Creating
Realistic
StarfieldS

Canyon Run 50

The canyon footage in the final animation frame
50 was created in Scenery Animator and brought
in as a background sequence. See “Tearing
Through Canyons,” page 4.

Copyright 1995 Wayne Cole

Dice

The dice in this scene were created by beveling
a cube and then metaforming. The numbers
were added with the Boolean Subtract tool. See
“LightWave 101,” page 16.

Copyright 1995 David Jones

Canyon Run 297

A spline patch of the Grand Canyon was used
in creating frame 297 of the final animation.
See “Tearing Thru Canyons,” page 4.

Copyright 1995 Wayne Cole

EDITOR'S MESSAGE

by John Gross

y the time you read this, it should have already happened. I know you
hear that a lot when you are reading articles that were written before an
event actually transpires, but this time I'm pretty sure it has happened.
I'm talking about the shipment of LightWave 4.0. First slated for dis-
tribution at the end of December 1994, and then again in the first quarter of 1995,
LightWave finally shipped on April 7 (OK, that's only a little bit after the first quar-
ter). While this is considered a “pre-release” version of LightWave, it is for all prac-
tical purposes so close to the final shipping version that the only additions are a few
little things that didn’t make it in time. Of course, since I am writing this before
April 7, T don’t actually know yet what those few things are. For all T know,
LightWave will actually be done by then (it is very close).

Now you know what one of the problems is when writing about impending soft-
ware shipments. The only information we, as writers, have is (1) information
released from the manufacturer, (2) information released from the programmers
themselves, and (3) rumor, conjecture, heresay and other non-confirmed sources.
While I have, in many cases, mentioned and written about when the newest version
of LightWave would ship, I have always based what I was saying on information
retrieved from sources 1 or 2 above.

[have heard of and from people who have been very upset because LightWave
didn’t ship when originally forecast (end of December). I have also heard from
people who have said that they have “lost business” because LightWave didn’t ship
then. They had needed specific features that would be included in LightWave 4.0
for a project they wanted to do (or had even bid on!).

Am I missing something here? Does it seem rational to depend on a prod-
uct that has not even shipped in order to procure or complete a job? Perhaps
I have lost touch with the “common LightWave masses” because I happen to
be included among the number of fortunate users who get to see and use beta
copies with new features.

Even so, I can’t believe that anyone can be angry with NewTek because
they didn’t ship a product when originally planned. Disappointed, perhaps,

see Editor’s Message, page 18

TABLE OF
GCONTENTS

4

10

12

14
16

Tearing Through Canyons

by Wayne Cole
Impress your clients with realistic-looking landscapes by using 2D
animation and movable backgrounds.

Making LightWave Sparkle!

by Enrique Muiioz
Create explosions and water fountains using MetroGraphx’s prolific
particle animation program.

Have Starfield, Will Travel

by William Frawley

Whether you're warping toward destiny or dead in space, you're
bound to appreciate the beauty of the universe. Let Dr. Starfield teach
you the wonders of these celestial bodies.

Digital Cinematography

by John F. K. Parenteau

Star Trek: Voyager's CG starship has been an invaluable companion
to motion-control models, but it’s not problem-free. Learn some of
the challenges of duplicating the “real” Voyager.

Fractal 3D Ohjects

by Earl Terwilliger
It's time to manipulate Mother Nature. Use a LightWave PC program
called LPARSER to produce fractal trees and make them move.

Simple Refraction

by Dan Ablan
Use LightWave to mimic a real-world property of magnifying glasses,
telescopes, and other lens-bearing objects.

LightWave 101

by David Jones
This month’s discussion guides you through holding curves with
Metaform.

LIGHTWAV

an Avid Media Group, Inc. newsletter

...John Gross
LJimPlant
oan Burke Group Publisher .
.Corey Cohen
....Helga Nahapetian Taylor
Kristin Fladager
Sergio “Berimbau” Miller
Sherry Thomas-Zon
....Kris Nixon

Managing Editor ..
Editorial Coordinator .
Associate Editor
Art Director
Art/Production Coordinator...
Production
Circulation Director
Circulation Assistant

Editorial Offices: Avid Media Group, Inc.
273 N. Mathilda Avenue, Sunnyvale, CA 94086

Telephone (408) 774-6770; Fax (408) 774-6783
John Gross can be reached electronically at:
jeross@netcom.com (Internet); 71740,2357 (CompuServe)

John F.K. Parenteau
] Terwilliger
Michael D. Kornet

LIGHTWAVEPRO (Vol. 3, No. 4); (ISSN 1076-7819) is published
monthly by Avid Media Group, Inc., 273 N. Mathilda Ave.,
Sunnyvale, CA 940806-4830. A one-year subscription (12 issues)
in the U.S. and its possessions is $48 (U.S.); Canada/Mexico, $60
(U.S.); overseas, $84 (U.S.). To subscribe, call toll-free 1-800-
322-2843. Allow 4 to 6 weeks for first issue to arrive. Second-
class postage rate paid at Sunnyvale, CA and additional mailing
offices. POSTMASTER: Send address changes to LIGHTWAVEPRO,

.Debra Goldsworthy
Dan Ablan
Wayne Cole
William Frawley
David Jones
Enrique Mufioz

Contributing Writers ...

Printed in the USA ©1995 Avid Media Group, Inc.
Printed on recycled paper, 10% post-consumer waslte.
Are you interested in writing for LIGHTWAVEPRO or submitting
images? If so, contact us at our offices or electronically.

Avid Media Group, Inc., its employees or freelancers are not
responsible for any injury or property damage resulting from
the application of any information in LIGHTWAVEPRO.

273 N. Mathilda Ave., Sunnyvale, CA 94080-4830.

About the cover: The dice in this image were constructed
using a beveled box and Metaform. The numerals were created
with a Boolean subtract. For more information, see this
month’s “LightWave 101" column. Image copyright 1995
David Jones.

LicitwaverrO [ER

s 3D artists and animators we are constantly

immersed in time and space. If you ask anima-

tors how they view a scene in its first inception,
they usually admit that it is visualized as if they were in
the scene in actual 3D space—not as a viewer apart
from the scene seeing it on a movie screen, TV screen or
printed page. That process starts when the translation
from mind to form begins. We have to make sure things
look good both spatially and temporally within the con-
fines of a 4x3 or letter-box view frame. We have to
ensure that our objects/actors appear to move naturally
in virtual space (they are only electrons, after all). Even
the dancing gas pumps and credit cards have to look
“natural,” and move with believable displacements for
the amount of time we view them.

And there is the “other” space and time demanding
an animator’s attention: “How long is this gonna take
to render?” and “Do I have enough [insert electronic
media of choice]| to store/archive these frames?” After
all, you don’t want to lose the frames of the anima-
tion—essentially your generation 0 master—until the
program airs, the customer pays you, your production
is done, your master survived the duplicating process,
and all the duplicates are ready to ship.

We may spend a great deal of time and energy wor-
rying about rendering time and media space, but
because we are so saturated with 3D thinking, we often
overlook 2D cheats that can save a bunch of time. Nir
Hermoni’s “Flying Through Canyons” article (L/GHT-
WAVEPRO, January 1995) reminded me of a similar
project I did over a year ago. My approach, however,
used 2D animation, combined with a feature of
LightWave I have heard some people call a “quirk,” in
order to get around my inability to quickly model and
paint a realistic “impressive landscape.”

Stuck in 3D

The concept for the project was that a Remotely
Piloted Vehicle (RPV) had to appear on screen in a
form that suggested an engineering wireframe drawing.
Then it had to materialize into its “finished form” in
mid-flight through an impressive landscape. The RPV,
by the way, was a small helicopter with a video camera
mounted on for remote viewing/taping operations.

KX LiGHTWAVEPRO

The RPV was going to be fairly easy to build since it
was a mechanical object with many standard geometric
shapes—things like cylinders, rectangular solids, and
tubes with bends in them. Luckily, LightWave had just
shipped with spline patches, so complex fuselage
curves were easy to form. The landscape, at first,
appeared to be another matter.

Stuck in my 3D mode, I thought about large spline
patches, displacement maps...I probably played with at
least four different ideas for generating this landscape.
Meanwhile, the nervousness factor went up with each
idea deemed impossible within the allotted time and
budget. I was so entrenched in the 3D mindset that, for
two days, I had the answer staring me right in the eyes
and I didn’t see it.

Rocket Science to the Rescue

One idea I tried used Scenery Animator to create a
landscape DEM that I would convert to a LightWave
object using Interchange. That part worked great.
had a wonderful spline patch of the Grand Canyon. All
I had to do was to surface it to look like a real land-
scape in LightWave and then fly the RPV through it. I
tried planar mapping expanded versions of Scenery
Animator’s map image of the landscape after snapping
it from the Scenery Animator control screen. I tried
building a convincing texture map in Brilliance. I tried
selecting polygons in the mesh and applying different
textures for water, sand and vegetation. All of which
looked like what a dog leaves near hydrants.

Then it hit me. I remembered from back in my
rocket scientist days that all those wonderful six-
degree-of-freedom Link simulators for the space shut-
tle and other high-performance aircraft just gyrate
around in front of a movie! At the same time, I remem-
bered the little “quirk” in LightWave that, at the time 1
discovered it, I thought was a restriction instead of a
useful feature.

