

Bad Space
The galactic equivalent of a scary neighbor
hood. The dark planet with a deep orange key
light further suggests a sinister locale. See
"Dead in Space,'' page 6.
Cof<J•rigbl 1994,1995 Pniv Consortium, Inc.

Ill LIGHTWAVEPRO

Blisterine
A still from the Blisterine animation. Bones
are used to create effective charac ter
movements. See "You Bonehead," page 8.
Copyrigbl 1994 Dan llbltm

World Wrap
The progression of morphing a flat
plane to a sphere using a cylinder as
an intermediate shape. See "Mighty
Morphin ' Morphing Tricks," page 12.
Copyrigbl 1995./ames G.Jone.>.

TABLE OF
CONTENTS

EDITOR'S MESSAGE
by John Gross

Y ou're probably sick of hearing about the Internet. After all, it's one of the
trendiest computer tllings around. I've seen magazines, books, software
and television shows devoted entirely to tllis service. I would say about the
only tlling I have heard or seen more about is OJ. Simpson (and believe

me-living in Los Angeles, that's getting pretty tiresome).
But for as much hoopla as I've experienced about the net, I've also experienced

the net itself, and I tell you, there are some great resources of information. You can
find just about anytlling on tl1e net if you know where to look-or even if you don't
know where to look, but aren't afraid of trying.

There are newsgroups on the net that cover just about any topic you could dream
of, and some you couldn't. And tl1e nice thing is, the net is not censored, like com
merdal on-line semces.

What does tllis have to do witl1 LightWave animators? A lot. I know I've mentioned
it before, but I get so many people asking questions about the LightWave information
on tl1e net tl1at it's worth repeating.

111ere are a couple of great way.; of accessing LightWave info on tl1e net First of all,
tl1ere is a LightWave mailing list. Tilis is a group of people that subscribe to this "list"
and everyone gets the mail tlllU is sent to it. You can partidpate by asking or answering
questions, or by just following along. Topics range from the simple to the complex,
and most have to do with LightWave and Modeler, but evety once in a while, a stray
one gets tlu·own in. To subscribe to the list, sin1ply send an e-mail message to list
setv@netcom.com. In tl1e body of the message state "subscribe lightwave-! your
address" (no quotes) . In a short time, you will start receiving mail (be prepared!).

Because of tl1e populatity of the LightWave mailing list, a LightWave newsgroup
was started. 'fllis allows you to see topics, most having to do with LightWave, that you
am eitl1er choose to read or ignore. TI1e newsgroup is called comp.grapllics.pack
ages.lightwave. Both the newsgroup wd the mailing list are wonderful sources of
infom1ation, tips, tricks, problem-solvers and technical atJswers, and are frequented
by a large an10unt of vety talented people. You can pretty much be assured of an
answer to any type of question you may have.

see Editor's Message, page 7

LIGHTWAVEPRO
In AVId MId II G r 0 Up, Inc, n I WI I I I I e r

4

G

8

10

12

14

Editor..............john Gross
Managing Editorjim Plant

Editorial Offices: Avid Media Group, Inc.
273 N. Mathilda Avenue

Editorial Coordinatorjoan Burke
Associate Editor Corey Cohen
Art Director Helga Nahapetian Taylor
Art/Production Coordinator Kristin Fladager
Production Sergio "Berimbau" Miller
Circulation Director.... Sherry Thomas-Zon

Sunnyvale, CA 94086
Telephone (408) 774-6770
Fax (408) 774-6783
John Gross can be reached electronically at:
jgross@netcom.com (Internet)
71740,2357 (CompuServe)

Land Vehicle Movement
by Joe Dox
Your objects are spinning out of control?! Learn how to give the
wheels on your moving lwd vehicles realistic rotating motion.

Dead in Space
by Mojo
Embark on a step-by-step journey through one of Babylon 5's most
explosive scenes.

You Bonehead!
by Dw Ablw
Don't be fooled by the seeming complexity of Bones-these free
form deformation tools cw bring life to your inatlimate objects.
Animate at1 object with the fluid characteristics of the popular
Listerine bottle.

Popular 3D Algorithms
by William Frawley
In this follow-up to last month's look at Z-buffer rendering, explore
the subtleties of raytracing wd radiosity techniques.

Mighty Murphin'
Morphing Tricks
by James G.]ones
It's morphing time-3D object morphing, that is. Discover some of the many
ftmctions of this useful process.

Reader Speak
by John Gross
An explanation of modifying configuration files for LightWave and
Modeler.

Circulation Assistants Tracy Ann-Sparks Printed in tbe USA 0 1995 Avid Media Group, Inc.

LIGH71VAVEPRO (Vol. 3, No. 2); (ISSN 1076-7819) is published
monthly by Avid Media Group, Inc., 273 N. Mathilda Ave.,
Sunn)'V'&ie, CA 94086-4830. A one-year subscription (12 issues)
in the U.S. and its possessions is $48 (U.S.); Canada/Mexico, $60
(U.S.); overseas, $84 (U.S.). To subscribe, call toll-free 1-800-
322-2843. Allow 4 to 6 weeks for first issue to arrive. Second
class postage rate paid at Sunnyvale, CA and additional mailing
offices. POSTMASfER: Send address changes to LIGH71VA VEPRO,
273 N. Mathilda Ave., Sunnyvale, CA 94086-4830.

............. Debra Goldsworthy
Contributing Writers Dan Ablan
... Joe Dox

......................... Willian1 Frawley
.................. Janles G. Jones
.................... Mojo

Group Publisher.............. Michael D. Kornet

Are you interested in writing for LIGH11VA VEPRO or submitting
images? If so, contact us at our offices or electronically.
Avid Media Group, Inc., its employees or freelancers are not
responsible for any injury or property dan1age resulting from
the application of any information in LIGH71VA VEPRO.

About tl1e cover: A Narn cruiser gets sliced and diced by the
Shadowmen in the Babylon 5 episode "Revelations." The scene
was designed and created by Mojo for Foundation Imaging. The
Narn cruiser was built by Paul Beigle-Bryant. All in1ages © 1994,
95 PTEN Consortium, Inc.

LIGHTWAVEPRD IIJ

Land Vehicle Movement
Spinning Your Wheels

0 ne of the biggest challenges with
animating land vehicles is wheel
movement. This includes animat

ing a car driving down a road at 10 mph
and an aspirin tablet rolling across a 3D
chart. To put it simply, the rotation of a
particular object must be directly related
to its velocity. Unlike a spaceship or a sub
marine, the wheels of a moving vehicle
should have realistic rotating motion .
Other issues with animating land vehicles
involve body movement and track marks
left behind by the rotating wheels.

by Joe Dox

fran1e 0 after each wheel has been put
into position. The vehicl e is now
ready to be animated.
The Hummer scene shown in Figure I

was set up in this marmer. I sinlply loaded
tl1e Hmnmer body and the four individual
wheels. After parenting tl1em all to a null
object, I positioned each wheel under a
wheel well (Figure 3). The advantage of
parenting each object to a null object is
that you can move the objects indepen
dently of each other. Effects like front
wheel braking lockup and body roll can be
achieved by sinlply selecting the object and
manipulating it in the desired marmer.

Moving the Vehicle

The vehicle shown in Figure 1 is a mil
itary-style Hummer, otherwise known as a
HUM-V. My goal was to create realistic
movement of tl1e wheels and body while it
cruised across the desert. First, I'll
describe how the Hummer's movement
was set up. I will then discuss how to
acquire rotational values for wheels mov

Figure l: "Full Metal Hummer" uses simple geometric formulas to create realistic
velocity and wheel rotation.

OK, we have a vehicle. Let's say we
want to move it at 30 mph for five sec
onds. There are two things we need to
compute:

ing at a particular speed, and how to create tracks left
behind by the moving tires. Sorry, I won't be explain
ing how I modeled the Hummer-maybe in my next
tutorial.

Setting Up a Vehicle Scene
When creating a scene with a moving vehicle, the

objects must consist of at least the vehicle body and

Figure 2: Wheels are centered in Modeler to make cer
tain there are no "bumps" in their rotation.

IIJ LIGHTWAVEPRD

four wheels. One might say tl1at the wheels should be
parented to the car body. Well, they could be, but I
recommend the following process:
• Load the vehicle body and the four wheels. The left

and right wheels should be saved as individual
objects from Modeler. Each wheel should have its
pivot poin t in its exact center, so you'll have a
smooth, even rotation. To do tllis, m~mually move the
pivot point of each wheel from inside LightWave. I
recommend loading (or importing) a wheel into
Modeler, tl1en selecting the Macro button (Objects
menu) and executing tl1e Center macro. The object
will be placed in the exact center of the Modeler
environment (Figure 2) . Save (or export) the wheel
and repeat this process for the others.

• Back in Layout, the next step involves creating a
null object by !lilting the Add Null Object button
(Objects panel). Parent the car body and each
wheel to this null object. After every object has
been parented to the null object, you will need to
position each wheel in relation to the car body. 1n
other words, put the wheels where they belong
(Figure 3). Don't forget to create a keyframe for

1. TI1e distance tl1e vellicle travels in 5 seconds at 30 mph.
2. The rotational value per second (degrees/30

fnunes) of each wheel at 30 mph.
First, we must establish tiJC fact that, in this article, I

\viii be measuring distance over tin1e as miles per hour,
not kilometers per hour. But fear not, road-warriors: The
f01mulas that I \viii be using are completely interchange
able between miles per hour and kilometers per hour.

Figure 3: A wheel is positioned in one of Hummer's wheel
wells.

Computing the Vehicle's
Velocity

Let's begin. To get the value of No. 1 (above), we
must compute meters/second (M) with a given value of
30 mph. The formula is as follows:

M = (((mph/60)x 5280)/60) x12)/39.37

For those of you who would rather work in the met
ric system, the formula is:

M = (((kph/60) X 1000)/60

To better understand this formula, let's chop it up.
First, mph/60 x 5,280 will give you feet/minute, given
that 5,280 feet = 1 mile. Next, divide that quantity by
60. This will give you feet/second. Multiplying this value
by 12 provides inches/second. If 39.3 7 inches = 1
meter, divide inches/second by 39.37. This total is a
value for meters/second, or in LightWave terms ,
meters/30 frames.

In our example, the vehicle is traveling at 30 mph.
So our formula would look like:

M = ((((30/6o) X 5280)/60) X 12)/39.37
M = [(2,640/60) X 12)/39.37
M = (44 X 12)/39.37
M = 528/39.37
M = 13.4112 meters/30 frames.

After you do the math for 30 mph, the vehicle will
travel 13.411 meters in 30 frames. The next step is
simple:
• Place the vehicle at its starting position and create

keyframe 1. Move the vehicle (along the Z axis for
this example) to a di tance five times greater than
the value we computed (5 seconds): 13.411 x 5 =

67.05 meters. Create keyframe 150. That's it! The
vehicle is moving at 30 mph. Oh, don 't set any
spline controls. Acceleration and deceleration is
something I'll discuss another time.

Computing Wheel Rotation
Now that we have the body moving at a "perfect" 30

mph, we need to rotate the wheels to match that speed.
Guessing the rotational value of the wheels and rendering
previews is something you could get away \vith, but slow
er speeds would be more difficult to match manually. I
know-I've tried it. A quic glance at Figure 1 shows that
the Hummer has huge tires \vith a well-defined tread pat
tern. It would be very easy for anyone to figure out tl1at
the wheels do not match the vehicle's speed.

