

The Chase
A rendering of spaceships chasing through
a displacement-mapped canyon , taken
from an intro sequence by Zapa Digital Arts
for a soon-to-be-released game.
ComjJro Games CojJyrigbt 1994

D LIGHTWAVEPRO

Fireball
Adding a small cluster of lens Uares to
the tip gives the fireball added menace
and destructive power.
Image ~JI S~):vision Hnlerlainmenl

Cof!J'~"igbl 1994

Rail Extrude Table
The legs and scroll work of the glass
table in thi s image were created by
using Modeler"s Rail Extrude features.
Image~!' ilrnie Boedecker Cof!J'~"igbl 1994

TABLE OF
CONTENTS

EDITOR'S MESSAGE
by John Gross

W ith the beginning of a new year, it is traditional to reflect upon the
old and look forward to tl1e new. With that in mind, let's cover
some of the latest UghtWave news and talk about tl1e future.
Video Toaster Expo

Over tl1e years, the Video Toaster has given birth to a slew of iliird-party
products (not to mention a few magazines). So many, in fact, that it has now
given birth to its own expo. In mid-December, Avid Media Group hosted the
first Video Toaster exposition in Universal City, Calif.

Fnmkly, I was amazed at the number of people tl1at showed up for tllis
event. There was such a great turnout that the show hours were even extended
on the first day to provide attendees enough time to see evetything.

There were a lot of great products at the show, which I am sure you wiU
hear about in future issues of Video Toaster User. LightWave was certainly
weU-represented at the show, ruruling on Amigas, PCs and SGis. Both Carrera
and Aspen were there showing Screa111erNet rendering on their Alpha-based
systems. Radiosity Software was there showing WaveMaker 2.0 (formerly pub
lished by Axiom Software), wllich includes new elements, improved feann·es
and a new Image Factory function . Dynamic Realities was showing a beta ver
sion of Impact! (which started life as Newton's Law). It has a nice-looking
interface, ~md if it lives up to its feature list, it should be a great progra111. One
of my favorite software products was Hester and associates' Plug-Ins ~md Go
macros for LightWave. Not only are there a ton of macros for Modeler, but
there are macros for doing a lot of other things, such as calculators for just
about evetything under the sun, including render time calculation and tire
rotation/speed calculators. All in aU, there are about 150 macros. Expect
more information on tl1ese and other products as they are released into the
market. (ActuaUy, as of tllis writing, WaveMaker 2.0 is released and selling
contact your local dealer or Radiosity Software at 612-787-0855.)

My vote for Favorite Celebrity Attencling the Expo goes to Dick Van Dyke,

see Editor's Message, page 9

LIGHTWAVEPRO
an AvId MedIa Group, Inc . new 1 I e t 1 e r

4

8

8

10

12

14

18

Great Balls of Fire
by Colin Cunningham
There are a million different ways to create realistic fire ~md effects in
LightWave. Here are just a few used to burn up the screen on
RoboCop: 1'l1e Series.

Flying Through Canyons
bv Nir Hermoni
Learn how to produce a dehtiled polygon mesh terrain and assign
convincing paths to the objects zooming through a desert landscape.

Fur and Hair
by Gonzalo Garramuno
For years, computer artists struggled to create realistic fur and hair
through bump maps and textures with little success. Since the arrival
of LightWave, aU that has changed.

LightWood in LightWave
by Dan Ablan
Time is running short and the task of generating realistic textures on
deadline is growing more difficult by the minute. With the help of
LightWave, TP~tint and this ttltorial , your problems are solved.

Popular 3D Rendering
Algorithms
by William Frawley
P;ut one of a seties begins 1vith ~m CA1JOSition on tl1e geomeuics of 3D space
and hwnebu.ffers before ex~unilling tl1e concept ofZ-bu.ffer rendering.

Riding the Rails
by Arnie Boedecker
The cliscussion of LightWave's underappreciated tools continues
witl1 this tutolial on creating a glass table object 1vitl1 the Rail Extrude tool.

Digital Cinematography
by john F.K. Parenteau
In tllis month's column, take a look at some specific exmnples of shots
tlmt are fairly difficult in live action, but quite possible in CGI.

Editorjohn Gross .. Gonzalo Garramuno LIGH71VAJIEPRO (Vol. 3, No. I) ; (ISSN 1076-7819) is published
monthly by Avid Media Group, Inc., 273 N. Mathilda Ave. ,
Sutm)'Vl~e, Ctl 94086-4830. A one-yelu· subscription (12 issues)
in the U.S. mtd iiS possessions is $48 (U.S.); ClmacL11Mexico, $60
(U.S.) ; overseas, $84 (U.S.). To subscribe, calltoU-u·ee 1-800-
322-2843. Allow 4 to 6 weeks for first issue to lmive. Second
class postage rate paid at Stmn)'Vl~e, CA ;md adtlitiom~ mailing
offices. POSTMASTER: Send address chmtges to L/GH71VA JIEPRO,
273 N. Matltilda Ave., Stumyvale, CA 94086-4830.

Managing Editor....Jim Plant
Editori:~ Coordinator Douglas Carey
Art Director... Helga Nahapetian Taylor
Art/Production Coordinator Kristin Fladager
Production.Sergio "Berimbau" Miiler
Associate Editors....jo;m Burke

.................................. Corey Cohen
Circulation Director Sherry Thomas-Zan
Circulation Assistants Tracy Ann-Sparks
................... Debra Goldsworthy
Comributing Writers .. Dan tlblan

.. . Arnie Boedecker
........................ Colin Cunningham

... ... William Frawley

................................. Nir Hennoni
..................................... john F.K. Parenteau

Group Publisher Michael D. Kornet
Editorial Offices: Avid Media Group, Inc.
273 N. Mathilda Avenue, Sunnyv~~e . Ctl 94086
Telephone (408) 774-6770; FlLX (408) 774-6783
john Gross clm be reached electronically at:
jgross@netcom.com (Internet); 71740,2357 (CompuServe)
Printed in tbe USA • 1995 Avid Media Group, bzc .
Are you interested in writing for L/GH71VA JIEPRO or submitting
images? If so, contact us at our offices or electronically.
Avid Media Group , Inc. its employees or freelancers are not
responsible for any injllly or property dmnage resulting from
the application of any information in LJGH11VA VB PRO.

About the cover: This month 's cover image was created by
Amblin Imaging's Greg Teeg;U'Cien. 11te asteroid te.xtttres and tlte
nebula were hand-p;tinted in Photoshop. The building of the
objcciS lutd the scene generation took approximately five hours
to complete .

LIGHTWAVEPRD IIJ

Great Balls of Fire
Hellfire & Brimstone, Ughtwave-style

J erry Lee sure had the right idea, pounding
away on his piano and then burning it to the
ground for an encore. While that cat could

torch a stage without batting an eyelid, mastering
flan1es on the CG front is tricky enough to stop even
The Killer dead in his tracks. There are a billion differ
ent ways to create realistic fire and heat effects in
LightWave, so I'll primarily cover a few techniques
used to burn up the screen on RoboCop: The Series.
They may not be suited for all situations, but hopefully
they'll inspire all you virtual arsonists out there to cre
ate your vety own completely non-lethal pyrotechnics.

In episode 17, "Heartbreakers," our metal hero
must battle corruption at the highest level and recover
the stolen prototype for a weapon called the
Heartbreaker, a microwave-emitting gun that can
cause instantaneous heart attacks in its victims. The
climax of the show has RoboCop being blasted by the
device, an effect I was asked to develop. Since the
beam of the gun is invisible (it's just a large microwave
oven) , I was halfway done already. I began work on
the main effect: making Robo's body armor glow red
hot as he is bombarded by the deadly rays. After piling
through a dozen harebrained schemes, including actu
ally torching Robo actor Richard Eden (a suggestion
not appreciated by the producers) , I finally settled on
using my old friend the lens flare. Though this was met
by dirty looks and verbal abuse from my FX buddies, I
thought it would work just fine. There is a saying I'm
sure you 've all heard at one time or another, "When in
doubt, use lens flares, " and for this particular effect,
that adage couldn't be more true. Though impressive,
lens flares tend to be overused, especially the kind that
make your eyes water, with lens reflections and ran
dom streaks firing out of evety corner. While lens flare
abuse should certainly be punishable by death (or,
more fitting to this article, being torched) , I found
flares to be a key element in simulating fire FX. When
used creatively, they can add subtle realism to most
scenes.

Glowing Armor
My first few attempts at making a nice glow effect

involved positioning some flares over Robo 's body

D LIGHTWAVEPRD

armor. Just as my co-workers suspected, the results
looked like lens flares, each of them clearly visible.
The flares also lacked the concentrated, uniform glow
we desired; dissolving the glow 50 percent blended
them together nicely, but the overall glow was too soft
and not intense enough. The solution rested in the way
t!Je flares were spaced (Figure 1). Glow A consists of
five flares mTanged in a circulm· pattern; each flare is
set at 100 percent glow with 0 percent dissolve. As you
can see, each of the five flares is quite noticeable. Glow
B, however, is made up of 13 flares arrm1ged in a simi-
1m· but tighter pattern. The flm·es nmge from 100 per
cent glow at the center to 40 percent glow and 20 per
cent dissolve at the outer edge of the circle. By adding
more flm·es m1d placing them closer together, we allow
the central glows to bleed together, forming a uniform
m1d more intense glow. Using this cluster technique,
it's possible to create complex shapes made entirely of
lens flares .