The Immovable-Movable
Background

If you load an image into. a LightWave scene to use
as a background image, the image is always dead-center
in front of, and perfectly square in relation to, the cam-

Tearing Through Ganyons

By Wayne Cole

era view, no matter where you point the camera. So the
solution to my landscape problem became quite simple:
use a Scenery Animator sequence as a LightWave back-
ground image sequence, then wiggle the RPV around in
front of this animated background to mimic appropriate
flight attitudes, just like the simulators do.

One of the benefits of choosing this method is that
the final LightWave animation rendered faster than it
would have if a real 3D landscape had been used
instead. All LightWave had to do was plonk an image
from the background image sequence in the yon plane
(see “Rendering Algorithms Part 1: The Theory of Z-
buffers,” LIGHTWAVEPRO, January 1995), then render
a single object—the RPV.

While making the Canyon Clip I used Scenery
Animator 4.0 to generate a landscape movie. This
process will work with any other scenery generation
tool, like Vista Pro or World Construction Set, as long
as it results in the ability to save individual RGB images
to be used for the background sequence. In Scenery
Animator I chose to use a DEM for a real-life place
rather than using a fractal-based imaginary landscape.
[picked the Grand Canyon. (Well, the requirement
was an impressive locale.)

e In Scenery Animator’s Project menu, load a DEM
file to define the landscape through which you wish
to fly. Then, using the various buttons on the main
screen, set up the attributes that Scenery Animator
uses to “paint” the landscape (Figure 1).

You can control things like the minimum elevations

Llcln} Dbjects] Burfaces | tnsoes] Ervects mecoral options] sn

|-

s

Figure 1: Scenery Animator Main Screen

at which snow and rock appear and the maximum ele-
vation at which vegetation appears. There is a button to
bring up a Sky Control panel, where you can define the
cloud parameters for your particular scene. Water and
tree characteristics are also definable. Finally, the direc-
tion and horizon angle for the sun must be entered.

Make a conscious and intelligent decision about
light direction. Remember, you will want the lighting to
favor the 3D object while creating enough landscape
shadows to contribute to the feeling of depth. So avoid
things like full backlighting unless you really want a sil-
houette scene. Above all, note the angle of the light in
the landscape scene, because you need to be sure that
the LightWave scene lighting will be consistent. If the
landscape shadows go one way and the 3D object shad-
ows go another, your final product will not look right.

e The next step in constructing a realistic-looking
landscape involves defining colors to be used for
water, rock soil, sky and vegetation. In Scenery
Animator, you can control all these characteristics
from the control panel that comes up when the
Screen button on the main control panel is select-
ed. You have full flexibility to make the colors as
real or surreal as you want.

Exercise care in selecting colors in any RGB-based
program, since your ultimate output will most likely
become, at some point, composite video. Do not
choose extremely saturated blues, greens, reds or
whites unless you do not care about chroma crawl and
exceeding “legal” NTSC color values. Even with careful
color selection, it doesn’t hurt to run the frames pro-
duced with your landscape generator through ADPro’s
(or another image-processing package’s) Broadcast
Limit filter just to be sure.

o Now that the landscape is characterized, set up the
flight path of the camera through the landscape. In
Scenery Animator, for example, the Map button on
the main screen takes you to the camera control
panel (Figure 2). The program offers a map of the
landscape showing the camera location and its field
of view within the area defined by the loaded DEM
landscape. There are buttons to control your view
of the map on this panel, as well as requesters
where you enter the camera location, attitude and
lens values. You also set the keyframes for camera
motion and lens focal length. After you have defined
the camera motion and are satisfied with it based
on previews run from Scenery Animator’s main
screen, it’s time to generate the movie in front of
which your object will appear to fly.

e At this point, from Scenery Animator’s Anim Mode
menu, save the animation as IFF24 frames. These
frames will form the image sequence for the
LightWave animation background movie. Though

Figure 2: Scenery Animator map screen

Figure 3: Layout showing a wireframe of frame 50 with
background image.

the description sounds long, the entire process
took me approximately two hours as a first-time
user of Scenery Animator, and I suspect the time
would be about the same to set up the same anima-
tion within other landscape generation packages.
Different packages have different standards for
naming frames of an animation, and LightWave is no
exception. Whatever landscape generator you use,
you'll need to be sure that you label the frames it gen-
erates in LightWave-compatible form before loading
them into LightWave. The landscape image names
should look like “FlyThruxxx,” where “xxx” is a three-
digit number matching the LightWave animation frame
in which you wish to have that specific landscape
image used as a background. Note that all the images
in the sequence should also be in the same directory.

The Flight Plan
Now comes the fun part (i.e., the LightWave part):

e Load the flying ship object that you've so painstak-
ingly modeled (or so painlessly lifted from a com-
mercial or public domain object set) into Layout.

e Click on the Load Sequence button (Images
panel), and when the file requester comes up,
select one of the images from the generated land-
scape fly-by. Be sure to delete the numeric portion
of the image name, because Layout will automati-
cally append the number of the frame it is currently
rendering to the image name you enter in this
requester when it looks for an image in the
sequence to place in the background.

e To tell LightWave to do just that—use the sequence
for a background—select the sequence in the
Effects panel’s Background Image pop-up
requester. Now you are ready to begin setting up
the motions of the object, light and camera.

e From the Options panel, select the Show BG
Image button. As you advance and reverse the
frames using the Current Frame slider, arrow but-
tons or requester, you will see a “pencil sketch”
version of the background image (like that shown
in Figure 3) change to the one that matches the
frame currently designated in the frame requester.

e Use the Move and Rotate tools with your object
selected to position it appropriately for the particular
background image. You can even use a wireframe
preview to check the motion of the object in front of
a pencil-sketch version of your background movie.

e Another time-saving preview trick available in
LightWave 3.5 and greater involves the ability to save
and load wireframe previews. Use an empty scene
with only the background image loaded and Show
BG Image (Options panel) enabled. Select the

Preview pop-up and make a Bounding Box pre-
view of this scene—essentially, the pencil-sketch
version of your movie. Now, from the Preview but-
ton pop-up, save your wireframe preview.

* Go to the Options panel again and enable the
Preview button for the Layout Background. You'll
find the Layout screen’s Current Frame slider is much
more responsive as you move from frame to frame. If,
after looking at a preview with the object(s) in it, you
don't like the object motion, simply reload the back-
ground-only preview, reposition your objects and
make another preview. Then save the preview again if
you have more objects to load and position.

* You can repeat this operation for each object in the
scene. If the scene has many objects that require criti-
cal positioning with respect to the background, this
method saves a lot of time in laying out the scene.
When positioning the object, remember that the

scenery tilts and moves for the camera’s apparent

motion. So if your camera is set up like a chasing
plane’s view, be sure to have your object lead the cam-
era through a motion. For example, if the background
sequence does a sharp tilt to the left, it indicates the
camera—er, chasing plane—is banking hard right.

Assuming it is following the flying object, that object

should have entered its hard right bank before the

chase plane. It may even have started its roll-out by the
time the chase plane starts its bank into the turn.

Light positioning is also important. In the turn above,
the angle at which the light hits the object must change by
the same degree of turn your background movie indicates
the flight path took. You have the option of moving the
light or parenting the camera to the object, keeping the
light stationary and rotating the object through the turn.
Remember, no matter how the camera moves, the back-
ground image will stay directly in front of it. So, to get the
realism of the chase, move the camera toward and away,
side to side and up and down in relation to the object.

If you made similar perturbations to the camera’s
position within the landscape generator animation, you
now get the feel of real flight, with altitude, attitude and
heading changes. And it looks like you are actually fol-
lowing the flying object rather than being rigidly—and
unrealistically—attached to it. You don’t even have to
remember all the little zigs and zags you put into the
landscape generator animation. Simply coordinate the
LightWave camera motion and object motion to the
major direction changes in the landscape animation.

Well, that's it! Just set the frame count for the ani-
mation and start the rendering. You'll be surprised
how fast it goes with a background image sequence
landscape instead of a real 3D landscape. See the color
pages for an idea of what the result looks like.

The Cons
Are there drawbacks to this method? Of course.
Your object can’t cast shadows on the landscape. But
by proper management of light direction and camera
angles, those shadows, if they existed, would not be
visible anyhow. Another potential disadvantage is that
the object can’t fly behind an element of the land-
see Tearing Through Canyons, page 17

LienTwaverro IR

Particle Animation Lesson

ightWave has always had the ability to do realis-

tic animations. With versions 3.0 and 3.1 we
were introduced to advanced features like Lens Flares
and Displacement Mapping. With version 3.5 we've
gained Metaform. Yet even with the upcoming 4.0 ver-
sion, this program still lacks something—~Particle
Animation. This is where MetroGrafx's Sparks comes
in. In this tutorial we will focus on two effects from the
popular television series Babylon 5: Explosions and
Water Fountains.

Setting Up

The software I am using is LightWave 3.5 and
Sparks 2.174. This is important because this version of
Sparks has several bugs in it (call MetroGrafx for an
upgrade), and I want to make sure everything you do
comes out the same way I did it, regardless of these
glitches. I'll assume that you have had some previous
experience with both programs, so if you have trouble
keeping up, refer to your manuals.