We first need to compute the circumference of the
wheel. The circumference of a circle is determined by
a well-known formula:

C = 2 x n x radius
• To get the radius of your particular wheel, go into

Modeler, import the wheel, select the Measure
button (Display menu), then measure the distance
from the center of the wheel to the edge. In the case
of the Hummer scene, the radius of a wheel is
0.4712 meters. (I know, that's a pretty big wheel,
but a Hummer is no Suzuki SideKick.) With a
radius of 0.4712 meters, the circumference of the
wheel is:

C = (2 X 3.14159) X 0.4712 = 2.9606
Remember, our goal is to acquire degrees of rota

tion for every 30 frames. With M = meters/seconds,
and C = circumference of a wheel, the formula to get
degrees of rotation/second (D) is:

D = (M/C) x 360
Thus,
D = (13.411212.9606) X 360
D = (4.5298 x 360)
D = 1630.76
Now that we have D, which equals the number of

degrees the wheel rotates in one second, we must mul
tiply that value by the number of seconds we have
defined for the animation.

D = D x 5D = 8153.80
• We now have to set the keyframes for the wheels.

Go to keyframe 0. (As described above, the wheels
of the vehicle should be individual objects, each
parented to the same null object that the vehicle
body is parented to.) Select a wheel. The rotational
value of each wheel at keyframe 0 is 0.00 degrees.
Please note that we are not setting the starting posi
tion of the wheel at keyframe 1, because frame 1
must have a pitch value greater than 0. Now go to
frame 150 (5 seconds later). Set the rotational
pitch to 8153.80 (Figure 4). Set keyframe 150 \vith
this value for each wheel. Done. The wheels will
now travel at 30 mph for five seconds.
In the Hummer scene in Figure 1, I moved the

Hummer at 15 mph for seven seconds. For those of you
who have the LWPRO disk, load the scene and check it

Figure 4: Set the pitch of each wheel to the value
D = [(M/C x 360) x length]. Each wheel will then rotate
this number of degrees throughout the animation.

out. There's much more going on than just a Hummer
driving across a desert. Also, for those of you who are
interested, the scene rendered at an average of I hour,
45 minutes per frame on my Amiga 2000 with a 33
MHz GVP '040.

Tracks in the Sand
I would now like to touch upon one interesting

effect that I implemented in the Full Metal Hummer
scene. Many people have commented on it. If you ren
der this scene (or see it on our demo), you'll notice
that tl1e tires are leaving tracks in the sand. I've been
asked many times to explain how this was done. Well,
it's really quite easy.

Figure 5: The tread-track object. The raised bump around
the edges creates the effect of movement through soft sand.

The track objects are relatively simple. They consist
of a surface polygon the tread pattern is mapped to and
a raised "bump" that was extruded around the edges of
the tread polygon (Figure 5). This was done to create
the effect of the Hummer digging into the soft sand as it
drove across the desert.

These track objects are parented to the null object,
and positioned underneath and a little in front of the
front tires. The raised edges have Fractal Noise diffu
sion and a bump map assigned to them. The tread
tracks were created by applying a diffusion, trans
parency and bump map with a tread image I created in
ToasterPaint.
• To create the effect that the Hummer's wheels are

leaving tracks in the sand, simply set each texture
map to world coordinates. As the track object
moves with the Hullllller, it \vill appear to be leaving
tread marks in the sand.

Rotation and Distance
Generator Macro

Scott Wheeler (my partner) and I developed a
macro included on the L\VPRO disk that easily com
putes distance and wheel rotation for a given velocity
(Figure 6). This macro performs a vruiety of functions.
It allows the user to save three individual motion files:

1. Wheel Rotation Motion File: This selection will
cause the macro to save the rotation information com
puted from the user's input. Individual rotation files
can be created for 5 mph, 10 mph, 27.8 mph, etc.
Then the wheel can be parented to a vehicle moving at

Figure 6: The Rotation and Distance Generator macro
makes it easy to move and rotate a vehicle or wheel at
any speed.

see Land Vehicle Movement, page 16

LIGHTWAVEPRD D

Dead in Space
Creating Flares and Explosions for a 86 Ambush

0 ne of the shots I'm most proud of this sea
son on Babylon 5 is from the episode
"Revelations ," in which a heavy Narn

Cruiser is ambushed by a mysterious attacker. It exits
hyperspace into an evil-looking sector of the galaxy
and immediately has a hole punched through it from
underneath by the enemy's powerful energy weapon.

The scene turned out to be one of my favorites and,
much to my surprise, the producers liked it so much
they decided to use it during the opening credits every
week. Since this shot has such high visibility, I thought
I'd share some of the details of its creation and prove
that anybody with LightWave and a few hours to kill
can make millions of people say "Wow!" every week.

Space, the First Frontier
One of the distinguishing characteristics of

Babylon 5 's space scenes is their strong use of celes
tial phenomena, such as colorful nebulas and phos
phorescent whirlpools. Not only do such backdrops
look nice, but they allow us to light scenes darkly, with
shadowed objects still visible in silhouette. In addition,
they often provide visible sources for fill light and pro
vide a refreshing break from the overused norm of
black sky and white stars. When the script calls for a
new area of space to be visited, we spend just as much
time making the background look right as we do the
action.

"Revelations" called for the Narn cruiser to visit
enemy territory. These bad guys are evil and nasty, so I
wanted to design an area of space that reflected this
a place that you could tell was dangerous simply by
looking at it.

Since TV production has such a hectic schedule,
there is never time to create every element from
scratch. A while back, NASA sent us some striking
images taken by the repaired Hubble space telescope,
and we've incorporated these into the show when we
can to provide a little touch of "real" science.

One of these images, of a fiery orange-red gas
cloud, looked particularly hellish and seemed as if it
had the tight stuff to be the basis of "evil" space.

After spending a little time in Photoshop, I had the
image cropped and processed to the point where it

D LIGHTWAVEPRO

looked good. Some blurring was necessary to remove
some of the low-resolution artifacting, but in this par
ticular image, extreme sharpness wasn 't necessary.
What was important was making sure the image was
NTSC-safe. Reds and oranges are video's worst offend
ers, so I brought the colors to well below the safe
level; even when technically safe, reds can bleed a lot
if tl1ey're too saturated. I also didn 't want the colors to
look too overstated, or else they would have detracted
from the explosion-the focal point of the shot.

The image (1300x700) was mapped onto a curved
polygon and placed behind everything else, even tl1e
stars (see the August '94 LWPRO for more information
on nebulas) . I had to be careful not to pan the camera
too far, or else it would see the edge of the nebula.
(The image didn't taper off at the sides and there was
a limit to how far I could stretch it before it looked
bad.)

Since this scene was described in the script as
being at the rim of the galaxy, I added a subtle ring of
stars across the middle of the screen, all with Particle
Size set to Small. The object was also dissolved out 50
percent to avoid sharp flickering (very bright, small
particles against a dark background would alias and
shimmer like crazy).

Once I was happy with the setting for my shot, it
was time to get into the thick of it and blow up a per
fectly good ship.

Ouch! That Smarts!
The script had the cruiser getting hit and exploding

in one blow, but I decided to break it down into two
stages in order to build a little bit of emotional impact:
the first hit would make it clear that the Narns didn't
stand a chance and the second would finally destroy it
(after we had begun to feel sorry for them).

I wanted that first hit to be really violent and look
as if a hole was literally "punched" into the ship. As
the beam hit the bottom of the cruiser, there was a
momentary pause to suggest a power buildup before it
burst through the top. I felt it should be as powerful
and as devastating as possible when it finally broke
through-like a bullet through a balsa wood factory.

After it was hit, I thought it should "sink" in front

by Mojo

of the camera, implying that this one blow had really
crippled the ship. Although the actt1al physics of tltis is
wrong (in space a damaged ship would certainly not
sink) , I felt the depressing feeling viewers would get
seeing this gutted ship fall past the camera far out
weighed tl1e incorrect mechanics of it.

Now I just had to figure out how to accomplish
everything!

Figure l: This is what it looked like in layout. Notice the
hulking square explosion polygon. It's facing the cam
era and not orienterd in the direction of the ship.

Down and Dirty
The first step was to use Boolean functions and cut

a nice chunk out of tl1e Narn cruiser model. This new
version of the ship was parented to the original and
cross-dissolved with it while the lens flares of the ini
tial explosion covered the area in question. (This is
also why the far side of the ship was chosen to get hit.)
Keep in mind that if you 're going to try this, make sure
you set the dissolve envelope splines to Linear.
Othenvise, even in a one-frame transition, you'll see a
shimmering between objects.

As the beam slices through the top, there are three
basic elements that create t!JC impact: lens flares, par
ticles and a real explosion mapped onto a polygon.

All, lens flares ... there are no less than 120 of those
little suckers in tltis scene file. That's what was needed
to create the "burning hole" effect of fire surrounding
the area cut from the sllip as it sinks past the can1era.
(The details of this particular effect were explained in

the November '94 issue of L\VPRO.) Of these, only a
few were actually needed for the initial impact flare-up.
They were ramped between I 00 and 300 percent for a
few frames to highlight the beginning of the blast, then
brought down to a manageable level. (The damaged
version of the Narn ship was dissolved in during this
period.) These flares also had a matching light intensi
ty envelope, so the orange light from the explosion
would be cast on the ship's surface. A falloff was used
to keep the light from scattering across the entire
object, helping to convey the sense that tllis is a very
large vessel.

Just as the first flares reach a crescendo, a massive
outpour of sparks rises from the point of impact.
Instead of using a spherical particle cloud, I created a
plume of points that stretched vertically, once again
helping to emphasize the upward force of the explosion.
The object was made by stretching, tapering and using
the magnet tool on a macro-generated point distribution
of 600 particles. I then saved tllis object as a source and
dragged conglomerations of particles toward the edges
and upward, saving tllis as a morph target. An enveloped
morph of tllis object over 30 or so frames would create
the illusion of the sparks moving at various rates.

The particles are then sized to zero, parented to the
ship and sized larger at a very quick pace in time with
the explosion (along with the simultaneous morph) .
Several layers of sparks were added to create extra
density and simply make it look more exciting.

The finishing touch was the real explosion on a
polygon. As good as lens flares and sparks are, there's
simply notlling quite like a good old-fashioned fireball .
A commonly available CD-ROM called Pyromania fea
tures frame sequences of several explosions, one of
which is a sort of nuclear-style blast heading upward.
We don't normally use them on B5 due to the linlita
tions of polygon mapping, but in this case everything
seemed just right to make use of them. In addition,
because we don't use such explosions very often, they-

Editor's Messa1ge
continued from page 3

Also, just recently added as a mailing list is the
LightWave plug-in mailing list tl1at is updated by Sturu.t
Ferguson. A.l.l the latest info about plug-in support can be
found here. You can subscribe to tllis list by sending a sub
scribe note (like above) to listserv@netcom.com. The
name of the list is lwplugin-1.

One of the reasons tl1at I've been thinking about the net
is a discussion in the LigiltWave newsgroup about the CGI
work in Star Trek: Vtryager. I was surprised by the com
ments by some of the people saying how tl1e CGI work was
very obvious and tl1ey didn't understand why there was
even an attempt to use CGI when they had the models in
the first place. One person went on to say that the obvious
CGI shots were the ones where the Voyager was tiny in the
distance and looked very flat-lit. I, of course, took great
pleasure in explaining that if it was so obvious, why did
they pick the wrong shots to label CGI? None of the CGI

would create the extra impact I was looking for.
Creating this effect is just about as simple as it

sounds. I put a flat polygon on top of the ship in the
area I wanted the plume to come from and planar
mapped the image sequence of the explosion. I gave
the sequence a frame offset of- I 2 so it would begin on
frame 12 of t!1e animation and made sure the polygon
was dissolved out until then.