There was more to the shot tl1m1 I had first thought,
however. Robo 's armor had to gradually glow red-hot

Figure l: To ovoid seeing individual flares (A), pock
them tightly so their central glows "bleed" together (8).

as the camera tracked him stumbling backward into a
wall. While it sounds like a difficult task, LightWave's
new Background Layout Preview function simplified
the process. I needed to lock the flare cluster to his
chest as he stumbled around, so after generating a
background preview from the footage of Robo, a null
object was stuck to the center of his chest, traveling

by Colin Cunningham

\vith him every step of the way. I simply made keys for
the null evety three frmnes or so, fewer when neces
Sluy. Once that was complete, I parented seven lens
flares to the null (five for the body, two for the helmet)
and arranged them in a tight cluster pattern (Figure
3). To conclude, I set up dissolve envelopes for the
flm·es to make them fade in gradually. Aside from a few
minor adjustments evety few frmnes, the flm·es moved
with the null and the glow looked as if it was locked to
Robo 's chest as he struggled. As far as coloring goes,
liy setting the flare color to R 255 G 154 B 0 and turn
on Central Glow and Red Outer Glow in the Lens Flm·e
menu (Random Streaks and Outer Ring should be
turned off). The combination of tl1e two colors adds a
realistic, fiery look to the flm·e and works nicely (see
the color pages for the results).

Heat Ripples and Hotspots
Before moving on to creating actual flames in

LightWave, there are a few more things we need to
know about lens flares. The one problem I ran into
when using flares was that the screen became too
washed out and bright as more flares were added.
Figure 2 shows two different approaches. Glow A is
one lens flm·e set at 125 percent glow. Although the
central hotspot is the correct size, it's not intense
enough, and the haze around the glow completely
washes out that half of the screen; it looks more like a

Figure 2: While single, Iorge flares wash out the screen
(A), many clustered flares produce a more intense glow
without excess haze (8).

Figure 3: Parenting a lens flare duster to a null object allows
for more control when rotoscoping to background footage.

light seen through fog. Glow B, however, is comprised
of five tightly knit flares with 40 percent glow. This
gives us an equally sized but more intense hotspot with
out tl1e unnecessary haze that accompanies large lens
flares. The desired effect is up to you, but hopefully you
now have a better idea of how to manipulate lens flares
and coax them into doing your bidding.

Although the flare method looked just fine, there
still seemed to be something missing from the shot:
Robo 's armor didn 't really look, well, hot enough. I
thought nothing more of it and went to see True Lies
with the rest of the department. We went for a few
drinks after the show and talked about a few scenes
that caught our fancy, particularly the ones with the
Harrier jets. The heat signature they emitted really gave
the impression that hot exhaust was blasting out of the
jets. It was this element that could give my scene more
realism; with this in mind, I awoke the next morning
and got right to work adding heat ripples to RoboCop's
glowing body.

The first stop was Modeler, where I built a box
2.692 meters wide by two meters high by 0 meters deep
(see last month 's article "Interactive Refraction" for
more details). Name the surface of the box "Screen" by
hitting "q" for Change Surface (Polygon menu) and
save this object as "screen." Hit "q" again and rename
the box surface "Screen.REF." Save this copy of the
object as "Screen2" before exiting to layout.

Position the camera at 0,0,0 and make a keyframe
for it by hitting return twice. Next, load in the "Screen"
object and position it at X 0, Y 0, Z 3.2 before making a
keyframe. The next step is simple enough: for my scene
I loaded tl1e background footage of Robo as an image
sequence and planar-mapped it onto the screen along
the Z axis (don 't forget to hit automatic sizing). Set the
luminosity to 100 percent and the diffuse value to 0
percent. Now comes the interesting bit. Load in the
"Screen2" object and position it away from the first
object at X 0, Y 0, Z 3.1 (remember to make a
keyframe). Enter the Surfaces men u and set the
"Screen.ref' surface as follows:

Color: Doesn't Matter
Specularity: 0%.
Transparency 100%
Refractive Index 1.25

Figure 4: Use the default surface selling to better visual
ize your travelling bump map before using refraction.

Go into the BUMP MAP menu lmd set the values as
follows:

Size X 0.021 Y 0.045 Z 0
Texture Falloff X 50 Y 30 Z 0
Texture Velocity X 0 Y 0.035 Z 0
Amplitude 325% Frequencies 1

Exit into the Camera menu and select Trace
Refraction before rendering. Simply put, as the bumps
move up the invisible refraction screen, they distort the
image sequence on tl1e screen behind just as heat rip
ples distort things behind them (Figure 4) . A texture
falloff was added because RoboCop happened to be
standing center-fnm1e and I wanted the heat signature
to fade off gradually away from him. Because we had a
Screamer at our disposal, I wasn 't too concerned
about rendering time (it tumed out to be a couple of
minutes per frame) , but you may want to tty faking
refraction as mentioned in Dan Ablan 's "Faking
Refraction" (September 1994). I received better
results using refraction, but not everyone can afford to
wait an hour for a render.

Fireballs-a-Plenty
Now comes the part where we actually destroy

things. At this point, Robo's armor is glowing more
intensely by the second lmd it looks as if he'll be noth
ing more than a hunk of burnin' scrap if something
isn't done fast. Just when things appear bleak, Robo
reverses the polarity of the Hear1breaker beam, blast
ing a huge fireball across the room that incinerates

Figure 5: Stretch the ball by a factor of 1.84 along the Z axis

Figure 6: Taper the ball by a factor of 0.5 along the Z
axis Ia get the general shape far the fireball.

evetything in its path, including the bad guy. Some real
pyrotechnics were actually set off during filming, but
the fireball itself was to be a LightWave effect. This was
by far the easiest ar1d most enjoyable par"! of the scene.

While in Modeler, select the Ball tool in the Objects
menu and create a Level 3 Tesselation with the default
radius (hit "n" to enter numeric values for tools).
Once created, use the Stretch tool (Modify menu) to
stretch the ball by a factor of I .84 along the Z axis
(Figure 5), again using "n" to enter numeric values.
Next, use the Taper I tool (Modify menu) to taper the
object by a factor of 0.5 along the Z axis; make sure the
sense is set at "-". We've just created the general shape
for our fireball (Figure 6). Hit "q" and name the sur
face "Fireball-OUT." Now select all the polygons in the
object by holding down the right mouse button and las
soing the entire object; you car1 make sure all polygons
are selected by hitting "" for Select All Connected. Copy
and Paste the object in the same layer and while the
polygons are still selected, Size the object (Modify
menu) by a factor of 0.95. Keep the polygons highlight
ed and hit "q" to rename the smaller object "Fireball
IN." Although we now have two fireballs (one inside
the ot her), save the layer as one object called
"Fireball" before exiting to Layout.

Altl10ugh tl1e shape is definitely importlmt, it's the sur
facing of an object like tltis tl1at can deternline its success.
That said, load tl1e fireball object and enter the surfaces
menu. I achieved a nice effect by smfacing as follows:

Fireball-OUT
COLOR 226 225 155
ADDITIVE On
LUMINOSITY 0% with GRID

Texture as fo llows:
FALLOFF X 0, Y 0, Z 85
VALUE 90%
LINE THICKNESS 2
DIFFUSE 0% with GRID

Texture as follows:
FALLOFF X 0, Y 0, Z 90
VALUE 100%
LINE THICKNESS 2
SPECULARITY 0%
TRANSPARENCY 4% \viti1 FRACTAL NOISE

see Great Balls of Fire, page 9

LIGHTWAVEPRO llJ

Flying Through
Canyons
F or a recent assignment, I needed to produce a

spaceship chase through Martian terrain m1d
cm1yons. 'I11e main problem in tl1is l)pe of project lies in posi
tioning tl1e objects at proper positions in relation to tl1e poly
gon mess, er, mesh. A detailed hmdscape is made of tllou
s:mds of polygons, ~md witl1 no hidden line removal in Layou~
it's vety easy to place tl1e objects or aunet~ttmder tl1e grmmd
level by mistake, and not notice it until a render comes by.

Painting a Landscape
So how do you create a detailed polygon mesh ter

rain and assign convincing paths to the objects zoom
ing through it?

StlU1 by drawing the l~mdscape in a paint progrlUTI,
using only grays. You could use a color image, but
LightWave only looks at the lumimmce (bright!dm·k) val
ues of the itnage when usit1g it as anytlling otl1er tl1m1 a
color map. Plus, a grayscale image will save mem01y.

The image is going to represent the lm1dscape, as
seen from above, so we can use it as a clisplacement
map in LightWave. In the final image, black repre
sents the lowest parts of the terrain and white the
highest. I find DeluxePaint's Shade tool a valuable aid
in this procedure.
• In DeluxePaint, set up a range of grays between

black and white. Fill the screen with the Black
color from the range. Using a fairly large brush,
draw with the left ~mel right mouse buttons alter
nately to darken or lighten the areas under your
brush. Use finer brushes to add details.
If you don't want to paint, Vista Pro 3.0 allows you

to save its data as a color map. In Vista Pro, choose
the "Ait->IFF" option under the "ImpExp" menu to
save the current lm1dscape as a color map. Load this
color map to any paint program or image processing
program and change the colors to a range of grays
from black to white. Then save the image.

Messing with Meshes
The next step is to enter LightWave and build our

terrain object.
• In Layout, enter the Images panel and load up

your terrain image.

Ill LIGHTWAVEPRD

• Enter Modeler and select Box from the Objects
menu.

• Select Numeric and leave all the values at their
default except set both Low m1d High Y values to 0.
Select OK and then select Make (Return) to make
a flat 1-meter-square polygon.

• Choose Triple (Polygon menu) or press T to
convert this four-sided polygon to two triangles.
If we built the mesh out of four-sided polygons,

they could become degenerated in the displacement
process and produce rendering errors.
• Make sure tl1e polygons m·e facing up by selecting

them and pressing Flip (Polygon menu or 0.
• Click on Array (Multiply) and input 100 for X

~md Z, leaving Y set to l. Make sure the Offset is set
to Automatic.
(You may use smaller numbers if you are short on

memoty, but you sacrifice from the final mesh detail
by doing so.)

After a while, a mesh made of 20,000 polygons will
appear.
• Immediately press (m) to merge the overlapping

points. Choose Automatic from the requester and
select OK. Modeler will inform you that 29,799
points have been elimit1ated.