To get started, we need some base objects: one sin-
gle-point polygon for our water fountain project (name
it FountainParticle.Iwob), a spaceship to explode (a
good one would be the spacefighter object that comes
with LightWave), a particle cloud for the explosion and
a fountain object to put our fountain in.

Pyromania
We'll start with the B5 explosion.

(o into Modeler and Load (Objects panel) in your
spaceship. Run the Macro (Objects panel)
Fragment.wm (This miacro comes with Sparks). For
input values, see Figure 1. You might be wondering
why I chose such a low number of subdivisions. You
must remember that each axis of subdivision gets
multiplied by the other two axes, for a total of 64 in
our example. (We get 25 because that was the prox-
imity where the spacefighter was when the macro
did the Boolean operations.) Another thing about
our settings—TFragment ordering doesn’t mind if
you have Random ordering selected (like we do).

e The base name for the fragment objects is SF-
Fragments. After running the macro you should end up
with 25 objects (if you are using the spacefighter). Load

KR vcHtwavePRO

ConviHoPaste Ml ods.

Figure 1: The BreakUp macro used to slice up your object.

Sparks and enter the appropriate values for each of
Sparks’ fields. For Particle Quantity enter 25 (or
any other number you get after running the
macro). For Start Position enter 0 for all axes. For
Velocity (m/sec) enter 12. For % Velocity Variation
enter 30. For Ground Plane enter -500. We are
putting such a high and negative number for this
field because we don’t want our particles (the ship
fragments) to collide with the “Ground.” For
Gravity (m/sec’) clear whatever entry is on there
and leave it empty.

Next we must fix our Set Angles. This requester is
used to input the directions in which we want our
particles to go. For the purposes of this tutorial the
particles should move in a spherical manner. In the
Plan View (Set Angle) set Heading to 0 and 360 for

aking LightWave Sparkle!

by Enrique Munoz

Spread. In the Front View (Set Angle) set Angle to 0
and Spread to 180. Set the Start and End Frame to 30
and 90, respectively. (We chose 30 for our first
frame so you can have some time to fly your ship
before it explodes.) After all this typing and tweaking
your screen should look something like Figure 2.
Under the Control menu select No Move. Under the
Scene menu choose Select Object. Click on the but-
ton labeled Add and a file requester will come up.
Select the directory where your object files were
saved and while holding down the shift key select
each object and press OK. Select the button labeled
Align to Path. Here's the tricky part. We are going
to set mathematical equations for our Rotation
Evaluations. Under the Evaluate H, P and B fields
enter the following:

Evaluate H........... hli]+10

Evaluate P........... plil+10

Evaluate B........... bli]+10

Il

SPARKS v2.174 @1999,1994 Jon 1indall ~ali rights reserved-

~-Rate find

LJBirthrate T—(/frane

[start PU—fens _Start | Abors §T

#9:00:00 Per Frane zzi Horking On Frane @
LJFrane Tusen

30 751 'Sallect Objhcts’ otations For Scene

~=Direction fnd Velocity-- _Jinherit Yelocity

TfEvatuate B

Tnas it
TIH8 . |Eualuate £
v Evaluate B
Fragnoen

€ Rlisn to path
~-Ohject List-- flity

I

~-End Behavior-- ~-End Control-- _JLifespan B [Fns [prvar

~JLive (Stop JRecycle _JKitL | T8 [n/s Velocity Threshotd

I

ZE(Particte Gty o

[BU[Start [98 [end _Stert | ®port §TTETTTT (| ~-Rate And Tracking--

JBirthrate i™ 7| Zfeane

88:00:83 Per Frane zz Horking On Frane 98
- _JFrane Tueen

~-Direction find Velocity-- | oteherit velocity

~Set _Angle | Oxt8utansle O°x60Thendng | c\unprate 5T franes

27| Ve locity n/ssc B, By, Bz {,er brag ieh 2 tou
87| % Velocity Yariation Pasition | | {5 "% of Elasticity

Fi1ol Set fngte 1
ins | Plan View I Spr

588 Graund Plane aff] B Ir

T Gravity n/sec2 ~flock | Seurce Objes

s

~~End Behavior-- ~~End Contre| fr—

_iLive € Stop JRecvcte KUl

B8 nss I“]‘
Ig[:jrarnue aty [T(object Hunbor [SEVE %

Jm

L

Figure 2: The Sparks interface with our explosion settings.

Figure 3: Spark’s Select Obijects requester showing the
mathematical equations for our rotating ship fragments

Your screen should look like Figure 3. Close this
window. Under the Scene menu choose Save Scene.
Save your scene in the directory of your choice and
name it B5Explosion.scn.

One other thing we must do to our setup is parent it
to a null object, which will help us keep all the ele-
ments of our explosion (like lens flares, particle
clouds, etc.) together when we go back into
LightWave. Do this by selecting Parent Object from

the Scene menu. The last thing to do under this
menu is select the Particle Size; in this case, select
Medium. Now hit Start, and after a couple of min-
utes, load your scene into LightWave. You might want
to set up fade envelopes for the objects. They weren't
set up within Sparks because I usually cut to another
scene after exploding a ship (for more drama).

The final elements to add are lens flares, particle
clouds, and surfacing of the inner geometry of the
ship and the particle cloud. Use a dark red fractal
noise texture to make the inner geometry look like
burnt metal. I will leave the setup of the lens flares
and particle clouds to you since I know different
animators have their own look and taste for explo-
sions. (For more information on explosions, check
out past issues of LWPRO.) Select a good camera
position and watch the magic. Wow!

Getting Wet

This next tutorial involves building a pretty com-

Under the Control menu select No Move. Under
the Scene menu choose Select Object. Click on
the button labeled Add and a file requester will
come up. Enter the directory where your object,
FountainParticle.lwob, is located and select it.
Close this window, select Save Scene (under the
same menu) and save the scene in a directory
with the name Central Spout.scn. Don't forget to
parent your particles to a null object and select a
size for them (preferably medium).

The weird thing about doing some particle anima-

tions in LightWave is that when you try to recycle par-
ticles, you get this long streak when they go back to
their starting positions. [Edior’s note: This is due to

a

bug in LightWave when using Particle Blur and

repeating particle motions.] The way to remedy this
is to set up a fade envelope so that the particles are
dissolved at the point where they are going back to
their starting positions. Follow these steps:

In Sparks, select Setup Fade under the Scene

. € Birthrate | /frane
8:90:80 Por Frome 22| Horking On Frane 8

_JFrane Tueen

==Direction And Velacity-~ ~nherit Velocity

. _ICtunprate 5| franes
B Vetocity n/sec _)Rie rap PiSH 2 tow
o
[0 (% of Etasticity
_Bicthrate fron List |

Grauities | P

[Z0 7| % Vetocity Variation
[IoT) Ground Plane offf BFf _Track LHMO File |

——Jtravity n/secz Flock | Soyrce Object |

plicated fountain. Luckily, I've made it as simple as menu. This will bring up a requester. For the

possible. Active and Inactive Value we want to input 0% and

o First of all, if you're proceeding straight from the 100% dissolve, respectively. We only want one
other tutorial, you might want to select New from frame for Fade In and Out Duration. The last
the Project menu so that we start out with no thing is End Offset, which corresponds to our
default settings selected. Go to the Set Angles Birthrate. Since our Birthrate is three per frame,
requester and in the Plan View set Heading to 0 we input the same amount for End Offset.
and 360 for Spread. In the Front View (Set Angle) That takes care of one part of our fountain. Now
set Angle to 86.5 and Spread to 6. Adjust the Start ~ for the other part—the side angle spouts. Again, we
and End Frames to 1 and 180, respectively. Set must start from scratch to make sure that there
End Behavior to Recycle. Set your particle quantity — aren’t any variables we didn’t consider.
to 180. e Go to the Set Angles requester and in the Plan

o (lick on the Effects button, which will bring up a View set Heading to 0 and Spread to 5. In the
requester. Even though there are a lot of options Front View (Set Angle) set Angle to 65 and Spread
here, the only thing we have to concern ourselves to 5. Set the Start and End Frames to 1 and 180,
with is Bounce Probability. Set this field to 5%. respectively. Adjust End Behavior to Recycle. Set
Click on Accept. your particle quantity to 120.

e Under Rate And Tracking select Birthrate on and e Under Rate and Tracking options select Birthrate
input 3. For Velocity (m/sec) input 3. Type 20 for on and input 3. For Velocity (m/sec) input 3.
the % Velocity Variation field. For the Ground Type 20 for the % Velocity Variation field. For the
Plane input 1.1. For Gravity (m/sec’) input 4. Ground Plane input 0.2. For Gravity (m/sec2)
Finally, click on the Position button and type 1.45 input 7. Next, click on the Position button and
on the Y axis. Leave the other two axes (X and Z) type 1.45 on the Y axis. Leave the other two axes
at 0. Your screen should look something like (Xand Z) at 0. Set your End Behavior to Recycle.
Figure 4. Now go to the Effects requester and input 5 for

5| SPARKS vZ.174 #1993,1994 Jon Tindall ~ail cights reserved- & TG SPARKS 0Z.174 ©1993,1994 Jon Tindall -all rights reserved- -]

FIstact [EEJEnd MW ~~Rate fAnd Tracking-- FJStart EEE[End

(" Birtheate @[/frane

1| ——Rate find Tracking-~
89:80:90 Per Frame zg Morking On Frane #

Dfcane Tuesn

,::‘ tognated

~=pirection And Velocity-- _Jinherit Velocity

65%x5%angle A5 %head _ICHumpeate 5 franes

B, 1.45v, 8.