One thing to keep in mind when using polygon
mapped sequences is dimensionality. If you 're not care
ful, the 2D element in your 3D world can be detected.
This usually happens if you move at too extreme an
angle to the polygon and its perspective begins to sllift.
As a result, the image on the polygon will start to "flat
ten" out, much the same way an image on a piece of
paper does if you look at it at an angle. Whenever you
use an image on a polygon in tllis fashion, make sure it
faces the camera as squarely as possible at all times,
even if it means rotating it during the course of your
animation. A good rule of thumb might be to avoid
using tllis trick when you have extreme panning camera
moves. In tllis case, the move was subtle and the poly
gon was always directly facing the camera, providing
the perfect opportunity for tllis technique.

The main problem with using explosion sequences
like this are the polygon edges. When most of these
explosions were filmed for the CD, the flames went off
the edge of the screen. When mapped onto a polygon,
tllis means that once your explosion reaches that point,
it \vill simply vanish off a hard edge. This would be a
dead giveaway of the trick and look pretty awful to
boot. In this case, the gas cloud reaches fairly high
before it gets to the edge of the frame, so I simply had
to make sure the polygon was dissolved out before it
got that far. This worked out well, since I really only
wanted tl1e fireball for the beginning of the explosion
to highlight the impact. After that was accomplished,
the lens flares and particles did a more than adequate
job of completing the effect.

shots of the Voyager were little in tl1e background (unless
they started off up close and flew away).

As a matter of fact, few people were able to pick out
all of the CGI shots. I guess that means we did our job
correctly. And the other thing it means is that it's becom
ing increasingly difficult to spot CGI. I think you 'd be
surptised at the large amount of CGI work that is being
used every single day in the visual medium. Next time
you're watclling TV, take a good look. Don't just zone
out-watch for techniques and styles. Pay attention to
ligilting, camera angles and storytelling. And then try to
reproduce some of the more interesting things you see.
You'll be a better animator for it, and chances are you
can write an article for L IVPRO about it!

Speaking of L IVPRO articles, if you tried creating hair
using the macro mentioned in last month's "Ftu· and Hair"
article, chances are you were a bit confused (or angry!) .

Finishing Touches
It's always the little tllings that make a good shot

work well. One of my favorite elements in this case is
the blue vortex that disappears behind the cruiser dur
ing the shot. The idea is that the ship is attacked just as
it emerges from the hyperspace vortex, so I added it to
the shot for several reasons.

First, I think it looks nice. As a rule, it's inlportant
to have more than one color in an image if you want
any one color to stand out. In this case, it's the blue of
the vortex that makes the reds and oranges of the neb
ula and explosion so vibrant-it gives your eye some
thing else to reference.

There was also an emotional consideration.
I tl10ught it would make the Narn's situation seem

even more hopeless if you saw their only form of
escape close behind them while being attacked.

It drives home the fact that they are all alone in a
very bad neighborhood, and also presented an oppor
tunity for some neat lighting. (If you look closely you
can see the blue light from the vortex play across the
back of the cruiser.)

In the end, a combination of several simple tech
niques makes tllis shot work extremely well . However,
the most important element of this scene is its design.
A lot of thought went into why to make things look a
certain way and not just how. Consider tllis when cre
ating your own scenes and you may find that a little
attention to why may save you a lot of how.

Mojo has been in therapy, trying to resolve his
emotional attachment to explosions. He is making
progress and has recently conceded his Superior
Elvis Fan complex to Colin Cunningham, who obvi
ously needed something to turn to after working on
Robocop: The Series.

The macro was not printed in the issue, and because of
space constraints, it is too long to fit (you probably wouldn't
want to type it anyway!). However, it is included on tllis
month's LIVPRO disk, and for those of you that do not sub
scribe to the disk, I will make it available to you if you e-mail
me at jgross@netcom.com (there's that Internet again!). Or
you can call Avid Media Group at (800)322-2843 to have a
copy mailed or faxed to you.

One final thing: if you are traveling to !.as Vegas for this
year's NAB show, make sure to visit NAB Multimedia World
at the !.as Vegas Hilton. Avid Media Group will sponsor the
Video Toaster User Pavilion, bootl1 #117, with a large num
ber of vendors present, such as NewTek and Carrera
Computers. NewTek \viii also be on the main floor. The con
ference tuns April 9-13 with the exhibitions ruruling April
10-13. Hope to see you there!

LIGHlWAVEPRD D

You Boneheadl
Part 1: A Be •

A hh, yes. Bones. By now, most of us know what
they can do. We know you can make inani

mate objects come to life. We know that Bones can
make solid objects bend and deform. But not many peo
ple use Bones on a regular basis, because they're either
too tedious to set up, or when you do, weird things hap
pen to your object. Well, believe it or not, they are not
nearly as complicated as you may think

If you've worked on any other 3D platform, you'll
see that only a few, like LightWave, have Bones. Bones
are an advanced form of free-form deformation that
enable the animator to create fluid character anima
tion. You can even make smooth-flowing curtains with
just a few Bones. Bones will also allow you to simply
deform an object, and in a sense, model in lightWave's
Layout. It's good to tllink of lightWave's Bones as han
dles. You probably already know all of this, so let's
move on.

I thought I'd put together a tuto1ial from a fun ani
mation I did when I first got lightWave 3.0 and Bones.
Arnie Boedecker and I have a series of Bone tutorials
we're putting together for LWPRO, based on a big pro
ject just completed. There were quite a few hicks we
picked up when doing those animations (like those
flowing curtains I just mentioned), so keep your eyes
on future issues of LWPRO.

The scene I'm talking about in this article is proba
bly one of the most common animations people have
tried using Bones, thanks to, you guessed it, the
listerine ads. Those sensational ruli.mations were pro
duced by a company called PIXAR, but there is no rea
son you can't put together ail animation like that at
home using LightWave and Bones. Just so no one is
misled, we'll call our product Blisteline.

Proper Construction
• The first thing to do is build your bottle. This type of

object is pretty easy to build using Lathe, so I won't
go into details. The way I built mine was by going to
the store, buying a bottle of listeline, and placing it
on top of my computer. Then I built it. A more
mathematical approach cru1 be used by measming.
Plus, you nm grab a frame of the bottle, then trace
over the image in Modeler.

Ill LIGHTWAVEPRO

ner's Look at Bones

• For the label, I used Modeler's S Drill, Stencil fea
ture (Tools menu) to stencil in the label area on
the bottle. To create the label image, I found the
ToasterFont that looked as much like the original
label's fonts as possible. Then I made sure that the
spacing was the srune, and the size of each section
of words. What the words read, however, is not at
all what's on my bottle. I composed black letters on
white in CG, then imported that frame to
ToasterPaint and drew the border. I saved this as a
full-size image, so that in the rulimation, when tl1e
bottle jumps forward and lands in front of the caJTI
era, you can clearly read the label. It takes up more
RAM in lightWave, but it's well worth it when every
tiling is sharp and clear in the final piece. For this
tutorial , you can use the pop can supplied in the
Toaster's objects directory to save time.
With Bones, anything you want to deform needs to

be made up of many polygons. For instance, if you took
a storm window off of your back door and tlied to bend
it, it wouldn 't bend at all , or it would crack. But, if you
took a screen off of that door and tried to bend it, it
would bend very smoothly and easily, right? That's
because the screen is made up of many segments .
Think of your objects the same way.

In Modeler, to create many segments, use Subdiv
(Polygon menu) . You first need to Triple (Polygon
panel) anything before you subdivide. [Editor's note:
With Modeler version 3.5 , you can subdivide three
sided or four-sided polygons.)

Figure l: The first base Bone in place as an anchor.

by Dan Ablan

You should also make sure to check for non-planar
polygons (Polygon Stats-Display menu) and tliple any
that you find. If your whole object is composed of trian
gles, you will have no non-planars. This is best for
objects that will be deformed in Layout.
• Once this is done, Export your bottle to Layout, sav

ing it as bottle.sbdv or soemthing similar.
Remember that Bones affect the points of an object,
not the polygons, so when you start moving your
Bones, don 't be confused by the bounding box of
your object staying in place.

The Setup
One thing to remember is that Bones are saved \vith

the scene file, not the object. Bones have an unlimited
influence on an object. If you don't limit the influence
with the Limited Range setting in the Object
Skeleton sub-panel, your entire object will be influ
enced. The more common way of taking care of the
influence is by placing other Bones around the object.

On my Blisterine bottle, I've placed four Bones in
the base, renaming them base Bones. Those base Bones
don 't move because they will act as anchors for the
object. Because I'm going to move and rotate tlw other
Bones, tl1e anchors hold the bottle on the ground. The
result is a bottle that bends and twists. If those base
Bones weren't anchoring the bottle, the entire object
would move.

Under the Objects panel in Layout, you'll see anoth
er button labeled Object Skeleton. This is where
Bones are loaded, cleared and renaJTied for your scene.
In order to place Bones to a specific object, that object
must be selected before you go to the skeleton panel.
• Click Add Bone. Rename that Bone "basebone."

Return to Layout. You 'll see what looks like a
squared necktie. That's your bone (Figure 1) . This
Bone has no effect on your object yet. Select
Continue and ren1rn to the Layout \vindow.

• The next thing to do is choose the object, select
Bone and choose Rest Length from the mouse
function control area in Layout. Do not confuse Rest
Length with Size. The size will acn1ally change the
shape of the object, whereas the rest length deter
mines the aJTiount of influence the Bone has.

The larger the Bone rest length, the more influence
it will have on your object. Since I'm placing this
first Bone as an anchor, it's sized to half the length
of the base of my object. When I add the next three
Bones, they will be the same size as well. From this
point, you can repeat the process, or if you are
working with LightWave 3.5, the Add Child Bone
feature in the skeleton panel can be used.
This function will clone the Bone and parent it to

the currently selected Bone, so you don't have to
reset the rest length. Add Child Bone is really help
ful when putting bone in a snake- or rope-type
object.
• Now, rotate the Bones you just added so that you

have a base Bone in four places on the base of the
bottle-north, south, east and west-and create a
keyframe at zero for each. So far, these Bones still
have no effect on your object. To make them have
influence, press (r) to determine the rest position
and direction. If you now move or rotate these
Bones, they will affect the object. However, we
don 't want to move these. They're the anchors,
remember?

• Go back into the Object Skeleton panel by pushing
(p) on the keyboard while a Bone is selected. Add
another Bone (not a child Bone). Rename it "bot
tombone." This Bone will be used to control the
bottle's lower half. Change the Rest Length and
rotate it 90 degrees vertically. Think of tllis Bone as
a leg for our bottle.

Figure 2: The neck Bone in place.

• Add another Bone and renan1e it "chestbone." Place
this one in the top middle portion of the bottle.
Finally, add only one more Bone, renaming it

"neckbone," and change the rest lengtl1, then rotate
it to fit it in tl1e neck area (Figure 2). Once your
Bones are in place, type (r) on the keyboard and
create a keyframe for each bone.
If for some reason you set a Bone wrong, you can

deactivate the Bone from the skeleton panel by de
selecting Bone Active.
• Now, save the scene. Get into the habit of saving the

initial Bone setup. llhat way, if your bone move
ments get totally outi of hand, you can reload the
sen1p scene, and not have to deal with resetting all
of those Bones.

Simple Surfacing
I've !tied surfacing the Bliste!ine bottle a number of

ways, and recently came across a way to save time by
not using traced reflections. You'll definitely need to
trace refraction for a glass bottle, though. By loading
the Fractal Reflections image and using it as a
Reflection Image with 10 or 15 percent Reflectivity,
you'll achieve a nice abstract reflected look, and help
your object appear more real. It's a great setting for
getting clear plastic to look convincing.