• Change the surface name of the mesh to yo ur
desired name (Surface or q), and save it by export
ing it to Layout with a nlUlle you wish.

• If you wish, use the Center macro to center the ter
rain on the axes.
The next step is to use the terrain image we created

earlier as a template in order to create the motion
path of our ships.
• Still in Modeler, add the terrain map as a back

ground image usillg modeler's BG Image (Display
menu) function. Choose Automatic Size m1d Y axis
to fit it to the lm1dscape in the Top view.

• Press 2 to go to the second layer. We will now cre
ate a curve that will be the flying path of the sllip as
seen from above.

• Choose Points under the Polygon menu. Looking
closely at the image in the top view, follow the
canyons (or ridges) while clicking on key loca-

by Nir Hermoni

tions with the right mouse button to create a logi
cal path.

• Press Ctrl-p to convert the inclividual points into a
curve.

• Move the curve in the Face or Left view so that it is
a suitable height above the plm1e. Tllis will be the
average height your ship will cruise above ground
level.
Figure 1 shows a curve in layer 2 above a land

scape in layer 1 with a SlUllple background image in
the background.
• Click Freeze (Tools or Ctrl-d) and then export the

newly made polygon to Layout. Exit Modeler.

Figure l: A curve was drown over a displacement image
to get on accurate path.

Figure 2: The Displacement Mop panel

Displacing the Landscape
• Choose the terrain as your current object and

press (p) to display the Objects panel. Click on the
T button next to Displacement Map to enter the
clisplacement map panel (Figure 2).

Figure 3: Modeler ARexx macro "PathToLWMotion.lwm"

• Choose Planar Image Map for the Texture Type and
select the terrain image created earlier in the
Texture Image pop-up menu. Click Y a,xis to map
the image on the top of the object, and Automatic
Sizing so the texture will fit the plane perfectly. The
Texture Amplitude value determines how high the
highest parts of the landscape (corresponding to
the white parts of the image) will be in meters, so
you can set this to what you wish. I used 30.

• Record the values for Texture Size and Texture
Center. We will use tl1ese numbers to apply identi
cal mapping to the path polygon so it will conform
to tl1e landscape.

• Click on Use Texture to keep the settings.

Creating the Path
• Enter the Displacement Map texture panel for the

path polygon , but this time do not click on
Automatic Sizing. Instead, put the numbers you
recorded earlier in the Texture Size and Texture
Center and use the same amplitude as you did for
the landscape. This will change the height of the
points tl1at make the polygon in tl1e san1e manner it
displaced tl1e scape polygons. Select Use Texture to
return to the Objects panel.

• Select Save Transformed and save the patl1 polygon
under a different name.
Next, we are going to go back into Modeler and

create the path that the ships will be flying tlu·ough.
• Load the transformed polygon and select Remove

(Polygon menu or k) to remove any faces and keep
only tlJC points tl1at form tl1e polygon.

• Choose the points in the direction you want the
ship to travel and then press Ctrl-p to make a curve
out of them.
The points that make the curve represent key

frames in the Una! motion. To make the job easier,
remove most of the points while keeping the most
important ones intact. Be selective-the points that
you keep should preserve the shape of the original
curve. After making the curve, save it, just to be on the
safe side. If you do not remove unwanted points, they
will be calculated in the motion file.
• Execute the macro called Path To Motion

(PathToLWMotion .lwm). This will transform the
curve we have to a L W motion file.
The macro will ask for the number of frames the

motion will last in Layout, and if you wish to ignore
the first and last points of the curve (Figure 3).
This may be handy if the curve has control points at
its beginning or ending. The macro will then save a

LW motion file based on the shape and direction of
the curve.
• Go back to Layout ~mel clear the polygon we used to

create the motion path from the scene.
• Load your spaceship of choice. Press (m) to enter

its motion graph window, select Load Motion and
load tl1e motion we just saved.
Most of the work is done. All that remains is to

adjust tl1e ship's rotation to fit the patl1. Align to Path

in tl1e Motion Graph may be good enough, but if it 's
not, change the rotation manually for each key fran1e.
This is the reason we deleted points from the ctuve-
to keep the number of key frames as small as possible.
Also, you may add variations to the height the ship is
flying above ground level. It is now the same height the
original curve was above the plane. Vaty it slightly in
different key frames to add "natural noise" to the
scene. For exrunple, when the ship goes over a hill , it
should stay high for a while before coming down back
to its average height.

Multiple Cameras
In the suggested scene, we have spaceships zoom

ing through narrow cm1yons, chasing one another. But
how do we know that the chase is accurate, and the
ships are actually seeing the enemy ship they are chas
ing after?

The solution: To view the scene from ru1 object's point
of view, use a reference light as your "eye." Here's how:
• Add a light. Make its intensity 0, so it doesn 't affect

anything in the scene. Parent the light to the object
in question and then choose Light View. Next, move
ru1d/or rotate it so it represents the object view.
This could be tl1e cockpit of an airplane, near tl1e

head of a horse, or who knows where for a floppy disk.
Don't forget to set a keyfnune at frame 0 for the light.

The light will follow the parent (the object) evety
where, ru1cl you can even change this view's "zoom fac
tor" by making the light a spotlight and varying its
Spotlight Cone Angle pm·anJCter.

These reference lights make great "virtual cruneras"
to better understand the motion in a scene. When
you're finished creating the scene, you may remove all
the "view" lights, or choose to leave them. If the light's
intensity is 0 and it has no lens flare, it won 't affect the
final image or rendering time in any way.

One final tip: LightWave knows there is a Help key
on the Amiga keyboard, and supports it extensively.
Pressing it presents a list of all the keyboard shortcuts
that are available for the current panel. I suggest !tying
this on every single panel you come across. Many hid
den gems cru1 be found by doing so.

Nir A. Hermoni has been doing Amiga graphics
since 1989. He now works for Z:4PA Digital Arts LTD
in Israel, creating LightWave visuals for computer
games and television. Nir can be reached on the
Internet as zapa@zeus.datasrv.co. it.

Goninu Startod
The following ARexx script is useful when

beginning new projects. I like to keep all my pro
ject-related files in one location in order to mini
mize the mess when dealing with a large number
of files, atld to help in case I'd like to move pro
jects from one computer to another. I added the
line "Assign LW: work:toaster/3d/scenes" to my
s:user-startup file. Work:toaster/3d/scenes is, of
course, the place I keep my projects in.

The ARexx script creates a "parent" clirectOiy
with the nan1e you specify.

Inside it, "Objects" (for objects) and
"Images·· (for brush maps) directories are creat
ed, each with its own "Archive" subdirectmy for
test or unused objects and maps. A "Frames"
directory is created for the animation frames
LightWave will generate. "Temps" is where I store
motion graphs, envelopes and surfaces that are
relevant to the scene, and "Scenes-archives" is for
all the scene files I create while working on the
project. Just save the script as "mdlw.rexx" (Make
Dir LightWave) in the Rexx: drawer, and type "rx
mcllw <<dir nanle>>" at a shell prompt to get
tl1e job clone.

DIRNAME = arg(l)

if DIRNAME = " then do
say"
say 'Create directories for LightWave, by Nir
Hermoni 1994 (C)'
say 'LW: should be assigned to your
:toaster/3d/scenes directory. '
say 'Usage: rx mcllw <directory nrune>'
say"
exit
end

address command
·makedir lw:'DIRNAME
'eel lw:'DIRNAME
'makedir lw:'DIRNAME'/Images'
'makedir lw:'DIRNAME'/Images/Archive'
'makedir lw:'DIRNAME'/Objects'
'makeclir lw:'DIRNAME'/Objects/Archive'
'makedir lw: 'DIRNAME'/Frames'
'makedir lw:'DIRNAME'/Temps'
'makedir lw: 'DIRNAME'/Scenes-archives'
say 'Directory structure prepared, have a
ray-traced clay'
say''
exit

LIGHTWAVEPRO D

Fur and Hair
The Lightwave Solution

A !though 3D computer graphics can repro
duce reality with great accuracy, there are

still some things that present a great challenge to the
animator. Animals and human beings, for example, are
one of the most difficult things to re-create on the
computer because they require a great amount of
detail. Since viewers are familiar with both people and
animals, they expect to see wrinkles and individual
hairs when close enough. For years, computer artists
struggled to create realistic fur and hair through bump
maps ~md textures, with little success. But, if you have
seen some of the new television commercials, like the
ones featuring a group of polar bears, you might have
noticed that this problem seems to have been solved.

However, you might not be aware that LightWave can
represent hair and fur in a way very similar way to tl1at
seen in tlJOse commercials. As a matter of fact, it has had
that option since version 1.0, although, as you will see, it
could not easily be implemented until version 3.0.

Enter Particles
Since its conception, LightWave has been able to

draw particles (one-point polygons) and particle lines
(two-point polygons). The latter are the ones we will
be talking about here. If you think about it, fur and
hair could easily be represented by a group of lines
(hundreds or thousands) coming out from the surface
(skin) of your object. But how can you put a line that
conforms to the shape of your skin? By using booleans.
However, the process needs to be repeated for hun
dreds or even thousands of lines, which makes the task
impossible to do manually.

Since version 3.0, LightWave's Modeler has added
the option of macros, which are ARexx programs that
Gm tell Modeler to perform the same actions that you
could do by clicking, only much faster and with any
number of repetitions. Therefore, in order to have
Modeler create fur and hair, what we need to do is
write a macro. We do not need to start from scratch, as
we may find some other macro that performs some
similar action to what we are looking for. Go into
Modeler, draw a ball in the center of tl1e screen and
choose the Random Surface Points macro. (This is
accomplished by going into the Objects menu, clicking

Iii LIGHTWAVEPRO

on the Macro button and keeping the left mouse button
pressed while going up or down until you find it.) After
you execute it, just press OK and see what happens.
The macro performs a boolean function on your object
and tl1e result is a group of points that are laying exact
ly on the surface of your object. When I first tried the
macro, I thought it was pretty useless and that it should
be modified to do something more useful. I quickly
realized that it could be changed pretty easily to allow
the creation of hair. What we need to do is copy and
size those resulting points, and then make a polygon
with the new points and the old ones to get the lines
that are coming out from the surface of the object. The
macro included here does exactly that, and it is basi
cally a modified version of the Random Smface Macro
(whose file is named prick.lwm) included with
LightWave.