BV tocity n/sec i nag iz Gow

EE—{# velocity Variation eosttion | EE=iN af Clasticity

[Z—|Ground Plane offf Bef ~Teacik LMo File | | _Birthrate fron List.|
sBravivies) ForrTTOON

[|Gravity n/sec2 ~Elock | Source gbject |

~~End Behavior-- ~~End Controt-- _JLifespan [0 |Fns 8 fsvar

_Jtive _JStop(Recycle _JKilL [A8 "[n/s Velocity Threshold

~-End Behavior-— ~~End Control~- _JLifespan [(Fns [|suar

_JLive _IStop(Recycle _JKUlL | To8 (/s Velocity Threshold

i
HES[Particte 0ty [|0bject Hunber [FEEtins up [

|

i
778 [Particle Gty [T|0bject Hunber Fetiine up]

Figure 4: The Sparks interface with our central spout
seftings.

Figure 5: The Sparks interface with our side angle spout
seftings.

the Bounce Probability. Leave everything else at
its default and click on Accept. Your screen
should now look like Figure 5.

o The last thing we have to do to our setup is select
No Move from the Control menu. Under the Scene
menu select your object, FountainParticle.lwob,
with the Select Object option. Save your scene in
the directory of your choice with the name
SideAngleSpout.scn. Again, we are going to want
fade envelopes for our particles so that we don’t
get that long streak when we recycle them (use
the same settings as our previous example). The
next thing on the agenda is to set our Particle
Size. Set this to anything you want, but I recom-
mend Medium.

Putting It All Together
The only thing we have to do now is put the scenes

that we created in Sparks together.

e Tirst, select Add Null Object and load in the
scene Central Spout.scn. From the Objects panel
select Load from Scene and load Side Angle
Spout.scn. Do this last procedure three more times
and rotate each corresponding null object (the
parent to our particles) a multiple of 90 degrees,
while parenting them to the first null object. Next,
load in your surrounding objects (like your foun-
tain model, and maybe something like a park sur-
rounding objects), set your correct lighting, and
BAM!—a pretty killer scene.

Pitfalls

The main problem that might arise during these
tutorials is memory limitations, RAM- and hard drive-
wise. It took 9MB of hard drive space to save the com-
pleted scene file with all five of our scenes together
(one of our central spout scene and four of our side
angle spout). You should be running your machine
with at least 18MB of RAM (what LightWave profession-
al doesn’t?) or else you won't be able to render it out.

You might be wondering why we went through this
whole process for the explosion when there are other
programs that will do this for you (like PowerMacros).
The only problem with these utilities is that you don’t
get all of the various options that Sparks provides. An
example of this is if you want your explosion parts to
be affected by factors such as wind and gravity.

In any case, I've included the Sparks setups for the
Fountain and Explosion (for you lazy folks or people
without the time to follow this article) on the LWPRO
disk so that all you have to do is select Load Project
from the Project menu.

Enrique Muiioz spends his time listening to the
all-time greatest band, Pearl Jam, while he works
on various television commercials (and hopefully
on an upcoming feature film project) as the senior
animator for Digital Imaging, based in Ontario,
Calif:

LIGHTWAVEPRO

Have Starfield,
Will Travel

nybody out there still relying on the “Random
Stars” object for their space scenes? If so,
you need help. Dr. Starfield to the rescue! I
mean, really, we've all seen them—shining examples
of rich, cinematic starfields in movies such as Star
Wars, Star Trek (all seven), and more. Heck, even the
Universal logo background looks pretty impressive! In
the vacuum of space, there’s not much standing in the
way of you and the glorious bounty of millions of visi-
ble stars. Here then, let the Doctor fill the required
prescription for respectable starfields: caffeine,
LightWave, good tunes and...more caffeine.

What Are Particles Again?

Just in case you've recently been revived from a
successful cryogenics experiment, the basis of
starfields in LightWave involves the use of particles, or
more specifically, single-point polygons. This special
type of polygon has the characteristic of being com-
pletely dimensionless, which causes it to uniformly
render at the same screen size regardless of its dis-
tance from the camera. Created by converting a point
into a polygon, particles possess all the surfacing capa-
bilities of polygons, but because of the dimensionless
nature of points, contain none of the spatial properties
of polygons. Incidentally, two-point polygons, or lines,
behave similarly as particles, except lines have a sec-
ond dimension. Since version 3.5 of LightWave, users
have been able to control the rendered screen size of
both particles and lines: small, medium or large. This
means that each particle renders as one pixel, a 3x3
pixel array or a 5x5 pixel array, respectively (similarly,
lines are drawn as one, three or five pixels thick). This
ability to control the size of rendered particles will play
an important role later on in our endeavor for
enhanced realism.

A Starfield of Dreams

OK, so now you're ready to get serious. You're in
Modeler and you're wondering how many licks does it
take to reach the center of a TootsiePop—uhh, I mean,
how many particles does it take to make a convincing
starfield? Well, since we'll be constructing a fully func-
tional, spherical starfield to be used in scenes where

KR LcHrwavEPRO

camera movement is quite dynamic (a lot of panning,
tilting and warping), I've found that approximately
57,000 is the minimum for a nice plenteous look. (A
dense starfield is one thing; we'll see later that a resplen-
dent starfield takes multiple objects and surfaces.)
However, you must consider your memory situation. On
an 18MB T2000, this many particles uses about 75 per-
cent of the available space, leaving only enough room
for about another 20,000 polygons for a successful ren-
der. You can reduce the amount of particles needed if
you're camera doesn’t pan much by slicing the starfield
in half and discarding all the particles behind the cam-
era. Or parent those remaining particles to a Null and
use the camera’s motion file for the Null's motion file.
Consider this option as well: If you do have enough
RAM, you can again slice the field in half, but this time
take those particles and add them to the remaining par-
ticles (rotate 180 degrees) in front of the camera, there-
by increasing the starfield’s density twofold.

With an idea of how many particles you can com-
fortably get away with on your machine, there’s just
one more thing to consider before we create the
starfield: its size. Again, consider what the camera’s
motion will be. If it's warping through space, you
might want to size the starfield as large as possible to
reduce the apparent motion of the more distant stars.
Otherwise, if the starfield is too small, all stars will
show motion, destroying the illusion of the galaxy’s
expansiveness, and in no time you'll be at the Outer
Rim with no stars in sight (we’ll cover special star
columns for warping a little later). On the other hand,
if the camera merely needs to pan or remain static,
pivoting motion won't divulge the stars’ actual distance
from the viewer. Therefore, keep these points in mind
when using the appropriate particle-creating macro.
[At press time, I'm still working on “Starfield.lwm,” a
starfield/particle macro that is much faster and more
appropriate for our purpose than the “Point
Distributions™ macro. Look for it on a future ZIGHT-
WAVEPRO disk. |
e For now, enter Modeler, select New (N, Objects

menu) and use the “Point Distributions” macro to

create 10,000 particles. Set Falloff Towards to

“Center” and Density Distribution to “Constant,”

by William Frawley

leaving everything else at their defaults. This
process could take about 10 minutes, but once it's
done, these particles will serve as “seeds” for
building most of our starfield. Enter Polygon selec-
tion mode (space bar) and rename the Surface (q,
Polygon menu) to “Stars 1" or something similar.
Export this first object to Layout, saving it with
some name like “Stars1.10K" where the 10K signi-
fies that this object is made up of 10,000 particles.
e Now Copy (c) these particles, enter layer 2 (2)
and Paste (v). Next we need to randomly shift the
positions of the particles so they don’t overlap with
those in layer 1. Because the radius is only 1 m
(suitable for our purpose), Jitter (J, Tools menu)
the points of the object by .1 m (5-10 percent of
the radius) on all axes (Figure 1). Rename the sur-
face (q) for these particles “Stars 2" and again
Export to Layout with a name of “Stars2.10K.”

Figure 1: To avoid having fo create any more particles
than necessary with the “Point Distributions” macro,
construct a percentage of the total number, then copy
this object to other layers. Use the Jitter tool to random-
ize the locations of the cloned particles.

e Repeat this procedure three more times so that
there are 10,000 particles in each of the first five
layers, each with distinctive surface names and
saved as separate objects.

e Now enter layer 0, and again use the “Point
Distributions” macro to create 5,000 more parti-
cles (same parameters as before). Rename this
surface “Stars 6" and Export/Save as “Stars0.5K.”