Originally, I made botl1 tl1e bottle and liquid inside
it. Each had different surface properties and different
refraction indexes. To get true refraction, the light
would need to go into the bottle at one setting, pass
through another, and leave at yet another setting.
Polygon count was lligh, so just for grins and giggles, I

t!ied something else. I resurfaced the body of the bottle
with a different name. I took the liquid out of the bottle
and kept one refraction level for the whole thing. Then,
I surfaced the body section the color of my liquid, \vith
the neck portion of the bottle fully transparent (see
below). In the final animation , the effect was barely
noticeable, and saved time rendering because there
were fewer polygons and less refraction to calculate.
The downfall of this procedure is tl1at tl1e liquid in the
neck area won't slosh around.

Bottle Surface Settings
Color 184, 122, 46
Diffusion
Specula!ity
Glossiness
Reflectivity
Reflected Image
Transparency
Color Filter
Edges
Smoothing
Refractive Index

90%
80
High
IO%
Fractal Reflections
60%
On
Normal
On
1.3

Neck Surface Settings
Color 200, 200, 200
Diffusion 80%
Specula!ity 80%
Glossiness High
Transparency 100%

The Motions
Now it's time to animate. One thing to learn is to be

patient \vith your movements. Too often, animations are
rushed to get a certain amount of movement accom
plished within a certain time frame. Work to avoid that.
With Bones, timing is everything. The best way to know
how to move your character around is to study motions
from everyday life. When creating a more cartoonlike
character, the movements are exaggerated, so watch
how traditional cell animations are drawn and :ulimated.

From here, it's totally up to you how everytlling will
work. For my bottle, I decided to make it look around,
then lean back, lurch forward and flip in the air, land-

ing in front of tl1e can1era. This becan1e a little tricky,
because the Bones bend the object, but keyframes
needed to be set for the bottle as well. The chest Bone
moves back, making the bottle lean, then it quickly
swings fotward, and at that point, the bottle starts to flip
up in the air. Keyframes for the bottle needs to be set
when it starts its jump, in mid-air, when it's upside
down, and again when it lands. To add to the whole
motion, consider stretclling your object on the Y axis,
when it lands, while moving the Bone forward quickly,
then back, as if the bottle almost loses its balance when
landing. The motions for this movement are on this
issue's disk with a pop can object ready to :ulimate.

What really helps sell the character, whether it's a
bottle, can , glass, or even a square box, is proper
keyfranling of the motions. To take your :ulimation one
step further, consider adding hands, feet or weapons to
your object. Since I'm from Clticago, I thought it appro
priate that the Blisterine bottle was connected-you
know, \vith the Mob.

Once you've set up the object's movements with
Bones, save the scene. Then create the surrounding
scene, and simply use the Load From Scene (objects
panel) feature to imp011 your Bone sequence. I've put
my mobster in a scene, but made it black and white to
fit the time period. By parenting a machine gun, among
other objects, and keyfrarning that, tl1e illusion is creat
ed that tl1e bottle is holding the gun (see color pages) .

Remember This
Bones are a very powerful tool. What I've learned in

working with them over the past year and a half is
patience. The latest project with bones went so well
because the entire animation was storyboarded first. We
knew what we w:u1ted to accomplish, and when it came
time to animate, everything fell into place.

By the way, there is a Ninja and Ran1bo Blisterine
bottle :ulimation in the works.

liD
Dan Ablan is a LightWave animator for AGA in

Chicago. He's done work for The Dial Corporation,
Kraft Foods, NBC in South Bend, and others. He can
be reached at (312) 239-7957 or via Internet at
dma@mcs.com.

Beginner's Steps
• Think of Bones as hmdles to pttll and push

an object.
• Objects need to be tripled, and sometimes

subdi\1ded, to bend properly.
• Rest Lengtb sets the amount of influence of

the Bone.
• Si7jng a Bone chmges the size of the object,

not the Bone.
• Use Add Child Bone (lightWave 3.5) to save time.
• Always save the scene once Bones are in place.
• Save scene with Bone movements under a

different name.
• Be patient with tbe amount of movements.
• Stretch the object while moving Bones for added

characteristics.

LIGHTWAVEPRO D

ular 3D A s
Part II: Ray Tracing and Radiosity

I f you tuned in last month, you 'II recall my explication
into the nature of the Z-buffer rendering algorithm.
U it's a bit hazy or you're just joining us this month,

don't worry, we'll trip the light fantastic with a short
review to get us primed for the way-cool exploration of
the wowities of ray tracing and radiosity techniques.
(Sorry 'bout the '60s-like vernacular, dudes, but I never
did like introductions. Hang tight, you stiffers, we'll get
back to "professionalism" in the next paragraph.) Trust
me, if you make it through this algorithm article, you 'II
never look at that Render button in the same light again.

The Review
As you recall, all objects exist within 30 object

space, bound on all sides by clipping planes. Any
object or part of an object lying outside of a clipping
plane does not enter into the final image. For the
most part, the side clipping planes are determined
by the viewing angle, and the hither (near) plane
usually coincides with the viewscreen. The yon (far)
clipping plane may be some arbitrary distance deter
mined by the programmer or may be a virtual back
drop image like that available in LightWave's Effects
panel. When 30 objects are finally rendered, they are
"projected" onto a 20 screen called the viewscreen.
This, incidentally, is the final image that is seen.

As we saw last month, the essential ingredient in the
Z-buffer rendering technique is the use of frame
buffers, not only as the buffer to store the final image,
but also as a repository for the distances of the nearest
surfaces to the viewscreen. With the help of this addi
tional buffer, the algorithm constructs a virtual picture
of the closest object surfaces within the scene, which is
then used as a guide in the final shading stage of those
surface points visible from the camera view. This shad
ing information is then written to the image buffer.
Recall that with this rendeting technique, in its purest
form anyway, each object is processed individually,
negating the necessity of storing all objects in memory
simultaneously. Unlike ray tracing, which we'lllook at
next, this is a great advantage for low-memory systems.
Z-buffer rendering is fast and simple, but for more
realism in dealing with more complex objects, ray
tracing is usually considered.

II!J LIGHlWAVEPRD

Ray Tracing
Due to its procedural parallel to light's behavior in

the physical world, this is probably the oldest and
most popular algorithm responsible for producing
some of the most realistic images ever seen. First pop
ularized in the Amiga community with such ground
breaking software for the personal computer as
Impulse's Turbo Silver and then Imagine, ray tracing
achieves its marvelous realism by mimicking the
physics of light rays-including the laws of reflection
and refraction-with prisms, lenses, mirrors and
other objects. By its very nature, ray tracing also han
dles optical effects such as shadows, antialiasing and
motion blur well.

Unlike the Z-buffer algorithm, ray tracing can be
thought of as a random-sampling rendering technique
because each pixel can be computed independently.
However, all objects within the scene need to be pre
sent simultaneously for tl1e procedure.

The general idea for ray tracing is as follows: Each
light source emits rays of illumination. These rays travel
through space striking and bouncing off of objects,
eventually reaching the viewer's eye. Of course, the
odds of the algorithm tracing just the right rays that will
reach the viewer are enormous, considering tl1e infinite
number of rays emanating from each source.
Therefore, ray tracing approaches matters from the
opposite direction. Here, a singular ray is traced from
eye to pixel out into object space, until it encounters an
object (if any). From tl1at surface point, which is now
the shading point, the light ray is either absorbed or
traced back to its many possible component origins via
its reflection and transmission to other objects or its
direct illumination from otl1er light sources. The resul
tant shading for the surface point then is a summation
of all these possible sources for the original eye ray.
This is much more efficient than starting a ray from a
light source and hoping it finally reaches the view
screen. Interestingly, although an object may not be
seen directly within the viewing volume, it may be seen
as a reflection in another object. Since a ray may then
originate outside the clipping planes, it is necessary to
construct a bounding sphere initialized to some back
ground color so the ray isn 't traced forever (Figure 1).

by William Frawley

Figure 1: Just because an object lies outside the viewing
volume doesn't mean it won't enter into the final image.
In ray tracing, an object may contribute light rays via
reflection or transmission even though it resides outside
of the dipping planes (A). However, if a ray never
strikes an object, a virtual bounding sphere ensures that
some background color shades the pixel (8).

Basically, ray tracing can be considered a two-step
process. First, for each ray passing from your eye
through each pixel out into the viewing pynunid, a tree
diagramming the interactions of the ray with all the
other objects and lights \vithin the scene is constructed.
The ray in this case is sinlply the path the light \viii take
from objects and lights back to the camera. Second, the
tree is processed. This is where the shading is comtiut
ed. The color value of each pixel is determined at this
final stage-neglecting any antialiasing and motion blur
effects for the moment.

In the construction phase of the ray tree, what hap
pens when a ray strikes an object is determined from
the surface properties and the complexity of the scene.
If, for example, there is only one opaque, diffusely
reflecting object and one light source, a ray traced
from the eye striking the surface may follow a path
leading directly to that light source. This is called a
direct illumination patl1. It is helpful when tracing a ray
to construct an abstract tree diagramJning its interac
tions within the scene (Figure 2). It is tl1ese interac
tions of the ray's patl1 with otl1er objects and lights that
\viii eventually construct the final picture.

Imagine now a more complex scene containing
multiple objects with both transparent and reflective
surfaces ~mel multiple Ught sources. The ray strikes the
first object, which might be a prism, for example.
Because of the prism 's surface properties, reflective
~mel transparent, the ray splits into two component rays
upon striking tl1e surface: a transmitted ray (because of
the transparent property of glass) and a reflected ray
(because of the reflective property of glass). Continuing
to follow the path of each of these rays might lead to

Ray Tree

2 3 2 3

2 3

Figure 2: A ray tree diagramming a scene with four
objects and three light sources. The construction of a tree
helps determine all the possible interactions of a light ray
as it travels within the scene. For each pixel, a ray is typi
cally shot from the eye outward until it strikes an object
(if any). From there, the surface material deems whether
the roy splits into reflection or transmission paths. The
direct illumination poths are also calculated.

more objects being encountered and subsequently split,
depending on the surface properties of these new
objects and the angles of the rays leaving the first
object. Combine these two types of component rays
(reflection and transm.i sion) with the direct illumina
tion rays from each light source and you might get a
very complex, multi-level ray tree, depending on the
number of lights ~mel objects in the scene (Figure 2). As
you might guess, as the tree gets deeper, more calcula
tions are required, and therefore more computer ren
dering time is needed. It's up to the programmer to
determine how extensive the ray tree becomes, but
there must be some limit to tl1e ray's patl1, or rendering
of the image might outlast your lifetime.

To process the ray tree, consider all the possible
incoming sources of light rays striking tl1e surface point
in question. Then sum the entire illumination con
tJibuted by tl1ese sources, be it direct, reflected or trans
mitted rays, to find tl1e outgoing light to tl1e appropriate
pixel. Therefore, an important pru1 of the calculation for
the shading of a point takes into account the object's
surface properties and the interaction of these proper-

ties with the summation of all the incoming colors and
intensities of tl1e vruious illumination rays. It is inlpor
tant to note that tl1e reflected ru1d tnmsmitted rays that
we are dealing with here are speculru· in nature, not dif
fuse. Remember that specular reflection is such tl1at the
patl1 of light obeys the angle of incidence/refleck'UJCe law
- one unique path for the ray relative to its origin.
We'll explore diffusion effects when we discuss the
radiosity preprocessing technique shot1ly.

Finally, to determine if a shadow contributes to the
shading information, each light source is considered
for its potential illumination of the surface point. By
tracing a ray from each light source to the object, you
determine if ~my other object blocks the illumination
ray's path. If so, the point must be in shadow. If not, the
total illumination is added into the shading. Because of
tl1e matlJematics of tllis algorithm, however, it is possi
ble to include penumbra effects, or partial shadowing,
by calculating the proportional light intensities reaching
tl1e surface point of partially blocked objects.

