Bruce, it wasn 't necessary.

If you do change the bones' range of influence,

remember that the shape of the influence surround
ing the bone is roughly cold-capsule shaped. Also
remember to engage the limited range button in the
bone panel. When changing the influence of bones, it
generally requires some experimention to get the
right look-but this change gives bones much
greater flexibility. An example of using a limited
range of influence might be if you were going to add
bones to the tentacles of a sqUid. You would not want
the bones in the tentacles to affect the main hodv of
the sqUid or the other tentacles.

The next step was to decide on the motion cycle
for Bruce. (I watched actual shark footage to help
me prepare). Because we will want a repeatable
swim cycle, the first and last ke)frames should be
very similar (or the same) (didn't want them exactly
the same because of the II"AY I keyframed the motion;
however, if the last keyframe and the keyframe at
zero are the same, and the motion is in the middle of
a cycle, (as the tail swings through the Z Ax.is for
example) you should have no problems.

To stal1 the first keyframe, I suggest you develop
a sine wave that you will use as a template for the
motion . for Bruce, (used Modeler and created a
spline that represented the shark's motion at the
extreme (i.e., maximum whip). I positioned poinl~

that I felt represented the path that Bruce's "verte
brae" would have to take at the extreme, and made
them into a spline. I mirrored the spline on the Z
axis and then expol1ed them to lightWave.

This template then allowed me to line up Bruce's
bones in his first keyframe (see Figure 2) . The other
keyframes were made by slightly rotating the line of
bones along their heading, being careful not to rOlate
anything else but the heading. The mirrored spline
then allowed me to properly line up the bones for
the other extreme. The rest was trial and error to

control the whip of Bruce's tail and bouy. I tried to
imagine holding a piece of spaghetti and dangling it

in the air. The motion the spaghetti strand takes is
al ways naturaUy fluid, so this made for a good visual
model.

With this as a model for smootiUless, and using the
shark footage, I was able to create the keyframes for a
fuU swim cycle. You will need to select Repeat for each
bone motion after you are finish ed with a complete

cycle. This gives you an infinite loop cycle. You might
want to save the file as your motion default scene, since
bones are not part of an object file (they're saved as
part of a scene file). This allows you to Load From
Scene to bring in your object with all of its bones
intact.

Creating a Motion
Path

Next, create Bruce's motion path. Obviously you
need to rely on your storyboards or intent of the
motion path. To create the path and the illusion of
Bruce actualiy moving through water, I created
keyframes at intervals of 30 and Bruce was moved
along an equal portion to create the path. After play
ing with the path to get the right shape, Align To Path
can be selected in the object's motion panel. I set
Look Al1ead Frames to 5, This allowed for a more
fluid motion, and a more natural look. [n my path,
Bruce appeared to anticipate the turns. The Look
Al1ead Frames may be played ,vith as appropriate to
yo ur motion . YOLI could accomplish the same
smoothness I,~th keyframes carefully set, but it might
take longer. Used properly, Align To Path can be
your friend.

If using Align To Path causes your object to face
backwards, you've ru n into an easily solved problem.
First load in a null object, save the motion of your
object, then load the saved motion file for the null.
Then clear the motion fo r your object, parent it to
the null and create a keyframe for the object at zero
with the object's heading rotated to 180 degrees. The
null will now control the motion of your object, and
the object will be pointed to follow your path.

With these steps I was able to create the swim
cycle and forward motion for Bruce. It took a little
experimenting to get it right but eventually it worked
out.

Bones can be a great tool fo r lots of different
effects. With Bones, you have the abili ty to animate
an)1hing from slvimming sharks to walking pianos.
Load in some bones and start experimenting'

Eric &II-ba is an animator for Ambtin Imaging.
He is currentl), working all Stel!eJl Spielberg's tele
vision series, seaQuest, DSV.

LlGHTWAVEPRO lEI

B
y now you've heard of Bones and you just
can't wait to make a brigade of ballet
dancers leaping across your screen. WeU,
if you're like me, the first time you use
Bones you end up turning your objects into

mush. No, Bones isn 't easy at first; but with a Iinle
work, you can have those dancers doing tour de jetes
with realism.

Walk on by
So how do you make a person walk, let alone

dance? First, you need to study how people walk.
Everybody has a center of gravity. In lightWave
terms, it's called a pivot point.