 Tor the last step, enter layer 7 and create 1,000
particles, rename the surface “Stars 7" and
Export/Save as “Stars7.1K.”

e Enter Layout, shut down Modeler and Reset the
camera to the origin. Create a keyframe (Return)
for the camera in its new position. Since we con-
structed multiple star objects earlier, we can now
assign each group of particles a different particle
size to give the starfield the appearance of depth.
Without this feature, each star looks as though it
was at the same distance as its neighbor. Pretty
boring, eh? Therefore, make the Particle/Line Size
(Objects panel) of Star objects 1 to 4 “small,” that
of Star objects 5 and 6 “medium,” and that of Star
object 7 “large.” Since each particle won’t be
affected by a light source, you can save some ren-
dering time by turning off each star object’s “Self
Shadow,” “Cast Shadow” and “Receive Shadow”
options.

e In the Surfaces panel, set each object’s surface
Luminosity to 100% and Diffuse Level to 0%.
Change the color of each surface to include some
yellow, blue and red varieties. By varying the
Surface Color and Luminosity of each surface, you
can fine-tune the subtleties of the starfield to suit
your particular taste.

o Next, turn Ambient Intensity (Lights panel) and
Light Intensity to 0% and make sure to set the
Antialiasing (Camera panel) to at least Low.
Before you do the test render, do a Save All
Objects (Objects panel) to record the surface set-
tings and then Save Scene (Scene panel).

From now on you can load this starfield into any of
your space projects by doing a very handy Load From
Scene (Objects panel). With that business out of the
way, try a test render and compare it with the Actual
Stars object (Figure 2).

To increase the richness of the field even more, try
further subdividing each object into multiple surfaces
back in Modeler. I'm sure you can figure out how to
do this simple task. You'd then have multiple particle
sizes with multiple surface attributes. The Milky Way
never looked so good.

Figure 2: With a little effort, you can overcome the
“girlie-starfield” syndrome. On the left is the Actual
Stars object (<1500 particles); on the right could be
your own 56K (memory permitting) award-winning
starfield.

Yes, My Sun

A good starfield wouldn't be worth its weight in
hydrogen if it didn’t have some local stars asserting
their presence in your scene. This is where lens flares
really shine (pun intended). Depending on how you
want a local star to look, you'll want to use at least two
flares for the actual star and another for any associated
glare or lens spikes (star filter). For example, Figure 3
shows the settings I used for each of the Seven Sisters
shown in the color image “Pleiades.”

For each nearby sun, I used three flares. One was
used as a faint blue flare and to produce lens spiking
using the Star Filter option (Flare Options panel).
The other two flares were colored white and used to
produce the actual star. By combining two or more
flares with similar attributes, the edges of the central
hotspot will be more pronounced and the overall glare
surrounding the lens flare will be reduced. Next, in
order to vary the apparent size of each star, I used the
Fade With Distance option so I wouldn't have to con-

5

Figure 3: Three lens flares were used for each of the
Pleiades suns in the related color photo. Shown are the set-
tings used for one blue lens flare acting as the flare and
lens spike element. The other two identical white flares
were used as the hasis for the sharply defined star element.

cern myself with each flares intensity. Simply set a
Nominal Distance, parent all the flares for each star to a
null object, and move the null to the desired distance.
For a really cool effect, if you happen to be animating
the scene (I do a lot of still images), use Grant
Boucher’s “Random Envelope Generator” macro to cre-
ate an envelope for each flare’s intensity channel. This
will give each local star its own pulsating look (Hint:
Keep the envelope peaks fairly moderate).

In “Pleiades” 1 added a little extra eye candy in the
form of dust clouds surrounding various members of
the open cluster. Using OpalPaint (or any good 24-bit
paint application), I simply painted a series of images
using a combination of airbrush and watercolor tools to

blend the blue into the black background and vice
versa. After saving the color version of each image, I
converted each one into a grayscale negative, making
sure to boost the blue channel considerably more than
the red or green in order to heighten the contrast
between the dust and the background. This step ensures
that, when applied as a Transparency texture map, the
blue region (now represented by black in the negative)
will be fairly opaque; hence, more visible (Figure 4).

Figure 4: A good 24-bit paint program makes adding
subtle details to your scene easy. In this case, the color
(shown in black and white) image on the left was tex-
ture-mapped to a plane for the dust cloud’s color, and
then converted to a grayscale negative for the trans-
parency texture map (right).

Ahead, Warp Factor 9

So now you want to warp, do ya? “I'm givin’ it all
she’s got Captain! I can’t give any morrrrrrrre!” Well, if
you plan on testing the limits of your inertial dampen-
ing system, a different kind of starfield—a kinder, gen-
tler starfield—is required. For straight-ahead warping
through space, it's best to construct a columnar-
shaped starfield; a tunnel full of stars, more or less. To
preclude excessive redundancy on creating a warp col-
umn, I refer you to Mojo’s excellent treatment of this
subject in his article “Simple Space Stuff: Part 1"
(LIGHTWAVEPRO, August 1994).

Once you understand this concept for creating a
nice warp column (don’t forget to use Particle Blur, in
the Camera panel), let me take it one step further by

Figure 5: To get that DS9-end-credit look, more accurately
reflecting the principle of parallax, the camera iravels
through an elongated star column, which is in turn sur-
rounded by a much larger spherical shell of particles. (The
Spherize macro was used on a Point Distributions-created
starfield.) This gives the illusion of extremely distant stars
in the background as the closer ones warp by.

see Have Starfield, Will Travel, page 17

Lieitwaverro ER

Digital

Cinematography

or quite a few columns now, I've focused on

showing you how to re-create real-world lighting

in LightWave. Though we have worked in general
terms, the actual fact is that producing a realistic effect
relies on much more than convincing lighting. A poorly
modeled object or low-resolution textures can detract
so much that even the best lighting will never look in
the least genuine. At Amblin Imaging, the world of CGI
effects is usually limited to the realm of the fantastic.
Effects on seaQuest, though theoretically re-creating an
environment we have all seen before, underwater, take
a stylistic approach to this world. In truth, at the depth
the submarines move, you would never see much more
than the glow of lights within inky blackness. So authen-
ticity is stretched for the sake of exposure and broad-
cast requirements. Yet, as we began work on the pilot
of Star Trek: Voyager, we quickly came to realize that
the stylistic would no longer apply. We were now deal-
ing in a2 much more realistic world.

I know you're saying, “Realistic? It's in space, for
crying out loud!” But space or not, Star Trek has exist-
ed for many years under conventions and practices
people have become quite comfortable with. Though it
may seem the wave of the future, and the most logical
direction to take, CGI has been relatively non-existent in
the Trek realm. Except for a few rare effects, this uni-
verse has existed solely in physical or dimensional
models. Yet the future could not be held back, and
Paramount (in very large part due to David Stipes, one
of Voyager’s effects supervisors and a LightWave fan)
commissioned Amblin Imaging to create a computer-
generated Voyager model to complement the new
dimensional model. In the early plan, the CGI model
was intended for extremely limited use, in cases where
the motion-control rig was busy or specific shots when
the Voyager was required to tumble or appear out of
control (a motion-control nightmare). At the start of
effects production, only two Voyager shots for the pilot
were commissioned as CGI shots.

The Motion-Control Way
As many of you may already know, motion-control
rigs have been utilized for years to produce effects shots

WAVEPRO

ranging from the battles in Star Wars to E.T. riding
across the moon. The basic process is quite simple,
though limiting: The model is connected to a rod that
supports it suspended in the air. The camera moves on a
motorized, computer-controlled rig. By programming
the camera to move past the ship, the illusion of the ship
flying by camera is created. But there are inherent prob-
lems in this simple process.

First, since the camera is connected to a crane or
boom arm, it cannot move around the object completely
without seeing its own support system. The answer to this
problem was to move the model in sync with the camera,
allowing for additional, yet still limited, banking or other
movement.

Second, to support the ship, a rod is connected
somewhere on the ship. Though the mount can connect
in several places on the model, it is nonetheless immov-
able during shooting. In addition, though the mount is
painted to fade into the background, if the camera moves
into a position in which the mount is in front of the
model, the finished shot will show a hole in the model, in
the shape of the rod, as it “punches” through the image.
Thus, regardless of the mobility of camera and model, a
motion-control rig can never truly move in a 360-degree
path around its object.

Third, the models are commonly shot against black,
with backgrounds matted in later. Most moderately
detailed models must be in the four- to six-foot size range.
Unless the motion-control rig is extremely large, and the
background very wide, it is nearly impossible to make a
model of this size appear tiny in frame. Shots of a ship
receding in the distance are difficult, and when required,
are often post-production tricks.

Fourth, since the rig is computer-controlled and highly
accurate in its programmed move, it does not move at
actual real-time speed. Averaging one frame per second,
the camera moves slowly over the model, regardless of the
speed of the final shot. If the ship were to pass over cam-
era very fast, the camera would still move at one frame per
second to photograph the shot, and compensate by mov-
ing a greater distance per frame. Motion blur, the smear-
ing effect an object has on film as it speeds by camera,
must be applied in post-production and lacks realism.

by John F.K. Parenteau

Of course, motion-control operators will point out
that all the problems above can be worked out, and in
truth, they are right. The corrections, however, take
time and money. In the realm of CGI, these “problems”
don’t even enter the equation. Since the model exists in
a 3D space within the computer, we can move it as far
away as necessary, spin it, tilt it or fly around it. Motion
blur is simply a button, and with the right amount of
rendering power, just 4 few more minutes per frame.
As we proceed into the first season of Star Trek:
Voyager, these facts are becoming increasingly evident
to the producers and the special effects staff. Though
the model is still 2 major part of effects production, the
world of CGI is slowly but surely becoming an impor-
tant part of the show.