Typing the Macro
In order to type in the macro, you need to be able

to use an ASCII text eclitor. The Amiga computer has
two text editors in its operative system (ED and
Memacs) . Refer to your manuals for information on
them and the operative system. You can also use a
commercial text editor like Cygnus ED or The Edge! or
any word processor that allows you to save the docu
ments as plain ASCII text.

You might want to load the Random Surface Points
macro first and add the modifications instead of typing
everything from start. If so, look for the file named
"prick.lwm" in the "Arexx_Examples/lwm" of your
Toaster directoty.

After typing everything, save the file under a new
name (like "Hair.lwm") in tl1at same directOty. Then go
into Modeler, and use tl1e "Add Macro" to add tltis new
macro to your list. After that, you are ready to use it. If
you get an en·or message willie nmning it, return to your
text eclitor and check tl1e line where the error appeared.
You probably ntistyped sometlling tl1ere or before.

Using the Macro
The usage of tl1e macro is fairly simple.
Copy all the polygons that you want to have hair on

top of into an empty layer. Then run the macro. The

by Gonzalo Garramuno

macro will pop up a requester with a number of
options:
• Maximum number of points refers to the maxinlum

number of hairs that you might end up with. To
create a realistic effect, you should try to set this
value pretty high (2000-15 ,000 is a good range)
but keep your memory capacity in mind.

• Create Lines allows you to create the hairs. If not
selected, the macro will act just like the old
Random Surface Points macro.

• Number of Segments refers to the number of seg
ments per hair. If more than one, it \viii allow your
hairs to bend more smoothly if you use any tool on
them.

• Line Size is the length of your hair. It works by
using a scaling percentage. Values between 1.05
and 1.3 are usually OK. Values smaller than 1 \viii
make your hairs go into your object. If using more
than one segment, the sizing value will be per
formed for evety segment each time.

• Center works in conjunction with Line Size and
allows you to set tile center where tl1e sizing is going
to occur. By default, it will find the center of your
object by averaging the position of its boundary
points. Therefore, tl1e default values are usually OK.

• Line Angle allows the hairs to bend in one clirec
tion. Just set tl1e maxinlum angle of bencling.

• Rotation Center works in conjunction with Line
Angle and allows you to set the center where the
rotation is going to be performed. By default, it will
find the center of your object by averaging the posi
tion of its boundaty points. Therefore, the default
values are usually OK.

• Rotation Axis works in conjunction with Line Angle
and allows you to set the axis on wltich the bencling
is going to occur.

• Jitter Amount and Jitter Type allow you to add some
random variation to the hairs. The amounts are unit
numbers that you can select. The defaults values
are 1/10 of your current object's size, which is usu
ally OK.

• Put Results on Original Layer copies the hair on top
of the polygons. Otherwise, they will remain in
another layer.

If the results of the macro are not to your liking,
simply click on Undo and try again with other values.
If you get bad results with several sets of very differ
ent values, you may have mistyped a line in the
macro.

just go over the listing again and check the lines
very carefully. Changing the names of variables or
operations, or even placing periods where they
shouldn't be, can render a macro useless.

After the macro finishes, you will probably need
to do some work yourself, like erase some hairs that
might intersect with an ear, or use the different
Modeler tools to "comb" your hair.

Editor's Message
continued from page 3

who is an avid !JghtWave/foaster fan and knows his stuff.
Star Trek: Voyager

By the time this issue sees print, you may have seen
the pilot and/or first few episodes of the new Star Trek
series, Star Trek: Voyager. One of the interesting
things about STV that you may or may not know is that
there are a good number of LightWave effects in the
pilot and upcoming episodes. As a matter of fact , three
of the six Voyager shots in the opening sequence for
the series use the LightWave-modeled Voyager. See if
you can figure out which ones are the real model and
which ones are the LightWave model. Some of the
other LightWave-generated effects for the pilot include
stars, planets, badlands and a galactic wave.

Let me tell you, there has been a lot of blood, sweat
and late, late nights put into the CGI version of the
Voyager and related effects. At press time, we were just
at the tail end of delivering effects for the pilot, and I

Great Balls ol Fire
continued from page 5

Texture as follows:
SIZE X O.G7, Y 0.08, Z 0.6
VELOCITY X 0, Y 0, Z -0.3
VALUE 100%
FREQUENCIES 6
CONTRAST 2.0
EDGES Transparent
EDGE THRESHOLD 1.0
SMOOTHING On
DOUBLE SIDED On
Fireball-IN
Everything is identical to Fireball-OUT except the

following:
COLOR 251 45 0
The GRID textures for LUMINOSITY and DIFFUSE

have a value of 85% and 100%, respectively, and both
have a TEXTURE FALLOFF of 62% on the Z axis.

The reason for the Grid textures was to make the
Fireball gradually fade out toward the tail so the shape

When you go into Layout, if you have LightWave
3.5 you might want to try different settings for the
Particle/Line Size. To do that, go in the Objects
menu, select the hair object (or the one that has the
hair on it) and change its value.

I should mention that it seems that LightWave
seems to use a different algorithm (or a bug?) for
shading particles, which makes the hair stand out a
little , even if it shares the same surface as the
"head."

Using shadow maps or raytraced shadows can
help to avoid this problem a little.

Included on this month's disk is the complete,

am very interested in seeing how everything comes out
(I am also vety tired!). Hopefully, we will be doing a
large number of effects shots for future episodes of the
series.
Multi-Platform LightWave

Work is progressing nicely on the porting of
!JghtWave (as seen at the Expo) and New'fek says that
the multi-platform version of LightWave 4.0 will be
shipping sometime in the first quarter of '95. There
had been talk about shipping before the end of 1994,
but obviously that didn't happen.

Here's the problem with announcing shipping
dates: Prospective buyers demand to know when
their product is going to ship, but it is extremely dif
ficult to predict when a product is going to be com
pleted. So difficult, in fact, that companies have been
off by years! This is not a dilemma unique to
NewTek. Every hardware/software company known

of the object isn 't evident (the transparent edges
helped as well). Though the Fireball looked pretty
good on its own, I parented a small cluster of lens
flares at the tip to give it a furniture-destroying glow
(see the color pages). If all goes well, your fireball
should look like a fireball, complete with traveling
flames. Using tltis as a template of sorts, you can modi
fy the shape or surfacing of the object to come up with
some interesting effects of your own.

I'm sure that with some practice and plenty of
experimenting, the fire department will come a
knockin' in no time. As for me, Robo blew the bad guy
to hell and I'm still ttying to regrow my eyebrows.

Cluster lens flares together for a more uniform,
intense glow. Use many small flares packed together
instead of one large flare to avoid excess glow washing
out the scene.

Create two 2.692m x 2m screens in Modeler,
Screen I and Screen2. Position Screen I to fill the entire

typed macro . Simply copy it to the appropriate direc
tory and run the "Add Macro" macro to add it to
your list.

Gonzato Garramuno is a 21-year-old animator
trying to make a living in Argentina. Since the
salaries for animators are extremely tow in his
count1y, he has been forced to work as an editor,
video operator and CG operator, and as a teacher to
younger animators. He can be reached by e-mail at
ggarramuno@houseware.satlink.net or by swface
mail at Rosario 414, 3rd Floor, Buenos Aires,
Argentina.

to humankind has found itself in this situation at one
time or another.

I think NewTek should limit itself to talking in quar
ters regarding the shipdates of evety product. It gives
the user an approxin1ate date willie not tying NewTek
down to a specific period. (It also gives manual writers
time to finish their work!)
LWPRO

As L WPRO gains in popularity, there has been some
talk lately around the Avid offices of turning it into a
full-fledged magazine. What do you think? We'd love to
hear your comments on the subject. Contact us on-line
or by fax to let us know what you think.
New Year's Resolution

Finally, my New Year's resolution for '95 would
have to be 2048x1536.

john Gross
Editor

camera view and position Screen2 slightly closer to the
can1era. Map image sequence onto Screen! and make
Screen2 refractive with a bump map traveling up it.

Create a Level 3 tesselation and stretch and taper
one end. Name the surface Fireball-OUT and select
all polygons. Then copy, paste and shrink the object
slightly. Finally, name the smaller object Fireball-IN
and save the two as one object. Experiment and
HAVE FUN!

Colin Cunningham is enrolled in the infamous
classical animation program at Sheridan College in
Canada. He is currently working on a 3D cartoon
short that he calls "a cross between Evil Dead and
Itchy & Scratchy. Cunningham can be reached at
(905) 338-8033 at any time, because Sheridan stu
dents don't sleep.

LIGHTWAVEPRD Ill

LightWood in
LightWave
I f you read LIVPRO on a regular basis, it's

safe to assume that you are well-versed on
the capabilities of this great 3D program.

It is probably also safe to say that you know
how to import surfaces and textures into your
animations from all types of sources. Imagine,
though , that you are new at all of this, and only
wanted to use the system and software you paid
for. Why should you have to purchase extra
textures if you just spent so much money on
your system? On the other hand , what if you
aren't new at all , but still have to meet a dead
line, and there is no time to generate realistic
textures1 Well, here is a simple tutorial that
works well for both new users and the experi
enced.

Two Steps
The credit for this idea should go to my

good friend Arnie Boedecker, who created a
fantastic living room floor with this technique. I
took it one step further, using the final image as
a background for a logo job. Perhaps you can
use it for something else, maybe paneling a wall
or a log cabin. All you need is ToasterPaint,
LightWave, and a little time.