Because each pLxel cru1 be tl10ught of as a separate
entity for processing, all objects must reside in memory
at once when building tl1e ray tree. Tllis approach differs
from tl1e Z-buffer technique, which deals witl1 one object
at a time for each Z-buffer pass. But this is again due to
tl1e mathematical nature of ray tracing, which does have
the benefit of locating hidden surfaces and knowing
immediately which object is the first to be hit by a ray.

Other limitations with basic ray tracing (although
each programmer may fine-tune various aspects)
include realistic shadows and caustics, extremely
focused spots of light. There are m~my ways around
this problem, however, such as creative reflection
mapping (LIVPRO, Vol. 1, No.9, "Beneath the
Surface"). Finally, the biggest hurdle for obtaining
extremely realistic images lies with the phenomenon of
diffuse inter-reflections.

Diffuse Inter-reflections
Diffusion, or the scattering of light based upon a

surface's material properties, is a concept you may
already be fan1iliru· with if you've dealt with surfacing in
LightWave. Recall that a more diffuse material scatters
light in all directions, whereas a less diffuse surface
tends to focus or absorb incoming light rays. Diffuse
inter-reflection then is the reflection ru1d transmission
of scattered light between different surfaces (no sur
prise). Unlike specular reflection and transmission ,
which depend also on the glossiness of the surface,
tllis phenomenon is usually witnessed regru·dless of the
viewing angle.

For instance, imagine the corner of a normally lit
room. One wall is red, the other is white. What you

would probably notice is that the junction between the
walls is a little darker than the flat surface of the walls,
and the corner of tl1e room even darker yet. Tllis grad
ual decrease in light reaclling the corner is the result
of a falloff of light reflecting and scattering from sur
face to surface. In fact , at the junction of both the red
and white wall, you would notice tlmt the white wall is
tinted slightly red and the red wall is a little brighter
due to the scattering of light of the white wall.
Consequently, the total light reaclling each surface is
the sum total of both the light source ru1d the diffuse
inter-reflections. If the walls are glossy, tl1row in some
specular reflection as well.

RADIOSITY BALANCING LOOP PSEUDO-cODE

Calculate Form-Factors:

Fonnfacror.-\.B • '\ bucdonlbeorim~;~~OOnWCIICb.ckmmlll.l~olhcrd=cnt
Fonnfacror.A.C • --
Fonnfactor.B.C • •-

r
Cslculate Emittance (If any) of Each Element

~~:~tens i ty (if light source)

Emile -~·

Calculate Reflectance (Incident light) of Each Element

Reflect..-\ • ? • 0
Reflect.B • ? • 0
Reflect.C • 1 • 0

CB/cu/ate Radlos/ly of Each Element

RadiosityA • EmitA + Refi t-ct..-\
Radiosit.y.B • EmiLB + Reflect.B
Radiosity.C • Emit.C + Hcficct.C

'-
First Iteration of Balancing Loop:

Reflect.D '" Hadiosin-A • FonnfactOrAB
Radiosity.B .. EmiLB + Rcflect.B

Refl.ect.C • Radiosit\"_o\ • FonnFacwrAC
Radiosity.C • Emit.C + Hcflcct.C

Rcfl.ecr...'\ • Radiosin-.B • FonnfactorAB
Radiosity..A • Emir...-\+ Hcflecr....-\