The CGI Way

No, it isn’t that easy. No matter how much we all feel
CGI is the answer, it is still a complex and difficult
process at times. Several people (including David Jones,
Bruce Hall, John Gross, Tony Stutterheim and Eric
Barba) spent many weeks completely re-creating the
physical model (what Star Trek calls its “real” model) in
Modeler.

As a kid, T spent many an afternoon tearing apart per-
fectly good model kits to create my new and much more
fantastic design. 1 remember how easy it was to grab a
small piece from another model and place it on my ship
to add relief. These small objects, called “nurnies” (a Ron
Thorntonism), could have been the death of us on
Voyager! Building a model from scratch can be much
easier, since you can determine what detail and where to
place it. In matching a dimensional model, the 100 frivo-
lous bumps a model builder decides to throw on at the
last minute can cause a CGI modeler to go mad! Our ani-
mators spent many days studying the model, photograph-
ing it and videotaping it, all with the sole thought of exact-
ly matching an existing model. Though the model will
continue to be improved and enhanced, the final product
should match the original almost precisely. The best part
of the CGI ship is that somewhere, hidden inside a room,
is a small plaque with the names of the people who gave
their all to make this Voyager come to life.

Modeling wasn't the only battle to be fought as we
started up on Vopager. Texturing played an important
role in creating a convincing model. Hours were spent
creating bump maps, specular maps and diffuse maps
in an attempt to give our CGI ship a realistic feel. After
the long and painstaking process, the Voyager visual
effects department told us it was all wrong! We quickly
came to realize that we had textured our model to look
as realistic as possible, when the dimensional model we
were matching wasn’t real at all. For example, careful
consideration had been placed in making the textures
clean and smooth, when in truth, the paint that had
been applied to the dimensional model had left minute
streaks over the surface—streaks we failed to match!
Many issues arose that showed our staff the complexity
of duplicating an existing model. On seaQuest, all the
ships existed as CGI first. No practical model was ever
created to match. Even the toymakers were required to
contact us for designs since none had actually been
done. The Voyager had been fabricated out of plastic
components, carefully airbrushed and decaled with
painstaking detail. It was important for our staff to
approach the surfacing not from the standpoint of creat-
ing a realistic look, but rather a look that matched the
dimensional model.

Lighting the Way

Practical lighting quickly became an issue as we
placed CGI lens flares to match the fiberoptic lights
designed within the dimensional model. Minute details
became major issues. For example, the glowing panels
on the front of the warp engines are created on the
physical model by placing a small light inside a
translucent shell. The small red light illuminates the
panel, creating the soft glow through the milky white
surface. On the CGI model, we aren’t required to use a
light to create the same effect. Instead, we simply apply
luminosity to the outer panel. Though this seemed the
easiest answer, it proved to be another detail over-
looked. As I examined shots of the dimensional model
provided by the Voyager crew, I noticed light kicking
off the surface of these translucent panels. Though the
panels appeared red from the light inside, the gleam of
light off the outer surface was white. In truth, this is an
unwanted effect of the actual model, but it was one that
would make our CGI model stand out to the trained
eye. By applying some diffuse value to the luminous
panel, a similar effect was created. Many weeks of test-
ing were required to achieve the look that the Voyager
effects staff had become accustomed to in the past.

With dimensional model photography, the ship is
shot with darkened windows, no warp engine glows
and no practical lights. Each of these items are shot as
separate passes and re-composited in the on-line bay
to allow for the greatest control over each element.
Though a similar process could be taken with the CGI
model, Dan Curry, the visual effects producer, began
requesting we provide a fully composited shot rather
than individual passes. Careful consideration had to
be taken to set values for windows, lights and glows to
provide a properly balanced final image.

The final battle that continues to be fought is
matching model photography lighting. David Stipes
spent hours discussing with me the methods in which
the dimensional model is lit. A key light is placed in
an optimum position, usually to provide a shadow
edge on the camera side of the ship. Light is bounced
off a white card placed above the model. Other fill
lights are placed on the side and bottom of the ship,
with roughly the same value to provide an even fill
across the shadowed areas of the model. Initial
approaches to lighting the CGI Voyager appeared to
be easy, but as we all know, nothing is actually easy!

Though the simple lighting setup worked well for
the practical model, the CGI model was not flying a
similar flight pattern. The reason for a CGI model,
initially, was to provide moves unavailable to the
motion-control rig. This often means that the basic
lighting setup can no longer work to provide an
acceptable look. Yet, since we are working in a com-
puter, certain rules that apply in the real world are
not even considerations for us. For the shot in the
pilot that we call “The Wave Slap,” when the Voyager
is struck by a wave of energy (courtesy of Grant
Boucher) and flung across the galaxy, we were faced
with one of our most difficult lighting tasks. It was
necessary to bring light from the back of the ship in
increasing intensity, to accentuate the violence of the
vessel being struck. Though it would seem simple to
place lights behind the Voyager, if you recall the shot
correctly, the ship was lifted back end first and tum-
bled forward. By simply placing lights behind the
ship, the lighting may appear correct for the first few
frames, but as the ship is raised, shielding itself from
the lights, a huge shadow would be thrown across the
saucer. In motion-control work, there would be little
to do to solve this problem. In CGI, I simply applied
keyframes to the lights, lifting them up to match the
angle the ship had been tilted. This technique
allowed the light to continue to reach over the edge
and light the saucer. Just as the Voyager exits frame,
the keylights are almost directly above the ship,
rather than behind the wave.

It has never been said that motion-control photog-
raphy is easier than CGL The greatest complaints are
that CGI cannot look as real. After several episodes of
Star Trek: Voyager, the discussion on the Internet still
rages as to which ships are CGI and which are mod-
els. Though it would be nice to be confused with real-
ity instead, at least it’s a step in the right direction.

By the way, for those of you who may be unsure
which is which, there is a dead giveaway to the CGI
Vopager. Whenever you see it from the rear, the
LightWave Voyager will have lit windows in the very
back end of the ship (below the shuttle bay). The
real model doesn’t have this, as there was no way to
snake a light back there.

Jobn F. K. Parenteau is one of the vice presidents
of Amblin Imaging and CGI effects supervisor for
seaQuest DSV.

LightWave-generated
Voyager Footage

(as of early-March)

Opening Sequence
Three of the six opening sequence shots use

the LightWave-generated Voyager. The other three
shots use the practical model. All of the back-
ground elements were generated by Santa Barbara
Studios using Wavefront. The three LightWave-
generated Voyagers are:
o The first shot of Voyager flying by sun
o The third shot of Voyager flying through

space fog ‘
e The last shot of Voyager flying by planet and

jumping into warp

“Caretaker” (pilot)

~ * All Badlands and vortex footage
o All galactic wave footage

» Voyager getting hit by galactic wave

» Planets, stars and sun for all planet shots

o Blue anamorphic flare elements in transporter
beam in/outs

o Alien fractal elements used in “Caretaker”

beam-out effects
o Final jump-to-warp shot

“Parallax”
o All Voyager-at-warp shots (including stars
and warp stars)

“Phage”

» Five shots of Voyager in asteroid lined with
mirrors. The actual model was used in the
foreground and LightWave-generated reflections
of the CGI Voyager, alien ship and phaser
beams were used for the backgrounds.

“Eye of the Needle”
» Micro wormhole shots seen on the
Voyager’s viewscreen

“Emanations”
o All shots of Voyager and ring planet/
asteroids together.

General

» Many stock shots of Voyager flybys at warp and

at impulse speeds

veitwaverro KR

ow that our favorite rendering and modeling

software package will soon be available on

other platforms, our jobs as animators and
artists will be made a bit easier. We can choose the plat-
form where we already have most of our other necessary
software for video or graphics production (if it is not an
Amiga), eliminating lots of swapping data back and forth.
I am looking forward to using LightWave on the PC since
I do most of my graphics work on that platform.

One package that runs in the PC DOS environment
that T have found of particular value for creating natural
objects such as trees, plants, leaves and animal “critters”
for use in LightWave is called LPARSER. The program,
written by Laurens J. Lapre, is free and can be found in
the graphics section of the SIMTEL collection of PC soft-
ware. (SIMTEL is available on CD-ROM or through
Internet access.) We probably overlook the “gems™ to be
found in these channels of software distribution because
their value to us is not marketed in the usual way.
“Hidden treasures™ such as LPARSER may go unnoticed.

Modeling Objects Found
in Nature

I like to look at nature, and when I am capturing a
scene from it, I seek to replicate it as closely as possible.
To accomplish this, I could use one of a number of good
natural landscape generators, such as Vistapro or World
Construction Set. These programs use “fractal” math to
generate images (bit maps) resembling natural land-
scapes, complete with rocks, trees and bodies of water.
Even in LightWave, fractal math can be used to create
several natural-looking surface textures from what
LightWave calls “Fractal Noise.” (Benoit Mandelbrot
coined the name “fractal.”)

In brief, fractals are geometric shapes that can be
subdivided in parts, each of which is (at least approxi-
mately) a reduced-size copy of the whole. Fractals are
generally self-similar and independent of scale. Although
there are mathematical structures that are fractals, the
term also describes many real-world objects—such as
clouds, mountains and coastlines—that do not corre-
spond to simple geometric shapes.