Figure 1

We're going to take that familiar lightwood
surface and use it to make a random, wood-slat
floor (Figure 1). Start by loading the Get Small
project. If you 're not running with a lot of RAM ,
close CG and LightWave if they're open. Enter
TPaint. The first task is creating a black and
white image that has two purposes. The first is
to help line up our wood floor slats, and the Figure 2
second is for a bump map . Select an unfilled rectan
gle as your drawing tool, with the smallest circular
or square brush. Draw out a long vertical rectangle,
so you have a white outline on black Continue draw
ing out vertical rectangles, but make their vertical
positions vary. You can use the Set Grid feature of
TPaint to help keep even width. Figure 1 shows what
the final image bump map image should look like.

Remember, this will serve as an outline for your
floor and where the wood slats will be, so play

IIlJ LIGHTWAVEPRO

around with the randomness of the lines. Once
you're happy wi th what you've done, save it as an
RGB image , as LightWood_Bump. Now, with thi s
image still loaded, hit the J key to jump to TPaint's
other screen. Load the lightwood image from the
Wood directory. This is the part that gets somewhat
tedious, but it's worth the effort. Begin to cut differ
ent parts of the light:wood image and TXMap it down.

When yo u cut out a section of the li ghtwood
image, or the whole screen, make sure you Copy

by Dan Ablan

This Brush, under the Brushes menu. This
will hold what yo u've cut in a temporary
buffer. Use the J key to jump back to your
other screen with the black and white bump
map image. Under Options, using the right
mouse button, select TXMap. Choose a filled
rectangle as yo ur drawing tool and the small
est sq uare as yo ur brush (not the pixel
brush) . Go to any one of the black and white
rectangles and TXMap your image into just
one of the areas (Figure 2). Cut different
areas of the lightwood image and shrink, flip ,
darken and lighten to create random pieces
of wood. Don 't be afraid to cut an area ,
stretch it out, and then cut it again. The more
ways you manipulate the lightwood image,
the more random it will be. Save this as
LightWood_Tall. Hit the J key again to jump
back to the original lightwood image. Cut
out another area, copy the brush , and
TXMap it into place. Darken or Lighten this
one a bit. Continue this process, filling up
each space on your bump map, until you
have what looks like random pieces of
wood, like a floor. Remember to be creative
and flip your brush, stretch it, or crunch it
to vary the texture. In addition to darkening
and lightening, add a little color of white, or
brown to a few of the areas for more ran
domness . Figure 3 shows the final wood
image in TPaint. Each seam should match
the black and white image you created earli
er. Again, save the image.

Into LightWave
Once you 've made your bump map and wood

floor , close TPaint and enter LightWave. Here's a tip:
You can quit and close TPaint all in one move. Hit the
left shift and the tilde key all at once (Tilde is the key
just left of the number 1 key) . The first thing you
need to do is make a one-sided polygon in the shape
of a rectangle in Modeler.

Make sure yo ur surface is facing the camera,
name that surface something like WoodBKD, and

Export this as a new object , saving it as
LightWoodBKD_obj. Go to your images panel and
load the two Toaster Paint images you just created,
LightWood_Tall and LightWood_Bump. To help save
memory in LightWave, you may want to change the
LightWood_Bump image to two colors.

Under the surface panel, select the WoodFloor
surface, and click on the T button next to texture
color. Use a planer image map, on the Z axis. Click
automatic sizing and turn off antialiasing. Antialiasing
is turned off in this panel, because we'll turn it on
under the camera panel for rendering. If both
antialiasings are turned on, the images can become
blurry. Click on Use Texture. Set your specularity
level at about 70 percent. Glossiness is High. The
next thing to do is create the separation between the
slats of wood. Since the slats of wood were placed
down using our bump map as a template in paint, the
seams will match up evenly with the bump map in
LightWave.

Click the T button next to Bump Map. Also set
planer image map, Z axis and automatic sizing. Set
the amplitude to -55 percent. Click use texture.
Move your camera view so the flat polygon

Figure 3

(LightWoodBKD_obj) we just created is filling up
the whole screen.

Now render the image to see how it looks. You
may want to vary the amplitude for the bump map
and adjust the specularity a bit. If you like what you
see, save all objects and save the scene. Go a step
further now by changing the light source. Make the
distant light a spot and change the color to a soft
amber or pale yellow. Doing this will warm up the
image. Remember, LightWave defaults its light color
at white. Look around-the light around you is never
pure white. Angle down from the top left, so that not
all of the m·ea is hit by the light (Figure 4) . Turn on

Figure 4

Trace Shadows and render in Medium Resolution
with low ru1tialiasing.

It will take a little time to render, but you cw then
save tl1e i.Jnage wei load it back into LightWave, using it
as a background image.

This is a fairly simple technique, but very effective.
You cru1 use it as a background image, like I do, or
repeat it for a flooring like my friend Arnie does. If you
were going to use it as a floor, consider making it
glossy, ~md set a reflection level of about 15%. Turn on
Trace Reflection and you'll see some nice results.
You might wrult to make the images (LightWood_Tall
and LightWood_Bump) seamless, so you can repeat
them over a large area.

By taking existing images already in your system
and spending a small amount of time manipulating
them, you can create truly realistic textures in
LightWave. For example, although the ever-familiar
Verde-Pompeii Marble image is nice, it's overused. J'i>e
seen it used time and time again in animations, CG
pages, etc. But you cru1 still use it... just take it one step
further. If you were making a floor for a living room
scene, and had absolutely no time to get any textures,
and only had what your system came with, you could

use the Verde marble image. Color that floor grey.
Then , diffuse the Verde Pompeii image, as a planer
image map - there you go, grey marble. You may
even notice it looks a bit like carpet. Bting it into Art
Depa11ment Professional ru1d reduce the colors. Back
in LightWave, use it as a bump map with diffusion, for
some random bumps. Try coloring that LightWood
image white, yellow, green or whatever 11~th the srune
diffusion method. Or, use the bump map exrunple on
the Verde Pompeii image for a marble wall look.

Sometimes not having aU the great texture packages
a11d imaging programs is a good thing, because you're
forced to use your imagination to make the most out of
what you have. Possessing that ability is a great asset in
any situation.

mm
Dan Ablan is animator/owner of AGA in

Chicago and animates with LightWave. Recent pro
jects include work for Kraft and The Dial
C01poration and trailers for Star Trek: Deep Space
Nine. Dan is also co-founder of the Chicago
LightWave Association.

He can be reached at (312) 239-7957 or by
e-mail at dma@mcs.com.

Next month's issue of LIGHTWA VEPRO features part two of December's "LightWave 101:
Methods of Modeling," plus a tutorial on proper lwd vehicle wi.Jnation, which includes
how to have tires spin at the correct speed.

LIGHlWAVEPRD m

Alg Re • r1 s
Part 1: The Theory of Z-buffers

W hile many types of rendering algorithms
exist, those explained in this two-part
series are some of the more popular

ones. Each of the different methods described has
advantages and disadvantages, which I assume might
explain why LightWave programmers Allen Hastings
and Stuart Ferguson incorporated aspects of both Z
buffer and ray tracing techniques. And one is still
hard-pressed to find much, if any, commercially avail
able 3D software incorporating radiosity techniques.

This study of rendering algorithms won 't necessar
ily be dealing with the specifics of LightWave's imple
mentation, but some of the rendering techniques
incorporated by this and most other 3D software may
prove of interest to those who are curious about
what's happening after they hit Render. I know I
was-hence this study. But before we begin to look at
the mechanics of Z-buffers this issue, and ray tracing
and radiosity next month, a brief exposition on the
geometries of 3D space ~mel frame buffers is definitely
in order.

The 3D Universe
Common to most image synthesis software, objects

exist relative to lUl origin in three-dimensional object
space represented by some coordinate system, usually
CartesilUl (XYZ). Much like a camera taking a photo
graph , the rendering of these 3D objects projects
them toward the eye or ClUmera view onto the two
dimensional screen space, where the total area cov
ered by the view is dependent on the view lUilgle (see
color image 30 Object Space). In order to reduce the
chaos, not to mention time, of rendering an infinite
amount of space, object space is bound on its sides
by boundary walls and near and far planes called
hither and yon planes, respectively. These clip
ping planes, as they lU'e called, constitute the bound
aries for the viewing volume. Any object inside this
volume potentially makes it into the final image, and
any object or part of an object outside this volume
gets "clipped, .. hence the term clipping planes.
Usually, the viewscreen (where the final image is
drawn) serves as the hither clippingplane as well.

lfJ LIGHTWAVEPRO

Finally, for rendering purposes it is common to have
the Z-axis oriented perpendicular to the viewscreen
and pointing away from the camera into the object
space--similar to LightWave's implementation. As we
shall soon see, the significance of this orientation
method becomes apparent when dealing with Z-buffer
rendering algorithms. However, understanding the
nature of Z-buffers requires a brief explanation of
frame buffers.

Frame Buffers
Simply put, a frame buffer is a specialized piece

of memory storage hardware whose memory locations
are arranged in a gridlike pattern. A frame buffer's
main objective is to "buffer" one "frame" of video,
each memory location roughly corresponding to one
pixel on screen. Therefore, for a full-color frame
buffer, each memory slot would contain one or more
numbers representing a certain color value for that
pixel. Alternatively, the number could be an index or
pointer to a reduced bitplane color map or look-up
table. (Unfortunately, space does not permit an in
depth discussion of color maps.) Suffice it to say that
a typical fran1e buffer represents a full-screen image.
However, this memory array concept may also be cre
atively used to store numbers representing something
completely different.

Z-buffer Rendering
The basic concept of Z-buffer rendering is quite

simple. Two buffers are used for this technique. One
is a frame buffer that will eventually contain the final
rendered image, while the other buffer used contains
the z-depths or distance of the nearest visible surface
along the Z-axis as seen from the corresponding pixel
of the viewscreen. This is why the axis orientation is
transformed with the Z-axis pointing away from the
screen. It would be helpful for understanding the
entire process if we break down the algorithm itself
into a series of simple steps.