Reflect.C • Radioslw.D • Fonnfaetor.B.C
Radiosity.C • Emit.C + Reflect.C

~~~~--~ t;'~~~-~ ~~~~ctOrAC 
Refiect.B • Radiositv.C • FonnfactOr.B.C 
Radiosity.B • EmiLB + Reflect.B 

Second Iteration of Balancing Loop: 

A-•B 

A-·C 

c-.e 

Figure 3: A pseudo-code example to help show how 
radiosity is calculated. For simplicity, only three ele
ments (polygons) are considered here. 

Diffuse inter-reflections cannot be solved with ray 
tracing alone. Ray tracing handles the shading of sur
faces strictly by calculating the rather straightforwru·d 
geometries of specular reflection and trru1smission, 
taking into account the surface properties of other 
objects and the color and intensity of lights striking 
such surfaces. Since diffuse light cru1 originate from an 
infinite number of paths, it would be time-prohibitive 
to shoot a large number of rays in all directions just to 
determine if light is being diffusely reflected from some 

see Popular 30 Algorithms, page 17 

Next month's issue of L/GHTWAVEPRO takes a look at LightWave's use in Star Trek: 
Generations and Star Trek: Voyager. 

LIGHlWAVEPRO m 



Mighty Morphin' 
Morphing Tricks 
W hat is morphing? 

Well, this article doesn't have anything to 
do with 2D image morphing, the type 

made popular (perhaps too popular) by Michael 
Jackson 's music video "Black and White." And , 
although morphing is "mighty" powerful, I'm certainly 
not talking about those annoying adolescents in multi
hued spandex who gallivant around the tube on 
Saturday morning. 

This is about 3D morphing: the ability of LightWave 
to change the geometry of one object to match the 
shape of another. 

Limitations 
There are a few limiting factors. First and foremost is 

the requirement that the source object and the target 
object have the same number of points. Trying to morph 
an eight-point box to a 34,000-point Tyrannosaurus will 
not work. 

Furthermore, with few exceptions, the target object 
should be modeled directly from the source object. In 

practical terms, tl1is means you create a source object 
in Modeler, then bend, stretch, twist, move, resize, 
rotate, push, pull, dent, drag, kick, mangle :md other
wise reshape your original object into its morph target. 
In some instances, you might have to resort to moving 
points around individually. 

One very important thing to remember is to save 
the source object before getting out tl1e hammer. 

Another limitation is that as the points of the source 
object move to their new positions in tl1e target object, 
they move in straight lines. However, there is a way 
around this that we'll get to in just a moment. 

Digression on Theory 
Many of us have a difficult time understanding just 

what is going on with source objects, target objects, meta
morph levels and envelopes. If I had to describe the basic 
principle involved in a succinct manner (and I guess I 
do), I'd say that you should think of a morph target mere
ly as data tl1at the source object "looks" at to detemline 
what shape to become. If you keep that thought in nlind, I 
think everything else \vill be a bit more understandable. 

[fJ LIGHTWAVEPRO 

How to Set Up a Morph 
It's all about percentages, envelopes and who is tar

getingwhom. 
Say you have three objects: a bust of Bill Clinton, a 

mailbox and a back half of a horse. They were all mod
eled from the same object and have the same number 
of points. 

This is obviously a hypothetical situation, so just 
pretend you're doing the following steps: 
• Load the three objects into Layout. Set the mailbox 

and horse's butt to 100% Object Dissolve 
(Objects panel). You could just move them out of 
camera view, but I like to use Dissolve because it's 
right there in the objects panel. 

• Set the Metamorph Target for Clinton to be tl1e 
mailbox, and set the Metamorph Level to 100%. 

• Set the Metamorph Target for the mailbox to be 
the horse's hiney, and set the Metamorph Level 
to 100%. 
Now close the Objects panel. What do you see? Yes, 

that's right: Bill Clinton is a horse's ass. (I've always 
wanted to say that.) 

But why? OK, here's what's happening: the mailbox 
is 100% morphed into the shape of the horse's behind. 
The bust of Clinton is 100% morphed into the shape of 
the mailbox. But since the mailbox is now shaped like 
the equine posterior, that is the shape to which William 
is morphed. Get it? If not, read the preceding para
graph again. Slowly. 

This is called a "chain" of morph targets. In other 
words, object 1 is morphed to object 2. Object 2 is 
morphed to object 3. Object 3 is morphed to object 4. 
(Object n is morphed to object n+1 , for you math 
heads.) This can go on for quite a spell-up to 16 
times for any one source object, according to the man
ual. Rumor has it, though, tl1at you can actually have 
far more than 16. I, for one, am not about to set up a 
97-object chain of morphs just to find out the real 
maximum. If you have excess time on your hands, feel 
free. [Editor's note: For those of you without excess 
time, the limit is 40!] 

To control the morphs over time , you use 
envelopes. For exan1ple, you'd set up an envelope for 

by James G. Jones 

the Clinton bust object \vith a keyframe at frame 0 equal 
to 0%, and a keyframe at frame 15 equal to 100%. 

Then you'd create an envelope for the mailbox that 
goes from 0% at frame 0 to 0% at frame 15 to 100% at 
frame 30. 

The resulting animation would show Clinton's· head 
at frame 0, changing to the mailbox at frame 15 , 
changing to the horse's hindquarters at frame 30. 

Morphing Real Objects 
Enough theory ... here 's a slightly more complex 

(and less political) example that you might actually 
find useful. 

How about morphing a flat plane to a sphere? 
Having an animation where a flat plane changes to 

a sphere is one of those things that sounds easy to do 
at first , but turns out to be a bit tricky in reality. Here 
are a couple of approaches I've worked out: one solves 
a problem with the Wrap-To-Sphere macro in 
Modeler, is very simple and gives OK results. The other 
is a bit more complex but looks much better. 

Method One 
• In Modeler, use Box (Objects menu) to make a 

flat plane that is twice as wide as it is tall. For this 
example, 2 meters wide (along the X axis), 1 meter 
tall (along tl1e Y axis) , witl1 no depth (along the Z 
axis). Be exact. Use Numeric (n) to enter the pre-

figure 1: Make a flat plane in Modeler, 36x 18 subdivi
sions. 



cise values. Enter 36 subdivisions along the X axis 
and 18 subdivisions along the Y axis. You should 
end up \vitl1 a flat plane that looks just like Figure 
1. Use the Center macro to center the plane if you 
built it off-center. 

o You will notice that the polygon's surface normals 
will be facing toward you (toward the negative Z 
axis). Flip them all (Polygon menu or f) so they 
are facing away from you (toward the positive Z 
axis). This will make sense in a moment, trust me. 

o Save this object as "FlatPlane." 
o Now go to the Macro button and choose "Wrap

To-Sphere." When fue requester appears, click on 
the All button and set the inner radius to 0.5 
meters. Click on OK. 
You will now have a nice-looking sphere, and you 

will notice that the polygons are facing the way they 
should-outward. 
o Save this object as "Sphere." 
o ow load these two objects into Layout ~md set up a 

morph from the FlatPlane to the Sphere over a 
period of 30 frames. Don't forget to set tlle Target 
object (Sphere) to 100% dissolve. Make a wire
frame preview and the first problem you'll notice is 
fuat the flat plane turns inside-out on its way to the 
sphere shape. 
This is not good. Howe~er, you could always run it 

backward and do an animation of an imploding grapefruit. 
By the way, I have no idea why tltis macro flips the 

points around like this. I just use macros, I don't 
understand fuem. 
o To solve this problem, go back to Modeler and 

Import the FlatPlane. 
o Use tlle Rotate tool (Modify menu or y) to ntrn it 180 

degrees on tlle Y axis. Now tlle polygons \vill (surptise) 
be facing the right direction-toward the camera. 

o Save it again and Export it back into Layout. 
Well, the flat plane no longer turns inside out and 

the morph looks fairly good. However, look closely at 
the corners of the flat plane as it changes to the 
sphere. They fold back on themselves in a rather 
unpleasant manner. This is what prompted me to 
come up witl1 ... 

Method Two 
This approach uses the previous two objects and 

creates a titird object, a cylinder, as an intermediary 
between the flat plane and fue sphere. 
o Load the FlatPhme object into Modeler. 
o Click on the Volume button. It should say 

Exclude. If not, click on it again. 
o Using fue left mouse button, draw out a selection 

box in the Face view around the right half of the 
plane. The left edge of fue selection box should be 

Figure 2: Use the Bend Tool to bend the right half of the 
plane back 180 degrees. 

exactly at the center line (where X = 0). Now, 
when you go to bend this object, it will only affect 
the right half. 

o Activate the Bend tool (Modify menu) and 
Numeric. In the requester, enter the following val
ues: 
Axis 
Range 
Sense 
Angle 
Direction 
Center 

o Click on Apply. 

X 
Automatic 
positive ( +) 
180 

90 
0,0,0 

You should see something like Figure 2. If the 
plane's end points do not bend back far enough where 
they are located at X=O, click Undo, select all of fue 
midclle points (where X=O) and use tl1e Set Val tool 
(Tools menu) to set all of the ntidclle points to X=O. 
Then you can repeat the above step. Sometimes, after 
centering an object, ilie midclle points may be located 
at X=-0. Those points \vill not be affected in a volume 
that rests on them. 
o Now turn off Bend, and move tlJC volume selection 

box to surround the left half of tlle flat plane. This 
time, the right edge of ti1e selection box should be 
at the center line. Choose Bend and Numeric, and 
use the same values as before, except change Sense 
to negative (-) and Direction to -90. 

o Click on Apply. 
You should have a cylinder. However, you'll notice 

that it's not centered. 
o Use tlle Center macro to center ilie object at 0, 0, 0. 
o Save this object as "Cylinder." 

Setting Up the Morph 
o Load all three objects-"FlatPlane," "Cylinder" 

and "Sphere"-into Layout. 
o For Cylinder and Sphere, adjust the Object Dissolve 

to 100%. 

o Set the Metamorph Target for Cylinder to 
Sphere, and tlle Metamorph Target for FlatPlane 
to Cylinder. 

o Create a metamorph envelope (E button) for 
FlatPlane with keyframes at 0 and 30. Set ilie ten
sion for keyframe 0 to -1 and the tension for 
keyframe 30 to + 1. 

o Make a similar Metamorph Envelope for Cylinder, 
but set ti1e tension for keyframe 0 to + 1 and fue 
tension for keyframe 30 to -1. 
Notice that the morph envelopes overlap. While fue 

plane is morplting to the cylinder, the cylinder is mor
phing to the sphere. 
o Make anotller wireframe preview and see what you 

tllink. 
Because of the overlapping morph envelopes and 

the tension settings, the cylinder object is exerting 
more influence at the beginning of tlle morph, which 
makes for a more aesthetic change to a spherical 
shape. Note also that some of the points of the flat 
plane no longer travel in a straight line to their desti
nation. 

Some Morph Tips 
o Any texture map that you have applied to the flat 

plane goes along for fue ride when you morph it 
into the sphere. 

o If you need to see the back of the sphere after tlle 
morph, do a one-frame dissolve to a sphere that 
has the points where fue edges merged. Oilienvise 
you 'll see a seam. 

o If you want to see tlle sphere morph down into a flat 
plane, simply set up your morphs so your plane 
object starts out 100% morphed and then goes 
down to 0%, or morph fue sphere into tlle flat plane. 

Morphing as Movement 
Morphing is about movement. The points move. 

The polygons defined by those points move. 
Why not use a morph to move a whole object? 
Why would you want to, considering tllat lightWave 

allows you to move objects directly in Layout and set 
keyframes and all that? 

Well, say your animation needed a mosquito. A 
rabid, hyperactive, directionally challenged mosquito, 
to be precise. 
o Create a small (maybe 500 mm on each side) cube 

in Modeler. 
o Move it (t) off to the lower rightlland corner of tlle 

Face view. 
o Save tl1is object as "Boxl." 
o Move it again, tllis time over to fue lower lefthand 

corner. 
o Save as "Box2." 

see Mighty Morphin' Morphing Tricks, page 16 

This month's disk includes scene files and objects from Joe Dox' Full Metal Hummer 
scene, a sample bones scene from Dan Ablan, and GVA's rotation and direction macro. 
Also included from last month's LWPRO is Gonzalo Garramuno's Hair Creation macro 
and Dan Ablan's Wood Scene. 

LIGHTWAVEPRO IEJ 



Reader Speak 
Explaining Configuration Files 

I t's been awhile since we've been able to include a 
Reader Speak column and the mail has been 
building, so let's respond to some of it this month. 

Q: I know there are ways to customize 
LightWave and Modeler. Could you talk about the 
config files and how to go about changing them? 

Paul Ortega 
Lubbock, TX 

A: Indeed, you can customize some features in 
both LightWave and Modeler by modifying some 
ASCII configuration files. Configuration files for 
LightWave and Modeler are found in the Toaster/3D 
directory and are called LW-config (LightWave) and 
MOD-config (Modeler) . Two full sample config files 
are listed below and then reprinted with explana
tions and tips. 

LightWave Config File 

LWCO 
0 
FileReqPresetl DFO DFO: 
FileReqPreset2 BOX BHO: 
FileReqPreset3 WORK DHI:Toaster/3D 

FileReqPreset4 EXTRA DH2:Toaster/3D 
ScenesDirectory DHI:Toaster/3D/Scenes 

ObjectsDirectory DHI:Toaster/3D/Objects 
HierarchiesDirectory DHI:Toaster/3D/Scenes 

Surfaces Directory DHI :Toaster/3D/Surfaces 

ImagesDirectory DHI:Toaster/3DIImages 

OutputDirectory DHI:Toaster/3DIImages 
FramestoresDirectory DHI:Toaster/3DIImages 

MotionsDirectory DHI:Toaster/3D/Motions 
EnvelopesDirectory DHI:Toaster/3D!Envelopes 

PreviewsDirectory DH2:Toaster/3D/Previews 

StatusFilename (none) 
DefaultTension 0.000000 
DefaultSegmentMemory 2200000 
DefaultZoomFactor 3.200000 
DefaultOverlay 0 
FrameEndBeep I 
RenderDispiayDevice 4 
RecordSetupi (none) 

[9 LIGHTWAVEPRD 

RecordSetup2 (none) 
RecordCommand (none) 
RecordDelay 0.000000 
FirstFrameDelay 0.000000 