These fractal-generated natural landscapes work well
as backgrounds for many projects. However, one prob-
lem with the generated bit maps is that the “objects” in

KA LisHTwavEPRO

those images, such as the trees, can’t be individually
manipulated. There are techniques in LightWave for this,
but what if T want a tree to move, or some other object to
move behind or around it? The best solution is to have a
model of the tree object. Hopefully, the landscape gener-
ators we have today will be, in the near future, updated
with more 3D modeling capabilities. Today, though,
LPARSER can help.

What Is LPARSER?

LPARSER allows you to produce trees, plants, “crit-
ters” and other shapes found in nature in a 3D format,
which you can import into LightWave. The program is
based on I-system fractal math (very similar to the math
used in the fractal math landscape generators). There
are many sample objects provided in the LPARSER pack-
age that you can readily use. However, if you want to
make your own objects, you will need to learn the l-sys-
tem commands implemented by LPARSER. The docu-
mentation supplied with this software will show you the I-
system command syntax it implements, but that is not
enough to teach you how to use it. For that, I highly rec-
ommend the book mentioned in the LPARSER documen-
tation, excerpted as follows:

“The implemented I-system is based on the one
described in the book ‘The Algorithmic Beauty of Plants’
(ABOP) by P. Prusinkiewicz and A. Lindenmayer (this is
where the “I” from l-systems come from). If you want
more information on making your own l-systems, you'll
want to check out this book. A lot can be done by chang-
ing the I-systems supplied with the parser and seeing for
yourself what changes in the final form.”

Basically, an l-system, or Lindenmayer system, is formal
grammar for generating “strings.” These strings are a col-
lection of rules. Recursive application of these rules to the
initial string results in a string of “fractal” structure. When
this string is interpreted as a set of graphical commands, the
results can be displayed. As evidenced by the LPARSER out-
put, these I-systems generate realistic-looking plants and
other natural objects we see around us.

Object Loading in LightWave
Although LPARSER can create objects in several out-

put file formats, only one of them can be used by

LightWave. We are most interested in the output file for-

Fractal 3D Ohjects

by Earl Terwilliger

mat called DXF. These DXF-formatted output files can be
loaded via TIO into LightWave's Layout. The DXF object
file format is one that was designed for use in a popular
PC package called AutoCAD. TIO is the module “inside”
Layout that comes into effect when a non-LightWave-for-
matted object is being loaded. Layout will load LightWave
objects directly and invoke the TIO module to convert
several other formats, including AutoCAD DXF, Sculpt 3D,
Swivel 3D, 3D Studio and Wavefront. You don’t have to do
anything special—just click on Load Object in the
Objects panel and specify your object file name. TIO will
try and determine the object format type. If it does not
readily detect the object type it will ask you via a requester
to select the object format from a list of supported types.
(Syndesis wrote the TIO routines for NewTek and has
updated them. Hopefully, we will see them implemented
in the newest version of LightWave.) Modeler will only
load native LightWave-formatted objects, but once an
object is imported via TIO into Layout, it can be further
imported into Modeler.

Running LPARSER on the PC

The LPARSER program runs as a command line-dri-
ven PC DOS application. LPARSER needs to know the
name of the input file with l-system commands to parse
and any parameters needed to specify the output file type.
For example, to parse the sample fern plant object, you
would use the following PC command: Iparser -3 fern.ls.

This would invoke the LPARSER program, which
would read the I-system commands in the fern.ls file and
generate the output DXF fern object in a default file called
output.DXF. The -3 parameter tells LPARSER to create a
DXF file with 3DFACES. Objects made with 3DFACES are
formed with true polygons of three to four vertices. DXF
objects generated with this parameter are imported into
Layout via TIO and render well. If given the -d parameter,
LPARSER will also create DXF-format objects, but they will
be formed by two-point “polygons” that are actually just
lines. These objects will import into Layout via TIO but do
not render with the desired results. Though LightWave
can give “thickness” to a line (a two-point polygon), a
line really has only one dimension, length.

To have a real surface requires two dimensions of
length and width, and thus a minimum of three points.
(There are, however, uses for two-point polygons. Mark

Thompson showed us how to construct a great-looking
grassy field from two-point polygons in his article from
the premiere issue of LZWPRO, October 1993.) Again, for
the objects we are creating via LPARSER to look real, we
need them to consist of true polygons.

There are other LPARSER command line parameters
mentioned in the documentation that can improve the
results of the final object rendering depending on which
rendering package is used. (Before LightWave we had
other choices!) As can be expected, the rendered results
greatly depend on the object being rendered, too. For
example, certain object forms may get too “thin,” and
there is a parameter to vary this option. There is also an
option to “connect” shapes that make up “branches” or
“trunks” of trees and plants. We all do some experimen-
tation in LightWave to get things just right, and we will
need to do some experimentation with the parameters in
LPARSER as well.

R

Figure 1

Converting the LPARSER
DXF File on the PC

A problem with some of the files created by LPARSER
in the DXF 3DFACE format is that they are quite large and
take a long time for TIO to import. (Actually, this stems
from the design of the DXF 3DFACE file format.) Another
time-consuming task is checking for duplicate points or
vertices that may be shared by multiple polygons (i.e.,
“merging points”). To save conversion time on my
Amiga, T wrote a PC program called DXF2LW, which will
do the conversion from DXF to LightWave and “merge
points” to reduce their number. It also chooses a set of
surface attributes preferable to TIO’s. (DXF2LW, along
with its C source code and documentation, is included
on the April '95 LIGHTWAVEPRO disk.)

Though TIO will import the LPARSER DXF objects,
you might like the DXF2LW conversion program better
because it runs on the PC and will free up the Amiga.
Also, you might find the DXF2LW surface attribute
defaults more suitable than those from TIO.

An LPARSER Sample Object
Figure 1 shows a screen from LVIEWER, a compan-
ion program included with the LPARSER package. This
image shows the results of the sample fern object after
being “parsed” or generated by the LPARSER program
via the command shown above. (The LVIEWER program
will also view or display 3DStudio 3DS binary objects,

and 3DStudio objects are importable by TIO into
LightWave.) When the objects generated by LPARSER are
imported into LightWave and rendered, the results are
great! I'll let you judge for yourself. Figure 2 (the fractal
tree image in the color pages) shows the results of
LightWave rendering a rather simple scene. This scene
has an LPARSER-generated tree with some LightWave-
generated clouds and hills in the background. The tree
object was converted from the DXF LPARSER output for-
mat to LightWave format by DXF2LW.

Changing Surface Attributes

After loading or importing one of these LPARSER
objects into LightWave and before rendering, you may
want to make a few surface parameter adjustments.
Actually, this holds true for any DXF object imported via
TIO or converted by DXF2LW, since there are not really
any surface characteristics besides color that will carry
over to the converted object. Both TIO and DXF2LW make
somewhat arbitrary but logical selections as to several of
the surface attributes available in LightWave that are not
present in the DXF-format specifications.

However, both TIO and DXF2LW carry over the color
specified for each surface from the original DXF-format-
ted object file. The following list shows the surface attrib-
utes each program selects:

DXF2LW TIO
Surface Color same as DXF same as DXF
Smoothing On Off
Diffuse 100% 0%
Double-Sided off On

Both DXF2LW and TIO change the axis on which the
object is aligned. DXF2LW accomplishes this by exchang-
ing the Y and Z axis point coordinates so the object will
be oriented along the Y axis instead of the Z axis. The
object is thus “up and down” versus “lying on its side.”

Double-sided polygons increase rendering time, so
double-sided is turned off by DXF2LW. The object will still
render properly because DXF2LW automatically checks
polygon orientation. This software uses some rather sim-
ple math to determine which plane a polygon can be
viewed from and whether the polygon is clockwise or
counterclockwise. All of the counterclockwise polygons
are “flipped” to verify that they are clockwise in orienta-
tion. This flipping ensures that their “surface normals”
are all aligned the same way and visible to the camera in
their viewable plane. The DXF2LW program displays sta-
tistics about the polygons and their orientation as it con-
verts the DXF data to LightWave format.

TIO activates Double Sided (Surfaces panel).
Since this function increases rendering time somewhat,
you may want to turn it off. Before you render any object
with Double Sided off, import the object into Modeler
and make sure all the polygons are aligned (or flipped)
in the proper direction.

As mentioned above, the color scheme for a DXF
object is carried over by both my conversion program
(DXF2LW) and TIO from the original DXF object. In the
equipment originally used to print CAD (computer-aided
design) drawings, a different “pen” was used for each
color. (Remember, the DXF format is mostly used in

see Fractal 3D Objects, page 18

How to Import a DXF-
Formatted Object

Choose Load Object and select your object’s name from
the file requester.

Choose Objects from the main Layout screen.

Specify DXF as the object type by using the Up or Down
arrows.

As TIO imports and converts the object, it will display
the conversion progress.

LicitwavePro [EER

Simple Refraction

Creating a Realistic Magnifying Glass

hen people think of refraction, most

don't consider it a part of everyday 3D

jobs. But, if you look around you, many

things refract. Incorporating this quality
into your animations will bring you one step closer to
achieving total realism.