\Vhen a person walks, they essentially move their
body weight (or center of gravity) fOlward . Luckily,
the feet get smart and prevent them from falling over
and landing on their face and the body moves for
ward in the process. Hey' Grab yo ur cameral You
just took your first step!

The key to animating realistic motion is under
standing the energy that moves us when we walk.
That energy is gravity.

In animation, gravity is an essential component of
realistic , human movement. \Vhether running, jump
ing or fallin g, it 's important to keep in mind that
gra\~ty affects a body in motion. Does the body speed
up as it falls? Does it strain from its weight as it
moves up stairs, or does it stretch to reach the top
shelfi Whether it comes frol11 reading a book such
as Edward Muybrid ge' s Motion Studies or just

m LlGHlWAVI'PRD

watching a vidl'otape, observation is the key to mak
ing realistic human motion. So go out and watch
people walk. That's really the first step (pun intend
ed)

Skeletos Vertebratus
Now let's move into LightWave. The first thing we

have to do is set up the skeleton. Start by loading a
human figure. For this tutolial , I will use a one-piece
human skeleton object (see Figure I). If you don't
have one, you can make a simple body out of disks.
Because we are using bones, there is no need to have
separate objecL, for tJle allns and legs.

No\\', select the Object Skeleton bunon for your
human figure object and add some bones from the
skeleton menu. I would suggest adding one bone for
each foot and hand, one bone for each arm and leg
segment, two shoulder bones, and finally a bone
each for the head and torso (perhaps two bones for
the torso). Rename the bones so mething like Left
Shoulder, Left UpperArm, Left LowerArm and so on.

\Vhen you retum to Layout, notice that all of the
bones are placed on top of each other in the center
of the grid . Before you even think of moving them,
5rst set up the parenting of the bones.

Set up the parents in the ob\10US order-you know
the song "the hand bone's connected to the lower ann
bone ... the lower arm bone's connected to the upper
arm bone." and so on. All of the main parent bones
should be parented to the central torso bone.

After parenting the bones you can then move

them into position. The Hick to positioning the bones
is to move the bones that have the most bones par
ented to them fi rst. For example, since you have a
main torso bone, move that into position first. Any
bones parented to that will follow. Kno\\~ng where to
position the other bones is easy. Just look at your
body (and a picture of a skeleton wouldn't hurt) to
help you understand where the bones should go.
Remember to move the main parents first and work
down the line.

One common problem is that the parented bones
have had their rotations changed by their parents, so
they \\1U appear to move in strange directions. They
are actually moving relative to their parent's pOSition.
The best way to deal with this is to take it one step at
a time.

Use the X, Y, Z constraints and the different \1cws
until you get it right. This may take some time. A good
tip is to move along the Z axis first , because then the
bone will move along its parent 's length . Aner the
bone is positioned correctly, you should make sure
that it \\~ll rOlate in the COITect direction in relation to
the body. We don 't want any broken alms.

The next step is to change th~ rest length to fit the
body part. It 's importaJl! that you use the Hest Length
and not the Size to affect the bones ' final length ill
the body. Size will affect the object even if you reset
the bone. Once the bone is in pOSition, mak(' sure to

create a keyfranle at frame O. Always remember to
re- keyframe the bone if you need to reposition it.

When all bones are positioned correctly, the final

resting position needs (0 be set for each bone. The
rest position is different from a keyframe. The rest
position is the pos.ition of the bone when it is not
affecting the object. As soon as a bone is rotated,
sized, or moved from its rest position, the body wiU
be affected. Notice that the bone is drawn with dotted
lines until it is given a rest position after which it is
drawn with solid lines.

After the bones have been given rest positions and
moved a bit, you may notice that the bones can affect
more of the object than you originally intended. One way
to avoid tlus is to adjust the bone's area of influence.

This can be numerically adjusted to change the
effective range the bone has on the body part. Jf the
legs are too close together, a bone in one of the legs
may affect the other leg. The area of influence can
then be changed to a smaller area around the bone.

Another way to keep the bone from affecting an
area is (0 add more bones to act as an anchor for
part of the body. These bones can be placed and
rested, and then never moved. This can also be use
ful in keeping the Limbs from squashing when they
are bent, or even sized to emulate muscle fleXing.
The whole process of adjusting bone influence is no
easy task. Spend some time getting used to their
capabilities before you get too involved. Once all the
bones are positioned and rested correctly, make
sure to save the scene. You can then use the Load
from Scene function, and load the figure into allY
animation.