DefaultLayoutGrid 8 

AutoKeyAdjust 0 
ExpertMode 0 

Modeler Config File 

MDOP 
0 
FlatnessLimit 0.500000 

QuadTriMode I 
TwoSided 0 
CurveDivision I 
UnitSystem 0 
FontsDirectory /ToasterFonts 
MotionsDirectory Motions 
MacrosDirectory DH2:LWM 
MacroListsDirectory DH2:Toaster/3D 

MacroList DH2:Toaster/3D1GMacros 
StartupMacro 
KeyMacroFI DH2:LWM/Text.Iwm 
KeyMacroF2 DH2:LWM!Router.lwm 
KeyMacroF3 DH2:LWM!PointSpread.lwm 

KeyMacroF4 DH2:LWM!LightSwarm.lwm 
KeyMacroF5 DH2:LWM/CutFaces.lwm 
KeyMacroF6 DH2:LWM!NextEmpty.lwm 

KeyMacroF7 DH2:LWM!NearBG.lwm 
KeyMacroFS DH2 :LWM!PointCenter .lwm 

KeyMacroF9 DH2:LWM/Center1D.lwm 

KeyMacroFIO DH2:LWM/Center.lwm 

Colorlnterface I 
ScreenModeiD 0 

Both config files have several things in common. 
Some defaults are automatically written whenever 
you exit the program, like most of the Modeler 
options, and some you need to type in yourself using 
any word processor or text editor, such as most of 
the LightWave options. Both files list an option, all as 
one word, then a space, and then the default 
(whether user-defined or written by the program) . 
By the way, both of these files are for the shipping 

by John Gross 

(3 5) version of LightWave and may be different 
from those for your version. 

Let's break them down. All explanations and 
comments will appear in italics. 

LW-config 

LWCO 
0 
These first two lines are file identifiers and 

should not be modified. 
FileReqPresetl DFO DFO: 
FileReqPreset2 BOX BHO: 

FileReqPreset3 WORK DHI:Toaster/ 3D 

FileReqPreset4 EXTRA DH2:Toaster/ 3D 

The FileReqPresets allow you to change the four 
drive buttons listed at the top of all LightWave 
requesters. The first word after the space is the 
name you wish to appear on the button, while the 
second word ( o1· group of words) is the full path you 
wish to appear when you click on the button. These 
four are not written by LightWave. You must assign 
them or LightWave will use its defaults. 

ScenesDirectory DHI :Toaster/3D/Scenes 

This is the directory you wish LightWave to look 
at when you click on Load Scene. It and the follow
ing default directories are not written by LightWave, 
but instead must be entered by the user if you wish 
to use directories other than the programs defaults. 

ObjectsDirectory DHI:Toaster/ 3D/Objects 

This is the directory you wish LightWave to look 
at when loading Objects. 

HierarchiesDirectory DHI :Toaster/3D/Scenes 

This is the directory LightWave looks for when 
using Load From Scene. 

SurfacesDirectory DHI :Toaster/ 3D/Surfaces 

The directory LightWave first looks to when you 
choose to load or save a surface. 

Images Directory DHI:Toaster/3DIImages 
This is the directory LightWave looks at when 

you choose Load Image or Load Sequence. 
OutputDirectory DHI:Toaster/3DIImages 
This is the default directory that LightWave looks 

for when you choose Save RGB o1· Save Alpha. 
FramestoresDirectory DHI :Toaster/3D/Images 



The default directory for loading 01' saving 
framestores. 

MotionsDirectory DH 1 :Toaster/3D/Motions 
The default directory for loading or saving 

motions while in the motion graph panels. 
EnvelopesDirectory DH1:Toaster/3D!Envelopes 
This is the default directory for loading or saving 

envelopes while in an envelope panel. 
PreviewsDirectory DH2:Toaster/ 3D/Previews 
Finally, this is the default directory you will see 

when you choose to load or save a wireframe preview. 
StatusFilename (none) 
This was an option that was used for certain 

render farm software and has become fairly obso
lete with the advent ofScreamerNet. 

DefaultTension 0.000000 
By changing this value, you can cause any 

keyframe generated to automatically have a tension 
value set to this number (between -1 and 1). This 
can be handy if you do a lot of logos, as logos gener
ally have tension at their start and end frames. 

DefaultSegmentMcmory 2200000 
This value is used to determine the amount of 

Segment Memory (Camera panel) LightWave will 
use when rendering images. If you have enough 
RAM, you may want to set it higher than this 
default. This value wilt cause four segments to be 
generated for a Medium Res image. If you want to 
be really anal, a value of 8663040 will give you one 
segment at Medium Res. lflhenever you start a new 
scene, LightWave will use this number. 

DefaultZoomFactor 3.200000 
This value is used to determine the equivalent 

lens setting of LightWave's camera whenever a new 
scene is started. This default creates a 24mm lens 
(assuming you are using a Film Size of 35mm). 

DefaultOverlay 0 
This value (0 or 1) will determine if LightWave's 

Data Overlay option wilt be on (I) or off (0) by 
default whenever you begin a new scene. If Data 
Overlay is on, whenever you save a scene, you will be 
asked if you want the . cene name inserted into the 
Data Overlay label. (Data Overlay started life as a 
seaQuestfeature and has been a lifesaver ever since.) 

FrameEndBeep 1 
Like Data Overlay, a 0 will default Frame End 

Beep (Scene panel) off whenever you start 
LightWave and a 1 will default it on. The state of 
this option is written whenever you exit LightWave. 
If you exit with it on, it will be on the next time you 
start, and vice versa. 

RenderDisplayDevice 4 
This option is written by LightWave each time 

you exit using your current setting. This determines 
what the Render Display will be set to the next time 
you run LightWave. Tbe current options are None 
(0), Toaster (1), 6-bit HAM (2) , 8-bit HAM (3) and 
Picasso II ( 4). 

RecordSetup1 (none) 
RecordSetup2 (none) 

RecordCommand (none) 
RecordDelay 0.000000 
FirstFrameDelay 0.000000 
The five lines above are written by LightWave 

upon exit. They refer to the text strings entered for 
Record Setup 1, Record Setup 2 and Record 
Command, as well as the Frame Record Delay 
and Extra First Delay items found in the Record 
panel. These are used if you single-frame record 
direct from LightWave to a video device. 

DefaultLayoutGrid 8 
This option is not written by LightWave, but I 

think it is supposed to be. This determines the 
default settings for your Layout Grid (Options 
panel). They range from Off(O) to 16.:~:16 (8). 

AutoKeyAdjust 0 
This line is written by LightWave depending on 

the state of Auto Key Adjust (Options panel). A 0 
means the button is off, a 1 means it is turned on. 
Watch out for this. It is great for composing stilts, as 
it will automatically create a new key whenever you 
modifY an item on a keyframe. It can be devastat
ing if you want to just "try out" a new position. Try 
using it while showing motion graphs for some fim! 

ExpertMode 0 
This feature is no longer implemented, but when 

it was turned off (0), you were warned that when
ever you selected a raytracing button (Camera 
panel), it would take a long time to render. 

MOD-config 
MDOPO 
This is the file identifier and shouldn 't be 

changed 
FlatnessLimit 0.500000 
This value and all of the remaining values, with 

the exception of the last two, are written by Modeler 
each time you exit the program. Flatness limit is 
taken from the value you enter in the New Data 
Options (Options under the Objects panel) 
requester. This is the flatness percentage that 
Modeler will use when determining if a polygon is 
non-planar or not. 

QuadTriMode 1 
This value- 0, 1 or 2-will determine if 

Triangles (0), Quadrangles (1) or Automatic 
polygon generation takes place when you create 
new objects. If set to Automatic, Modeler will gener
ate triangles whenever it is going to create polygons 
outside of the flatness limit. Otherwise, it will gen
erate quads. These selections are also found in the 
Options panel. 

TwoSided 0 
A value of 0 will generate one-sided polygons 

while a value of 1 will generate two-sided polygons. 
These correspond to the One Side or Two Sides 
buttons in the Options panel. 

CurveDivision 1 
The Options selections of Coarse (0) , Medium 

(1) or Fine (2) will be used to determine how 

smoothly curves should be calculated when per
forming operations involving curves (such as lath
ing a curve or generating PostScript fonts). 

UnitSystem 0 
This option is written from the Display Options 

(Display menu). It will determine what unit of 
measurement is used the next time Modeler is start
ed· Sf (0) , Metric (1) or English (2). By the way, 
Sf stands for the International System of Units 
(from the French "Le Systeme International 
d'Unties"). 

FontsDirectory /ToasterFonts 
This is the directory Modeler will look to when 

loading PostScript fonts. If you find fonts in a dif 
ferent directory from what appeared, Modeler will 
use that direct01jl next time. 

MotionsDirectory Motions 
The default directory for finding motion files for 

Path Extrude o1· Path Clone (Multiply). 
MacrosDirectory DH2:LWM 
This is the default directory for finding macros. 
MacroListsDirectory DH2:Toaster/3D 
This is the default path for finding macro lists 

used in the « CONFIGURE LIST » option in the 
Macro pop-up menu. 

MacroList DH2:Toaster/3D1GMacros 
This is the fast used Macro list. 
Startup Macro 
This is the macro that was last selected to be 

executed when Modeler was started(<< CONFIG
URE LIST » ): 

KeyMacroFl DH2:LWM/Text.lwm 
KeyMacroF2 DH2:LWM/Router.lwm 
KeyMacroF3 DH2:LWM/PointSpread.lwm 
KeyMacroF4 DH2:LWM!LightSwarm.lwm 
KeyMacroF5 DH2:LWM/CutFaces.lwm 
KeyMacroF6 DH2:LWM/NextEmpty.lwm 
KeyMacroF7 DH2:LWM!NearBG.lwm 
KeyMacroF8 DH2 :L WM/PointCenter.lwm 
KeyMacroF9 DH2:LWM/Center1D.lwm 
KeyMacroFlO DH2:LWM/Center.lwm 
The above 10 options are written into the config 

file if you selected any keyboard macro shortcuts 
with the << CONFIGURE KEYS» option in the 
Macro pop-up menu. 

Colorlnterface 1 
This option is for the standalone Modeler and 

determines if Modeler will be started with a four
color intmface (0) o1· an eight-color interface (1) 
when run by itself Otherwise it takes on the inter
face that LightWave is using. This option and the 
next one are the only two not written by Modeler 
when you exit the program. 

ScreenModeiD 0 
This number is determined by the ChangeMode 

program that comes with the standalone version of 
LightWave and is used to determine the screen reso
lution of Modeler when it is run by itself 

LIGHlWAVEPRO lEI 



Land Vehicle Movement 
continued from page 5 

the same speed. Which brings us to: 
2. Vehicle Movement Motion File: TIJ.is selection will 

cause the macro to save vehicle movement along a partic
ular axis. Tllis can be used to create motion files for indi
vidual vehicle speeds (55 mph, 60 mph, 120 mph, etc.). 

3. Combination Movement and Rotation Motion 
File: This selection will cause the macro to save a 
motion file containing both vehicle movement and 
wheel rotation information. 

After the types of motion files , if any, have been 
defined, the user is prompted for wheel radius, speed 
and the number of frames in the animation. If there is 
an object in the current layer, the macro will attempt 
to compute the radius for you. It 1vill then show you 
the results of the object motion, and prompt you to 
save the predefined motion files. We hope you find the 
macro useful. 

About the Hummer Scene 
I actually modeled the Hummer about two years 

ago. As a reference, I used a few pictures I saw in 
Time magazine. It was only recently that I went back to 

Mighty Murphin' Morphing Tricks 
continued from page 13 

• Do the same for "Box3" and "Box4," except move 
the box to the top left and top right areas of the 
Face view, respectively. 

• Load all four boxes into Layout. 
• Set Object Dissolve to 100% for Boxes 2, 3 and 4. 
• Set the Metamorph Target for Box! to Box2, 

Box2 to Box3, and Box3 to Box4. 
• Make a wild, wacky metamorph envelope for Box!, 

Box2 and Box3 (Figure 3). Give each envelope a 
different total number of frames: something like 
60, 52 and 46 frames, for example. 

• Activate Repeat for each envelope. 
• Make a wireframe preview that lasts for 300 

frames. 
Since the repeating morph envelopes overlap 

and are of different lengths , the motion of the 
box will not repeat for quite a number of frames, 
and you will get a sort of pseudo-random move
ment of the box as it flits about. Also note that 
the first envelope, for Box! , has more influence 
than the following envelopes. So too for Box2, 
and so on . Thus you might want to adjust the 
envelopes so that those earliest in the chain have 
a smaller range of values than the latter 
envelopes. For example, 40% to 60% for Box! , 
20% to 80% for Box2, and 0% to 100% for Box3. 
This will tend to distribute the influence of the 
morph targets more evenly and the box will tend 
to hover around the center of mass of the four 
boxes. 

IIfl LIGHTWAVEPRO 

Beginner's Step-by-Step for Land 
Vehicle Movement: 
1. Define vehicle's speed. 
2. Define length of rulimation. 
3. Compute vehicle's distance traveled with tl1e formula: 

M= (mph) 
X 5,280 

12 60 X 

60 
39.37 

x Iengtl1 of rulimation in seconds 
4. Move vellicle M meters, then keyfrrune it as last 

keyfrrune. 
5. Compute wheel circumference using the formula: 

C = 2 x 1t x radius 
6. Compute pitch rotation of each wheel to match vehicle 

speed \11th the formula: 
D = l ( M I C) x 360] x (length of rulimation in seconds) 

7. Set the pitch rotation of each wheel to D and keyfrrune as 
last fr<~me. 

8. Repeat for each wheel. 

Morphing Particles 
Remember how I said there are exceptions to the 

rule about the target object having to be modeled direct
ly from the source object? Here's an interesting one: 

'fl1e effect is that of a cloud of several thousand stars 
drifting past the camera, Star Trek-like. T11en the stars all 
change direction and race toward each other, congealing 
into the shape of a seties of letters, or even a logo. 
• First create some text in Modeler. Use the Text 

button (Objects menu or W). 
• Load the Olnova Heavy font and type "HELLO." 

Click on OK. 
• Center the text with tl1e Center macro. 
• Write down tl1e size of the rectangular area occupied 

by the text plus a bit. For instance, if the maximum X 
value of tl1e text is I .64, write down I. 7 for the maxi
mum X. If the maximum Y value is .39, write down 
.4 for the ma.x Y. Approximations are fine. 

• Go to an empty layer and put the text in a back
ground layer. 

• Choose the Point Spread (Point Distributions) 
macro and click on Square and Constant. 
As a test to see if your size settings are OK, enter 