First, once the three-dimensional model is con
structed, including the final positioning of the camera
and lights, the computer starts with the first screen

by William Frawley

pixel and decides if anything should be drawn there. It
selects an object ~mel mathematically determines if that
object is visible from the current pixel center. If it is
1~sible , the next step is to ascertain whether it is the
closest object thus far encountered at those XY coor
dinates. It does this by checking the Z-buffer, which,
in addition to the image buffer, had been previously
cleared to some default value prior to rendering. For
the image buffer, that value would have been the back
ground color, lmd for the Z-buffer, the initial value in
each memory location would have been set to the z
distance of the yon clipping plane, the farthest possi
ble point in object space. If the current visible object's
surface distance is closer to the eye than the current
value in the Z-buffer for that point, that object's sur
face distance or z-value replaces the one currently in
the Z-buffer, signifying that this new object is the clos
est one visible in the camera view thus far. Finally, the
color shacling of the closest visible point on the sur
face of this object at this point on the screen is deter
mined from the object's surface properties and light
source characteristics and entered into the image
buffer. This completes the process for one pixel or
point making up the screen. The next pixel in line
repeats this entire sequence of steps for the current
object. Once the entire screen is completed for this

Figure 1: If translated to a luminance map, a typical Z
buffer might look like this. The lighter values represent
z-values closest to the camera view. See color image "Z
buffer " for the scene layout from another view.

object, the next object in the scene is considered,
and, as before, checked pixel by pixel via the Z-buffer
for visibility. Wow, tty doing this by hand!

U you watch LightWave's rendering screen, you 'll
notice the image generally being built up one object at
a time. The accuracy of the image is constantly chang
ing as closer objects eventually replace more distant
objects in the frame buffer. Hence, the erasability of
the buffers proves invaluable to this algorithm 's
method. In other words, it is inconsequential as to
what order surfaces (or points of a surface) are cho
sen to be processed. In the end, after all surfaces
have been processed, it is the closest object seen at
each pixel tl1at will remain in the Z-buffer, ready to be
shaded for the final image (see color image Z-buffer).

Interestingly, although the Z-buffer is not intended
to represent any kind of an image-only z-values
because of its inlplicit nature, if translated to a color
map it will probably exhibit a certain likeness to the
final image nonetheless (Figure 1).

Z-buffer Shadows
At the expense of time and memory, the Z-buffer

algorithm technique can produce rudimentary shad
ows. However, the process does not take into account
transparent/translucent objects and requires extra
memory storage for each light's shadow buffer in
addition to the normal image and Z-buffers. Anotl1er

Figure 2: For Z-buffer shadows, all surfaces and objects
not directly seen by the light source, such as the sphere
and back surfaces of the box and cone, would be
excluded from the light source's shadow buffer. Only
the z-distances of the nearest visible surfaces would be
included.

requirement relates to the type of light source that
can be used to produce shadows. As you 've probably
seen in LightWave 's Lights menu , only directional
Spotlights work witll shadow mapping, because each
light must render its own Z-buffer, called the shadow
or illumination buffer, for the scene. Considering
the nature of tlle geometty involved, Directional and
Point lights will not work for this method.

Shadow buffers enter into the proverbial equation
at the shading stage for each visible object's surface
point. Before the normal image is rendered, the scene
(or frame for animations) is rendered from the point
of view of each light, creating its own Z-buffer of any

visible objects. Therefore, if an object's surface makes
it into the light's shadow buffer, it can be considered
to be illuminated by that light source. If not, that
object must not be illuminated by the light, or is
obscured by some other object, and thus in shadow

Figure 3: An overview of 3D object space. All objects
within the viewing volume would be potentially visible
from the viewpoint of the camera; all others outside
would be clipped.

(Figure 2). Once the shadow buffers for each light
source are rendered and saved in memory, normal
rendering begins for tlle can1era view image.

When a visible point on a surface is encountered,
the shading procedure begins. From the view of each
light source, tl1e pixel containing tl1e surface point in
question is computed. Then the z-distance from that
pixel of the light's view to tlle object's stuface point is
calculated. U that z-value equals tl1e value in tl1at light's
shadow buffer, the smface point must be receiving illu
mination from that light source, and is added into tl1e
shading of that smface point in the final image buffer. U
the distance is greater than the value in the shadow
buffer, it must be fa11her tl1an tl1e nea1·est object, and is
thus in shadow. Therefore, no shading for this light is
added into tlle final image. The algoritllm tl1en proceeds
to tl1e next light source (if any) for computation of any
additional shading information for that point in the
image, repeating the entire procedure as before. As you
may have guessed, the extra time and memory required
to store shadow buffers a1·e directly proportional to tl1e
number of shadow-casting lights in tlle scene.

Z-buffer Pros and Cons
When all you require of your images is simplicity,

Z-buffers can be quite fast. And if available memoty is
a concern, pure Z-buffer algorithms allow a nearly
un- limited number of objects within your scene,
because each pass through the Z-buffer calculation
requires only one object in mem01y at a time. This is
contrary to other algorithms such as ray tracing,
which requires aU objects within the scene to be held
in mem01y simultaneously. Another advantage owing
to the singular object algorithm includes the ability to
add independent plug-in modules or subroutines to
handle the rendering of different types of modeled
objects, such as polygons, curved-surfaces or fractal
objects. Once the information from one object is writ
ten to the picture and Z-buffer, each new pass can be

handled by a new prograJn catering to a new kind of
primitive. Theoretically, a whole libraty of plug-ins
could be used for multiple object types.

On the other hand, Z-buffers have problems or are
extremely inefficient in dealing with transparency a11d
reflections. With the transparency subroutines, the
sorting loops needed become too slow to be efficient.
Similarly, pure reflections become impossible, except
with time-consuming subroutines using mirrored tex
tures. Other possible problems with Z-buffers include
aliasing, motion-blur and good shadows, but, as we
witnessed, these can be overcome with some crafty
programming worka1·ounds.

Figure 4: Each lime through the loop, a new object's dis·
lance from the screen is checked against the value in the
Z-buffer. If it is closer than the one currently there, it
replaces the old value. This is the heart of the z-buffer
algorithm.

What's Next?
Next month we'll take a look at an algorithm famil

iar to almost evetyone acquainted \vith 3D synthesis:
ray tracing. Though tllis technique entails more real
ism than Z-buffers, the improvement comes at the
expense of increased rendering time.

We'll also examine a method of preprocessing the
shading calculations that, when used in concert \vith a
good rendering algorithm, can produce some of the
most superb images in 3D rendering today. Because
of the intensive number-crunching involved with
radiosity, most 3D animators have to be content with
simulating this supra-realistic effect. Sigh. Oh well
tune in next month and we'll grapple \vith it anyway.

William Frawley is president of Ecliptic Arts, a
developing 3D animation and special effects pro
duction house. To ensure he has no fi'ee time what
soever, he is also currently the author of a monthly
graphics column for an Amiga-re!ated publication
called Amazing Computing, a part-time sales jockey
for a local wine and beer establishment, and an
enthusiastic philosopher and mystic with a hanker
ing for good pizza. Send questions or comments to
Ecliptic Arts, c/o William Frawley, 315 W Fifth
Street, Muscatine, fA 52761.

LIGHTWAVEPRD IE]

Riding the Rails
A Rail Extrude Tutorial

I have found that the best way to begin to use
and understand Modeler is to master a few
functions at a tim e. Some fun ctions will be

used on nearly every project, while others will rarely
be touched. (Anyone out there a big Quantize user?)
Obviously, the tools used largely depend on the pro
ject at hand.

A number of months ago, I stumbled across a pro
ject in which I needed to construct a glass table with
a detailed metal bottom (see color pages). I knew
that in order to build such an object, I would have to
dive into some previously unused tools. What I found
was Rail Extrude.

Rail Extrude, in my opinion, is a tool that hasn 't
received the coverage it deserves. I've found it to be
extremely usehii in creating wrought iron gates and
similar detailed objects.

Operation: Glass Table
To construct the glass table object, only a handhii

of tools are needed, including Lathe, Mirror, Clone
and, of course, Rail Extrude.

The first step is to create the glass tabletop. For
mine, 1 wanted the circular glass slab to have slightly
curved sides, for a more elegant, less boxy feel.
• In the Face view, plot a few points to make up a

curve (or better yet, use the side of a disk), and
move them out some dist~mce on the X-axis.

I moved mine about 45 em, which provided an acc u
rate measurement from the center of the table out to
its edge.

Create two points on the Y-axis that line up with
the top and bottom points of the curve.
Select the points in a clockwise fashion and create
a polygon (p) to lathe into the tabletop (Figure 1).
Using the Lathe tool (Multiply), lathe the polygon
around theY-axis, using Numeric to set the number
of sides to 100 to ensure a very smooth table edge.
Select all of the top flat polygons and use the poly
gon Merge function (Polygon menu or Z) , so that
the top consists of one polygon rather than 100.
Then do the same for the bottom polygons.
Select the top and bottom polygons, and use the
Surface button (Polygon menu or q) to label

m LIGHTWAVEPRO

Figure l

their surface as Glasstop.T&B. Label the side poly
gons Glasstop.Sides.

• Move the entire object up so it is not sitting on the
0 Y-axis. I moved tnine approximately 35 em.

• Save the object as TableTop.
I used different surface names so that 1 would be

able to give the sides a smooth surface while keeping
the top and bottom flat. Had I tried to smooth the
GlassTop without assigning different surfaces, the
sides would have smoothed into the top and bottom
polygons, resulting in a very unnatural look.

The next step is to create the detailed table bot
tom. This starts off with the top support upon which
the table top will rest.
• In the Face view, make a flat 2.4 em disc with 16

sides (Objects/Disc/Numeric) and move it out a
shorter distance than the edge of the table on the X
axis (I used 32.5 em) . Next, lathe the disc around
theY-axis with 100 sides to complete the support.