Get up and Go
Now that we have the bones in place, let's make

the body move. The first thing to do is to move the
center of gravity or pivot point. It should be located
in about the middle of the body. After moving the
pivot paint, there is no need to create a keyframe-it
wiU remember its posit ion . Because the arm and leg
bones are parented to the torso bone, it is the obvi
ous place to start our motion. Let's also make the
motion a repeating cycle so it 's easy to see a wire
frame preview Remember to always try and use as
fell' kelframes as possi ble.

When the body takes a step it starts fallin g for
ward and in tllm is moving down and at a forward
angle. So now let 's simplv move the torso bonc.
Notice that it will move all the hones attached (0 it.

The rear leg bone can be rotated back and the foot
placed on the ground. At the same time, the upper
leg bone rotates forward to plant the foot. The leg
that has the foot planted will have to be moved so the
foot is always placed at the same place on the floor ,
A good trick to keep it positioned correctly is to lise
a grease pencil and mark the original position right
on the screen.

Now that we have a position where the body is in

motion, this is a good place to start the cycle. So, let's
keyframe all the bones at frame zero. Let's also
keyframe them all in the same position at the last
frame, 60. Even though the arms and legs will be in the
opposite direction, the torso will be in the same posi
tion at franle 30--so let's keyfranle it for frame 30.

Noll', as the body takes its first step it will be
planting its foot and the torso will move in an
upward direction. 'Ii'ben it's been moved up a bit to
its apex, the torso should be keyframed in the upper
pOSition for frame 15, and again at frame 45. This
completes the Illation of the torso.

Noll' all that has to be done is to reposition the
arms and legs to finish the motion . Since the legs
were at their 6nal position at frame zero, it's easy to
switch the position of the legs and re-keyframe them
at frame 30. Now that the legs are swinging correctly
the walk is starting to come together.

When the body is moving forward, the lower leg
bone must rotate back to give the foot clearance
from hilling the ground. This too can be keyframed
at frame 15 and the other leg at 45. The foot then
moves forward to meet the ground. At the same time
your arms swing back and forth to counterbalance
the motion of the legs. The arms can be keyframed
on the same frames as the legs. This lvill keep the
frames that have keyframes on them to a nUnimum
and avoid a confuSing scene (see Figure 2).

This first step is just the foundation for the anima
tion. You will have to experiment to get the realistic
motion down. This basic motion may sound difficult
when reading, but if you follow along and actually
tT,', it will be faid)' easy.

Troubleshooting
Unfortunately, you can run into several problems.

The first thing to notice is that if you repeat the
motion and the hody was moving forward, it will

jump back to its original pOSition. It's best to make
the entire motion without actuaUy moving the body
forward. Then, by parenting the body to a null
object, you can make the body walk through a scene
without having to keyframe the position of each
motion separately by simply moving the null object
along a path.

If you want a more complex animation there is
another problem: Real motion is never reaUy repeti
tive. There is always a little difference in each move
ment. To remedy this aU you have to do is repeat the
ke)frames manually. Just go to the motion graph for
the object (press /vi, while the object is selected) and
take each frame of the first cycle and copy it to each
progressive cycle frame.

For example, on a 30-frame cycle, copy frame 15 to
45,75, .105, and so on. TIle easiest way to copy the val
ues for one frame is to select the frame on the motion
graph, then select Create Key and type in the frame
number you want to copy the value to. LightWave will
automatically copy the value for the key you have
selected into the new key. Once you have your whole
cycle in the motion graph, modify each key sUght/y so
there is no true repetitive motion.

Retuming to Layout, simply use the nuU to move
the body. You can adjust some of the keyframes of
the walking motion to suit each step, even making
the person maneuver over or around objects.

After the motion is completed, you may find that
the feet may have a tendency to move or bob through
the floor. This is because the motion of the
keyfram es moves in curves. This can be cured by
making aU the keyframes linear (when the feet are
on the ground).

These tips should get you started. Just remember,
once you ge t the basic skeleton set up con'ectl), and
saved, it's just a matter of time before you get the
motion down . It's not uncommon for an animator to
finesse a motion for several days (or weeks!). But
once it's done, you can llse it in any number of ani
mations. So keep experimenting with Bones and you
may be able to create the animations you've alwavs
dreamed of.

Ken Siranahan is an animalm' for Ambfin
Imaging. He is curren/ly working 01/ Sleven
SjJielberg's television series, seaQuest DSV.

LlGHTWAVEPRO m