100 for the Number of Points, and then enter the max 
X, max Y values that you wrote down into the first two 
Radius boxes below. Put a zero ( 0) in the tllird box. 
• Make sure that Units is set to "m" for meters and 

click OK. 
You should get 100 points arranged in a rough rec

tangular shape over the letters in the background. Tllis 

it and armed it to the teeth. I added the four barrel 
machine guns and the side missile launchers earlier 
tllis fall. Needless to say, it's one mean maclline. But I 
seriously doubt that a vehicle with this much firepower 
actually exists, or can exist. 

After I completed the movement of the Hummer, 
including the robotics of the guns and tl1e missiles fir
ing, Scott worked his magic on the desert environment. 
After that, it was just a matter of performing a Load 
Objects (Objects Panel) from the moving Hummer 
scene into the desert scene. 

joe Dox and Scott Wheeler operate a successful 
East Coast animation house called Galaxy Video 
& Animations. Together, this duo has created a 
very impressive demo tape. To contact them for 
suggestions or comments, or to obtain a copy of 
their demo, call GVA at (508) 535-8787; send e
mail to jdox@fastech.com Ooe) , ord@dsn.com 
(Scott). 

Figure 3: Example of a wild, wacky envelope. 

macro actually creates single-point polygons, or parti
cles, thus saving a step. 
• If tl1e size of the area covered by the particles is cor

rect, delete the I 00 particles, re-enter tl1e Point Spread 
macro and do tl1e same thing 1vitl1 10,000 points. 

• Go get a soda-tllis will take a while. It took about 
five minutes on my machine. 

• When the Point Spread macro is done, you'll have 
exactly 10,000 particles. 

• Click on the Copy (c) button. 
• Rotate the particles 180 degrees around the Y axis. 
• Click on the Paste ( v) button. 
• You now have 20,000 particles. 
• Choose Drill (Tools menu). 
• Click on the Z Axis and tl1e Core button. Then click 

OK. 



A couple of minutes later, you should see a reduced 
number of particles in the shape of the word "HELLO." 
• Click on the Polygon button and then use Stats 

(Display menu or w) and write down how many 
particles remain. I had 10,983. 

• Save this object as "Letters." This will be the target 
object. Considering the size of it, you might want to 
delete all the polygons before saving. LightWave 
only looks at the points of a target object; polygons 
are irrelevant and just use up additional space on 
disk. [Editor's note: For morphs using Morph 
Surfaces, you will need to leave your polygons on 
tl1e target object.] 

• Clear this layer (z). 
• Use the Point Spread macro again, except set the 

Number of Points to the amount you just wrote down, 

Popular 3D Algorithms 
continued from page t·r 

otl1er objects to the surface point in question. What is 
needed is a different mel hod to handle this problem. 

Radiosity 
More of a pre-processing technique, radiosity 

deals with diffuse inter-reflections based on the 
physics of energy transfer. By breaking down the 
objects within a scene into a sufficient number of ele
ments (polygons), you can calculate the amount of 
light that is being diffusely reflected by every polygon 
to every other polygon, thereby simulating the realism 
of diffuse inter-reflections. Radiosity simply refers to 
the overall amount of light leaving each element or 
polygon. 

One of the factors necessary for acll.ieving an accu
rate calculation of radiosity lies in effectively subdivid
ing the objects into the proper number of elements. 
Too few may cause insufficient detail and too many 
may unnecessarily increase rendering time. Once the 
subdivision factor is determined, the algorithm pro
ceeds in two major steps. 

First, some idea of how much each element is visi
ble from every other element is calculated mathemati
cally. These form-factors, as they are called, are basi
cally a percentage, or value between 0 and 1, deter
mining how much of each element can be seen by 
another element. In other words, the form-factor 
expresses numerically the geometrical orientation of 
angles and distances between each and every element 
as a basis for accurately assessing the resultant energy 
(light) transfer. 

For example, if two elements ' (read: polygons) are 
parallel and proximate to each other, the form-factor 
associated \vith tll.is pair will be nearly l. If, however, 
they are perpendicular to each other, the form-factor 
might be closer to 0, since very little of each element's 
surface can be seen by the other. Any otl1er orientation 
of the two elements begets a form-factor somewhere 
between 0 and l. Additionally, the form-factor is 

and set the Radius boxes to 10, 10 ~md 10. Again, 
make sure your Units are set to meters. Click OK. 

• Go have another soda, or go to the bathroom 
because of the last one. 

• Save the resulting object as "PointCloud." Do not 
delete tl1e polygons, as this is the source object. 

• Return to Layout and load both objects. 
• Set the Letters object to 100% Object Dissolve. 
• Set the Metamorph Target for PointCloud to 

Letters. 
• Make a metarnorph envelope for PointCloud with a 

keyframe at 0 equal to 0% and a keyframe at 60 
equal to 100%. Make the Tension equal to 1.0 for 
both keyframes, while you're at it. 

• Set the camera position to 0, 0, -6. 
• Make a wireframe preview from 1 to 60. 

inversely proportional to the distance between ele
ments. Once the form-factors for all elements is calcu
lated, the second stage of the radiosity process can 
begin. 

The algorithm then proceeds with a balancing 
loop to find the total radiosity (light energy) emanating 
from each element. This radiosity consists of both 
emitted (if a light source) and diffusely reflected light. 
By using the form-factors calculated earlier, this pro
cedure eventually reaches equilibrium, whereby the 
energy absorbed and radiated by each element 
becomes balanced ru1d further energy transfer between 
elements ceases. Perhaps this balancing process would 
best be understood by examining the mock pseudo
code illustrated in Figure 3. In this very simplistic 
example, assume that there are only three elements 
and that one of these elements happens to be a light 
source. It might be helpful to imagine the walls and 
ceiling in the color image "Room Corner" as repre
senting the variables in the pseudo-code, \vith the ceil
ing acting as a light source. 

As the code shows, first the form-factors are calcu
lated. Then the separate components of an element's 
total radiosity, the enl.ittance and reflectance, are calcu
lated. Only those elements that are actually light 
sources emit any energy, so that intensity is found for A, 
but the emittance of elements B and C are always zero. 
Secondly, the reflectance of each element, tl1e light that 
is absorbed from other elements and redirected, 
depends upon the radiosity of the other elements modi
fied by the form-factor , the physical orientation 
between the two elements. Since tll.is is tl1e initial phase 
of the loop, the radiosities of all the elements have yet 
to be calculated, so we approximate the reflectances 
with zero. Now the first estimates of the elements' 
radiosities are calculated - the summation of the 
emittance and reflectance variables. Finally, the code 
repeats this process of adjusting the reflectances based 
on the new radiosities as many times as necessary until 

This is just a small sampling of the many uses for 
object morphing. Of course, with Bones, you can do 
many of the tasks once done with morphing much easi
er and \vith more control (though Bones have their own 
limitations). I didn't even touch on Surface Morphing, 
which would require a fairly involved article all by itself. 
One day you might find yourself scratching your head 
over a particularly difficult project, and who knows
maybe morpll.ing an object here or an object there will 
provide prut of the solution. 

james G. jones is an independent animator 
whose business, Nibbles & Bits, is located in 
Colorado, where the air is clear and the oxygen 
insufficient. He can be reached via e-mail at 
jgjones@usa. net. 

an element's incident light equals its reflected light. 
When the system has converged, the radiosities 

are then used in the final shading calculations to add 
some valuable extra color produced by the diffuse 
inter-reflections within the scene . Furthermore, 
besides the diffuse, specular and direct illumination 
now accounted for , shadow effects like penumbras and 
umbras are automatically handled by the form-factors. 
Not only are the direct shadows from light sources 
incurred, but shadows from other objects are inher
ently nan1ral as a result of tl1e form-factor calculations. 
At the cost of rendering time, the realism of an image 
can be greatly enhanced with the use of these subtle 
effects. It \vill be a great day when desktop processors 
become fast and inexpensive enough to feasibly handle 
these awesome rendering features. 

C-Ya ... Bye 
I certainly hope this material has increased your 

appreciation of the nature of current and future 3D 
software. I'd hate to think of all you successful rul.ima
tors out there who have no idea of how your tools 
actually work underneath those fancy GUI veneers. It'd 
be kind of like a painter not knO\ving the subtleties of 
how one pigment might react \vith another when mixed 
together. Well, maybe not that extreme, but I think you 
get the rendering. 

William is president of Ecliptic Arts, a developing 
3D animation production house, and is also cur
rently authoring a monthly graphics column for an 
Amiga-related publication called Amazing 
Computing. He is considering changing his name to 
simply "Bilfro," as this might procure much-sought
after membership in the elite-status-one-nickname 
clique inhabited by such greats as "Sting," "Cher" 
and "Mojo." Send questions, comments or frozen 
pizzas to Ecliptic Arts c/o William Frawley, 315 IV 
Fifth Street, Muscatine, L4 52761. 

LIGHTWAVEPRO W 





TO ORDER WI YOUR 
VISA OR MASTERCARD 

CALL TOLL FREEl 
1{800) 322-2843 

T H E N E W S l E T T E R F 0 R l I G H T W A V E 3 O® A N I M A T 0 R S 

Make a Smart 
Investment 
Subscribe Today! 
Basic Rate: $72 

Canadian/Mexico: Add $USI2 

Overseas: Add $US36 

Allow 6-8 weeks for delivery. 

Make checks payable to UGHTWAVEPRO. 

Prepa)'llent required on all overseas orders. 

YES! Enter my one-year (12 issues) subscription to 
LIGHTWAVEPRO at the Special Introductory Rate of only 
$48-that's 50% off the cover price! 

N~e __________________________ ___ 

Address _____________________ Apt.# __ 

City ______________ State __ Zip ______ _ 

D Payment Enclosed D Bill Me 

BFOLW 



BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 2263 SUNNYVALE,CA 

POSTAGE WILL BE PAID BY THE ADDRESSEE 

LIGHTWAVEPRO 
273 North Mathilda Avenue 
Sunnyvale, CA 94086-9313 

11.1 ••• 1 •• 111 ... 1 •• 1 •• 11 •• 1.1 •••• 11 •••• 11 •• 11.1 ••• 11 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

TO ORDER WITH YOUR VISA 
OR MASTERCARD 
CALL TOLL FREE! 

1 (800) 322-2843 



TO ORDER WIT~I YOUR 
VISA OR MASTERCARD 

CALL TOLL FREEl 
1 (800) 322-2843 

T H E N E W S l E T T E H F 0 H l I G H T W A V E 3 O® A N I M A T 0 H S 

Make a Smart 
Investment 
Subscribe Today! 
Basic Rate: $72 

Canadian/Mexico: Add $US l2 

Overseas: Add $US36 

Allow 6-8 weeks for delivel)'. 

Make checks payable to LlGHlWAVEPRO. 

Prepayment required on ali overseas orders. 

YES! Enter my one-year (12 issues) subscription to 
UGHTWAVEPHO at the Special Introductory Rate of only 
$48-that's 50% off the cover price! 

N~e __________________________ __ 

Address. ______________________ Apt.# __ 

City ____________ State __ Zip ______ _ 

D Payment Enclosed D Bill Me 

BFOLW 



BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 2263 SUNNYVALE,CA 

POSTAGE WILL BE PAID BY THE ADDRESSEE 

LIGHTWAVEPRO 
273 North Mathilda Avenue 
Sunnyvale, CA 94086-9313 

11.1 ••• 1 •• 111 ••• 1 •• 1 •• 11 •• 1.1 .... 11 .... 11 •• 11.1 ••• 11 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

TO ORDER WITH YOUR VISA 
OR MASTERCARD 
CALL TOLL FREE! 

1 (800) 322-2843 



Narn Cruiser 
The beam sli es through the ship. It con
tains a moving fractal noise transparency 
layer that quickly moves in the direction 
it 's firing, giving the illusion of speed. See 
''Dead in Space," page 6. 
Copyrigbt 1994. 1995 I'T£N Consortium, luc. 

Room Corner 
For more advanced applications, diffuse 
inter-reflections can be faked with the prop
er use of lighting. Instead of relying on the 
distant light source (A), point light sources 
with the appropriate falloff produce much 
more realistic shading (B). See "Popular 3D 
Algorithms," page I 0. 
Copyrigbt 1995 William Fmwlel 

Full Metal Hummer: 
The Hummer object was modeled by joe Dox of Gal ~Lxy Video 
& Animations. The FuU Metal Hummer scene contains over 
56,000 polygons, realistic motion , gun and missile launcher 
robotics, and, thanks to Scott Wheeler, a ve1y nice desert envi
ronment. joe and Scott can be reached at (508) 535-8787. 
See "Lm1Cl Vehicle Movement ," page 4. 
Copyrigbt © 1994 Gala.\)' Video & Animations. 

LIGHTWAVEPRO IEJ 



RfNDfR GRAPHICS AllHf · SPffD Of AlPHA 
ON A COBRA AXP 175 WORKSlAliON. 

MwA'! '" There 's no better way to burn graphics 
~ 

t..~"~~,.-<'0 in LightWave TM or other applications. 
. 

Introducing the Carrera Cobra AXP 

275, the workstation leader 

price and perform a nee. 

and Windows NT™ frame render ing , 

animation, multimedia and 

lr< 

Semiconductor; o Digital Equipment Corporation 

business. With the blistering performance of an 

Alpha-powered Cobra, you'll generate digital 

images in min utes instead of hours. You'll get more 

done in a day. Maybe even get home on time for a 

change. And the Cobra AXP 27 5 comes 

in a variety of configurations, loaded wi th 

graphics applications faster PCI SCSI-2 , PCI Ethernet, PCI 

you 've ever seen on the power of a ~l~i~~~~~i~~video, PCI and ISA slots, CD-ROM, and 

275MHz Alpha™ processor- one"' more. Call or E-mail us for details. 

of the 64-bit RISC rockets from Digital Then get ready for a workstation that rea lly cooks 

23181 Verdugo Dr, Building 1 05A, Laguna Hills, CA 92653 • 800-576-7 472 • e-mail CARRERA 1 @DELPHI COM 

©Carrero Computers, Inc. 1994. Digital, Alpha, and AlphoGeneroi1on ore Trademarks of Digital Equipment Corporation. Other names ore trademarks of their respective holders. 