Next, it's time to create the curved metal legs.
• In a new layer, with the support ring just created

in a background layer, draw out a curve using the
Sketch tool (Objects) in the side view. My curve
had a slight S-shape to it, as needed for the table 's
design. The curve should be drawn from the edge
of the support ring to the "ground" (O on Y). Hit
return to make the curve.
In the Face view, I shifted the top few points to the

left to give the curve a desired path of the table leg.
Also, I had to be certain that the top point of the table

by Arnie Boedecker

leg curve intersected the top support in the back
ground layer. Once created, there would not be a gap
in between the legs and the top support. This curve
will serve as our "rail" in our Rail Extrude operation
(Figure 2) .

Figure 2

Riding the Rail
• In a new layer, with the "rail" in a background

layer, create a !-em disc to use for the table leg.
After movin g the disc to the top of th e curve,
rotate it in all three views until it is perpendicular
to the start of the curve (Figure 3) .

• Select Rail Ext (Multiply menu) and choose
Uniform Knots set at 20, and Oriented.
When attempting yo ur rail extrusion, if it seems to

be heading in evety direction and completely out of the

Figure 3

Figure 4

rail; path, chances are the curve was drawn backward.
To correct tllis, simply click Undo to erase the incor
rect rail extrusion, move to tl1e layer with the "rail" in
it, and press (f) to tlip the direction of the curve. Then
return to tl1e layer with the leg disc in it, make sure the
"rail" is in the background, and try again.

If, once the disc extrudes correctly, you are dis
satisfied with its shape, click Undo again to get rid of
it, move a few points of your rail until it is more the
shape you are trying for , and then try the rail extrude
again. It took me a few attempts before I was satisfied
with my table leg extrusion, so don 't be afraid to shift
a point here or there.

The extrusion just completed is only half of the
complete table leg.
• To complete the leg, nlirror (Multiply) the object

just created on theY-axis in the Face view.
The mirrored objects should just barely touch

each other, giving the impression that they are con
nected somehow. This completes one of the four
table legs. Now the table leg needs to be cloned three
more times around the table.
• Hit the Clone button (Multiply) to bring up the

Clone requester. Enter three for the number of
clones and 90 degrees for the rotation on the Y
axis. All other settings should be left at the default.
Click OK, and the leg will be cloned three times at
equal spacing around the table (Figure 4).

Thanks For Your Support
The next step is to create the connecting leg sup

ports. Since these supports have a perfectly smooth
arc to them, the best way to create them would be to
use the same lathing method used for the top support.
• In a separate layer, make a flat 1.1 em disc in

the Face view and move it out about 32 .5 em on
the X-axis. Again, lathe this disc on the Y-axis
with 100 sides.

• In the top view, with the table legs in the back
ground, move the entire ring that was just created
until it intersects two of the table legs correctly
(Figure 5). The ring can be moved or rotated
from the front most edge 90 degrees to align it in

place. Move the ring down and
align it from all three views to get it
to intersect two of the legs. For
those with LightWave 3.5 , thi s
becomes an easier task while using
the visibility tools (Display menu).

• Once you are certain the intersec
tion is correct, cut away all of the
unnecessary polygons (highlighted
in Figure 5) , until you're left with
one-fourth of the original ring
arching between two table legs.

• As before, clone this piece three
times around the Y-a,xis , with a 90
degree rotation value, to complete
the leg support , conn ecting all
four legs.

• Using Rotate (Modify) , rotate tl1e curve somewhat in

tl1e top view, so tl1at tl1e curve follows tl1e arch of tl1e
top suppot1, to which it would be connected. Make
sure tl1at one end of it is aligned 1vitl1 0 on tl1e X axis
(Figure 6).

• Once satisfied with the curve's position and shape,
move to anotl1er layer and create a flat 7 mm disc in
the face view. Again, with the S-detail curve in the
background, move and rotate the 7 mm disc in all
three views until it sits peqJendicular to the stat1 of tlle
S-detail curve. It may be necessruy to llip the direction
of tl1e curve, as mentioned eru·lier.

• Once tl1e disc is in place, use tl1e rail extrude function
to create tl1e S-detail.
To create rounded-looking ends, I beveled tl1e poly

gons on each end of tl1e S-detail.
Next, as 1vitl1 tl1e table legs, mirror tl1e S-detail, so tlmt
tl1e edges just touch each otl1er.

~~~~@~~~~~;g~~:§~~~~~~~ • To create the otl1er detail, clone the S-detail 
objects, just as before, with the number of 
clones being tlu·ee, 1vitl1 a 90-degree rotation 
ru·otmd tl1e Y-axis. 

Figure 5 

Add Elegance 
The final step in creating the table bottom is to 

make the S-like details between each table leg, wllich 
gives the table its elegant appeal. This could be done 
simply with rail extrusion, as well. 
• In a new layer, draw out an S-shape using the 

Sketch tool in the Face view, and hit the return 
key to make the curve. 
I adjusted the curve's points as needed to make 

sure the curve was as smooth as possible. I also 
made sure the curve touched the top support, so the 
S-details would be connected to the rest of the table. 

Figure 6 

Witll tl1e S-detail objects in the foreground at1d 
tl1e table legs in tl1e background, you c.m see tl1at 
tl1ey ru·e on top of each otl1er. To cotTect for tllis, 
we simply rotate tl1e S-detail objects 45 degrees 
ru·otmd tl1e Y-:Lxis. It is better to use tlle numeric 
input requester in tllis case, so tllat tl1ere is no mis
take of tllings being off-center. 
• Now tl1at all of tl1e table bottom pieces are creat

ed, it's just a matter of cutting at1d pasting tl1e 
legs, the top suppott, tl1e leg supp01ts, a11d tlle 
S-detail objects into a single layer. Merge points 
(Tools) and assign the surface name 

Tablemetal to the whole object, then save it as 
TableBottom. 

Final Touch 
You GUl now load your objects into Layout, sutface 

tl1em and render away. 
1 gave a metal surface to Tablemetal , and turned 

smootlling on. I gave Glasstop.T&B a glossy glass surface, 
~md left smoothing off. Tabletop.Sides also received a 
glossy glass smface, but smootlling was nuned on. I also 
gave it a blttish sutface color and tumed on Color Filter, 
to give tlle sides a tinted look. 

This project was beneficial in tl1at it helped me 
become more acquainted with the rail extrude 
function ru1d tl1e Clone requester. I realize tl1at I 
am constantly finding new uses for previously 
avoided tools. 

Leatning to use tl1e ma11y tools in Modeler, even 
tl10se rarely used, am provide a new outlook on what 
am or crumot be modeled, at1d \vitl1 new tools like 
Metafonn, it seems as tl1ough :mytlling is possible. 

Arnie Boedecker is president of hnagi•Nation 
EnteJjJrises in Illinois. He can be reached at 
603-D \VatersEdge Drive, McHem:JI, IL 60050, 
(815) 385-8198. 

LIGHTWAVEPRD II:J 



Digital · 
Cinematography 
L ast month we discussed many of the princi

ples behind good camera motion, including 
some of the theories involved in various 

styles. If any piece of information is important to 
remember, keep in mind that camera motion is as 
much a character as the actors on the set. What you 
choose to show and not show makes all the differ
ence in the world, as does how you show it. 

Imagine a movie shot entirely from one wide 
angle. Though it has been done, it isn 't an interesting 
way to use the medium . That's what plays are for. 
This month , let 's take some specific examples of 
shots that are fairly difficult in live action , but are 
quite possible (I didn't say easy) in CGI. Though I 
describe a specific object, feel free to use anything 
available. It's the method used to shoot the object 
that's important in these exercises. 

Quite frequently, the most complex moves for an 
animator involve a complex or violent motion of the 
object, camera or both. There are two methods to 
make this type of shot possible. Let's first address a 
shot with complex object motion and a relatively 
stationary camera. In this scene, we are looking up 
as a helicopter comes crashing down toward us. We 
will need to whip pan with the ship as it slides by the 
camera and, as the helicopter comes to a hard stop, 
we need to stop as well. The problems we will run 
into in this scenario are largely with the camera. As 
the ship starts in the distance, we have little or no 
camera motion. We will need to quickly ramp up 
motion to pan rapidly with our ship, then slow that 
motion down abruptly as the ship crashes. The trick 
is maintaining a consistent spline while still keeping 
up with the action. I always find it handy to rough 
out the move as best as possible early, including try
ing to manually track the camera. Start with a rough 
positioning for the move of the helicopter. Slide it 
up on the Y-axis a good distance, pitching it down 
toward the ground. Create a keyframe at frame 0. 
Now move the helicopter to the ground and create a 
keyframe at frame 150. (This is just an estimate of 
length at this point. Un til we actually work out the 
entire move, it wi ll be difficult to tell what frames 
are necessary to make it realistic.) Now, display 

IIlJ LIGHTWAVEPRO 

frame 75, showing the middle position of the heli
copter move. Place the camera beside the ship and 
create a keyframe at frame 75 . Without changing the 
frame you are on, also create a keyframe at frame 0 
for the camera. Now, move to frame 0 and tilt the 
camera up to the helicopter , creating a new 
keyframe for the camera at frame 0. Since we have 
roughly determined that our animation will end on 
frame 150, move to this frame and tilt the camera 
down to view the helicopter on the ground, creating 
a keyframe for the camera here. You may end up 
discarding most of the keyframes, but you need to 
start somewhere. Consider this your pencil sketch. 

Of course, if you were to preview these motions, 
the effects would most likely be quite random and 
highly unacceptable. The camera will overshoot the 
ship in the beginning, leading it too much in its effort 
to reach the middle keyframe. As the helicopter 
drops by the camera, we will lag behind it a bit. This 
is what l mean by competing splines. Though the 
motions are simple, the actions and settings for each 
keyframe differ enough to change the individual 
characteristics of the motions as they relate to each 
other. Considering the drastic difference in the two 
motions in this example, with the helicopter drop
ping from the sky while the camera is just tilting to 
follow, it is quite obvious how the splines do not 
match up. But even the most subtle motions may not 
match either. Pay close attention to the previews to 
note differences in the motions. Sometimes it is even 
worth the time to create a wireframe preview for 
more specific information to view. Adjustments are 
not necessarily a mathematical process, but most 
likely a visual one. The significant issue to take into 
account is the condition of the spline of each object. 
Since neither the camera nor the ship is connected 
in any way, their splines are being affected indepen
dently by the keyframes that make them up. For this 
reason, it is important to create keyframes on the 
same frames for both camera and object. Even if 
slight differences in keyframe positions exist, the 
subtle effects these differences have on the motions 
will prevent a smooth comparison between the two 
motions. 

by John F.K. Parenteau 

Figure l 

If you do create a preview, you'll notice that the 
c~unera moves much quicker than the ship, panning 
off then back on at the keyframe positions. No matter 
how hard you try, the splines will always react differ
ently if the motions are even slightly different. In this 
case, the ship is dropping quickly through frame as 
well as rotating and pitching violently. The camera is 
only pitching, thus creating a much less complex 
spline curve. The next step we take is placing addi
tional keyframes between our existing ones. I've esti
mated a keyframe position of 75 and 115. Though 
this is not exactly a precise split between the other 
keyframes, they are placed where the camera is far
thest out of position. Pitch the camera back to frame 
the helicopter in center frame again at each of these 
keyframes. Make sure to create keyframes at these 

Figure 2 



new positions for the helicopter as well. Now create 
a preview. Though the ship is in frame for most of 
the shot, it is no longer a smooth tilt. Examining the 
camera motion graph (Figure 1) , we can see how 
the pitch spline is not an even progression. By 
evening this up, we can smooth out the unacceptable 
bumps in the tilt (Figure 2). Creating a new preview, 
the camera rushes through the tilt a bit more, actually 
tilting off the copter partially. This may or may not be 
a problem since perfection in a camera move isn't 
necessarily a desired effect. As an object moves quick
ly by camera, it is natural to lead the object rather 
than lag behind and miss the action. By inputting 
some bank in the keyframes for the camera (Figure 
3), we can enhance the randomness of the shot. 

Though this may be acceptable for this applica
tion, it may not be for others. It is important to be 

Figure 3 

able to create a smooth move as necessary. The 
smoothest method of creating a tracking camera 
motion is by targeting the camera to the object. One 
of the newest projects here at Amblin Imaging is the 
new Star Trek series premiering in January , 
Voyager. We have been working out the move for the 
final jump-to-warp shot of the show. Not to give too 
much away, but the producers wanted to track a spe
cific area on the ship as it came toward us, pivot on 
this area and then watch it jump to warp from 
behind. We had 11 seconds for the shot. That may 
seem like a long time, but to move a huge ship from 
offscreen, toward camera and by camera, then jump 
to warp, takes a long time. I actually attempted the 
simple method as described above with our heli
copter, using individual splines for the camera and 
the ship, but found the complex pivot couldn't be 
ironed out. Instead, I created the motion for the 
Voyager, then saved the Voyager motion and applied 
it to a null object. By targeting the camera to the 
null, I would always track the object perfectly, since 
the null has the same exact motion. Why not track 
the ship itself?. The easiest reason is that I wanted 
the ship to enter the frame. By targeting the actual 
ship, 1 would never be able to pan the can1era off at 
the start of the shot. I also wanted to track a specific 
piece of the ship's anatomy (not the bridge), and 
these areas did not happen to fall at the pivot point 
of the object. Needless to say, targeting the ship 
doesn 't allow for any modification. By targeting a 

null with the same motion, I can modify various 
keyframes while still maintaining roughly the same 
motion. In the first keyframe I shifted the null object 
so the Voyager was offscreen. As the ship moved 
toward the camera, I shifted the null object on the X 
and Z axes to maintain a desirable camera view of 
the ship. I don 't want to give too much away, but the 
shot would not have been possible without this func
tion. Let 's examine our helicopter scene with this 
new wrinkle. 

Starting with our old scene, target the camera to the 
object. As you run through the anim now, the ship is 
always petfectly in frame, with its pivot point carefully 
placed in the center by LightWave. Though our move is 
a perfect pan now, it doesn 't allow for much variation 
or adjustment. Now save the motion of the ship and 
apply it to a null object and re-target tl1e c:unera to it. 
It is important to remove any rotational information 
from tl1e null object. This will not affect the can1era, 
but it will inhibit your adjustment of the object, since 
LightWave confuses axes when the rotation has been 
greatly affected. Move to each keyframe and use the 
numeric input to zero out the rotation. Also, remove 
the bank on the camera if you applied any in the previ-

1'51 • 

"' 

::~r : : : : : : : : : : 
11 · 1;ht> <friri•s) "15f" 

Figure 4 

ous exercise. (The pitch is disabled by tl1e target func
tion.) At first , nothing has changed, but the first frame 
needs adjustment. Drop the null object on tl1e Y axis, 
pushing the ship to the top edge of frame rather tl1an 
the center. Move to the second keyframe on tl1e null 
object and enter your motion graph for the null. As you 
examine the Y axis, the spline between the first and 
second keyframe actually backs up, moving up to pre
pare its acceleration for the subsequent keyframes. By 
dragging the second keyframe down to prevent this , 
you will create a smooth tilt for the camera. Drag the 
second keyframe down just enough to create as 
straight a line between the first :md second keyframes 
(Figure 4). Now use tllis motion and preview your ani
mation. Note how the ship starts out of frame but 
enters smoothly as the can1era catches up. At tl1e end 
of tlw a1limation, I slipped the null back on the Z axis 
to center the ship. Viewing the motion graph once 
again, look at the Z axis and adjust the second-to-last 
frame to create a smooth transition between this and 
the last keyframe (Figure 5). 

Though the examples above are good learning 
tools, keep in mind that each animation is drastically 

Figure 5 

different. It is best to follow these basic rules for 
complex motions: 

If both the camera and objects have motion, create 
keyframes for both in the same positions. For exam
ple, if you have animated your object and are now 
applying motion to the camera (though the camera 
motion doesn 't require as many keyframes) , put 
keyfran1es at the same frames as the object. This will 
help create similar spline attributes between 
keyframes for both. Use the motion graph religiously. 
Pay attention to overshoots on all axis. lf the camera 
starts from a dead stop, holding for a second or two 
then moving, check the second keyframe to make sure 
none of the splines have backed up to start the move. 
This always produces an unwanted glitch in your 
motion (Figure 4). 

Ignore the velocity graph for the camera if the 
camera is targeted to a null. Since several axes are 
ignored when the camera is targeted, the velocity 
graph is usually pretty scary. Pay closer attention to 
the null object velocity graph since it contains the 
master motion. 

lf the object is going to stay in frame during the 
entire animation, parent the null to the object rather 
than loading its motion. Since the null is parented to 
the object, the slight adjustments left and right and up 
and down to frame the object 1vill require very little 
change in motion, and thus a simple spline. Imagine a 
null with the motion of an object loaded on it. Not 
only does the spline have to move from great distance 
to great distance, but it also has to make the new 
adjustments for proper franling. By parenting the null 
to the object, the null has no motion as it moves 
through space with the object. Thus, any minor fram
ing adjustments you make create a spline with nlini
mal change. 

Try a few whip pans with both methods to see how 
they look. Remember that camera movement is not a 
science, but an art form. There is no right or wrong, 
only your perception of good or bad. Creativity is what 
most clients pay for, :mel that creativity is what gives 
you your own personal style. 

john F.K Parenteau is vice president and general 
manager of Ambliu Imaging, whose CGI work can 
be seen regular0' on seaQuest DSV. 

LIGHTWAVEPRO W 





Robo Explode 
Lens flare clusters and the fireball object 
make an explosive combination. 
Copyright Skyvision Entertainment 1994 

Light Wood 
The final result of using our wood creation 
techniques. 
Co/!)•rigbt Dan Jib/an 1994 

Robo Glow 
Carefully placed lens flares give the impres
sion of glowing steel whil e refractive heat 
signature adds a subtle touch of realism. 
Cuf~J •rigbt .l'kr11ision Entertainment 1994 

LIGHTWAVEPRO IIiJ 



RfNDfR GRAPHICS AllHf SPffD Of AlPHA 
ON A COBRA AXP 175 WORKSlAliON . 

. sw·· There's no better way to burn graphics 
~ 

\':.i.~E-"p.-<\0 in LightWave TM or other applications. 

Introducing the Carrero 

275, the workstation leader 

price and performance. Run UNIX® 

and Windows NT™ frame rendering, 

an imati on, multimedia and 

Semiconductor, o Digital Equipment Corporation 

business. With the blistering performance of on 

Alpha-powered Cobra, you'll generate digital 

images in minutes instead of hours. You'll get more 

done in o day. Maybe even get home on time for o 

change. And the Cobra AXP 27 5 comes 

in o variety of configurations, loaded with 

graphics applications foster built-in PCI SCSI-2, PCI Ethernet, PCI 

you've ever seen on the power of o ~L~i~i~~~~~video, PCI and ISA slots, CD-ROM, and 

275MHz Alpha™ processor-one • more. Call or E-mail us for details. 

of th e 64-bit RISC rockets from Digital Then get ready foro workstation that really cooks. 

2318 1 Verdugo Dr, Building 1 05A, Log uno Hills, CA 92653 • 800-576-7 472 • e-mail CARRERA 1 @DELPHI COM 

©Carrero Computers, Inc. 1994. Digital , Alpha, and AlphoGenerotion are trademarks of Digital Equipment Corporation. Other names are trademarks of their respective holders. 