Ever since I fell into 3D animation, I've been like a
sponge. Everything having anything to do with 3D, whether
high-end or low-end systems, intrigues me—especially
when it comes to LightWave. There have been a few anima-
tions that, though relatively simple, had some ideas that
were so effective, one would wonder how you could over-
look such a great idea. With this tutorial, you'll create a
magnifying glass, but you could use the following steps for
eyeglasses, telescopes, binoculars, etc.

LightWave is great for many reasons, but one that I par-
ticularly admire is its ability to mimic real-world properties.
This magnifying glass idea has always been in the back of
my mind, and finally, one day, I decided to try it. In about
five minutes, I had the look I was after. Later, I worked a lit-
tle harder and longer on the idea, and thanks to LightWave,
made a pretty convincing magnifying glass. As with just
about anything in LightWave, by setting up objects, images
and lights as you would in a real setting, you can pull off
what the Revolution tape called "image miracles." Enough
jabber, though—on with the tutorial.

For the magnifying glass, let's begin in Modeler.

Making The Glass

Whenever you model anything, it is always best to have
that thing right in front of you, or at least a photograph of it.
You may know exactly how something looks, but once
you've modeled it, for some reason, it just doesn't look
right. When you actually get a hold of that thing you mod-
eled, you see the very subtleties that make that thing
unique. It's the same for a magnifying glass. Yes, I know
exactly how it should look, but, inevitably, it just doesn't
look right if I build it from memory. By having a real mag-
nifying glass in front of me, I can see the proportions, sur-
faces, and most importantly, how it reacts to its surround-
ings. Since I've built a magnifying glass already, you don't
have to run out and get one for this tutorial.
e Clear out Modeler by clicking New (Objects menu or

N). The first thing to do is build the glass. If you had that

K LiGHTWAVEPRO

magnifying glass in front of you, you'd see that the glass
portion is convex, like a contact lens. This is very impor-
tant to model correctly because its shape, with refraction
and the right surface properties, determines how realis-
tic it will look when rendered. I wanted the glass to
curve outward, so I chose to use the Magnet tool.

e First, create a disc in the Face view. Use the numeric
requester and enter the following settings in mm:

Sides 40
Segments 1

Axis Z

Center 0,0,0
Radii 1.5, 15,0

Click OK; then the () key to fit all views.
e In another layer, create a box, using these settings with
the numeric requester:

Low -2.5,-2,0
High 25,2,0
Segments X=20,Y=20

The box will be used to create an even template to
make the disc malleable.

e Go back to layer one and select layer two (the box
layer) as your background. Pull out the face window
view for a larger work area. Extrude the disc just 1
mm and then center it on the Z axis. (If you have not
changed Modeler's config file, your F2 key should be
center on one axis macro.)

e Choose Boolean (B) from the Tools menu and click
Intersect. If you come up with extra points and your disc
is not flat, delete the points that are off of 0, on the -7 axis.

Figure 1

by Dan Ablan

In a minute or so, you should have a disc that is made
up of even polygons in the X and Y axes (Figure 1). The
reason it's done this way that because by tripling and subdi-
viding just a disc, you'd get a mess of uneven polygons, and
it would be hard to use, and...well, it's a mess. Anyway,
once the disc is made, save it as “disc flat.”” You won't need
to use it like this in Layout; we're saving it just in case.

e Under the Modify menu, select the Magnet tool. With
the left mouse button, drag out to cover the whole disc
(Figure 2). Next, with the right mouse button, from the
top view, drag out just a little, and you'll see the disc
begin to curve outward. The larger the magnet area

Figure 2

(left mouse), the larger the influence (right mouse) will
be. You should end up with a disc that looks something
like Figure 3. Save it as “disc magnet.” Again, you won't
need this particular piece in Layout, but if you screw up,
or crash, it's much easier to reload this object, and later
delete it, than to go through the steps again.

e Now, give the disc the surface name “glass.” Then,
using the Mirror tool under the Multiply menu, mir-
ror the curved disc against itself so you have a two-
sided curve (Figure 4). Merge points (m) to get rid of
any duplicate points. Save this as “mag,glass.”

e Now you need to build the edge of the magnifying glass
that holds the lens in place. In a clean layer, make a disc
using the numeric requester and these settings in mm

Sides 40
Segments 1

Axis Z
Center 0,0,0

Figure 6: Using the proper refraction settings, « magni-
fying glass enlarges what's behind it.

X 1.6
Y 0
Z 0

e Copy this disc to another layer. Select Size (H) from
the Modify menu and click Numeric (n). Enter
Factor of 0.94 to scale it down just a bit. Next, Extrude
(Multiply menu) it .2 mm on the Z axis. Finally, center
iton the Z axis.

e Go back to the layer that has the larger disc and put
the smaller extruded disc in the background layer.
Select Boolean from the Tools menu (B) and hit
Subtract. When the hole has been cut in the larger
flat disc, Extrude it .2 mm on the Z axis. Center it
on the 7 axis, and give the hole a Surface name of
edge. Finally, save it.

Now all that is left is the neck and handle. You can
model these in the same step, by making one disc and sur-
facing two different areas. I made mine look like a fancy
wood-type handle, but for now, just make a disc.

o Select Disc, and using the numeric requester, enter

these settings in mm:
Sides 12
Segments 2
Bottom 4.7
Top -1.59
Axis Y
Center 0,-3.145,0
Radii 0.195,1.555,0.18

e Using the right mouse button, select the center points
with the lasso feature. Move these points to about -1.84
mm to create the neck area of the handle (Figure 5).
Next, select just those polygons using the lasso tool

Figure 7: As the magnifying glass gets closer to the object,
it magnifies less, as would a real magnifying glass.

again (right mouse button) and surface them as
“neck.” Surface the remainder of the handle as “han-
dle.” Save this, too.

e Now it's time to put it all together. The best way to join
the pieces is through the Boolean operations. However,
you can copy and paste all items to the same layer.
Once you have all the pieces together, hit the (m) key to
merge points. Export this object to layout, saving it as
“MagnifyGlass.”

Making It Work

Surfacing this thing is relatively simple. Place your
favorite wood surface or image around the handle and use
a silver/metal surface for the neck and edge. The glass is
also easy. Use these settings:

Texture Color 172, 187,200
Diffusion 95

Specularity 75

Glossiness High

Reflective 5

Reflected Image Fractal Reflections
Transparency 95

Refractive Index 1.55

Smoothing On

Max Smoothing Angle 10
e Under the Camera menu, turn on Trace
Refraction. Set the render resolution to Low for
quick render tests. Refraction is the key here. As
the magnifying glass is closer to the camera and
farther away from another object, it will appear
very magnified, as in the color image (Figure 6). I
chose to just use a scan of a $5 bill as an object.

Figure 5

You could use a scan of a page of words, a table
with many objects spread across it, or a newspaper.
e As the magnifying glass gets closer to the object, it
doesn't magnify as much (Figure 7). If you have a
magnifying glass near you, look through it, and move
it toward and away from a piece of paper on your
desk. See how it reacts? It's the same in LightWave.
The only difference is that you can't start a campfire
in LightWave with a concentrated light source.
Refraction is interesting. To make it work properly in
LightWave, you usually need more than one refraction
index on the same object. Light enters one part of the
object, refracts, travels through another part, and leaves
through yet another. Realistically, you should have a
refraction setting for each part, but this magnifying glass
isn’t quite thick enough to warrant that. If you were mod-
eling a glass of water, however, you would set refraction
for where the light enters, the water, and where the light
leaves. [Ed itor’s note: For a more detailed description of
refraction properties, see Mark Thompson's
“Understanding Refraction,” ZWPRO, January '95]

Other Ideas

I recently saw a great animation from a company in
Europe. Called “Invisible Man,” it was black and white
and had a terrific idea. In one part of the piece, the
invisible man pulls a pair of glasses out of a desk
drawer and proceeds to put them on. You (the cam-
era) are watching this move from the character's per-
spective. When he brings the glasses up to his face
(camera view), you see the objects on the desk in front
of him enlarge and slightly deform, just as if you were
actually putting on a pair of glasses. The above steps
could be used the same way for building a pair of
glasses, or a telescope. Or how about a pair of binocu-
lars? Even if you only do logos with LightWave, why not
have a magnifying glass travel across the logo, instead
of a typical glint of light?

With your eyes open, watching real-world proper-
ties, plus a basic understanding of LightWave, you can
create those "image miracles." It's those little differ-
ences that will really make your animations stand out.

Dan Ablan is a LightWave animator for AGA, based
in Chicago. He can be reached at (312) 239-7957 or via
Internet at dma@mcs.com.

vsnitwavePro K6

LightWave 101

Holding Curves With Metaform

elcome back to “LightWave 101!

It's been awhile since this column

has appeared in ZWPRO due to the
fact that Taylor Kurosaki, who used to write it, is no
longer able to do so because of his busy schedule with
Naughty Dog, a computer game development compa-
ny. I'll be taking over the reins.

This month’s installment will cover the new object-
modeling tool Metaform. In case any readers have
been living under a rock or out exploring uncharted
desert regions for the last six months, I'll give a short
description of this powerful feature:

Metaform, a tool found in Modeler’s Subdiv
requester (Polygon menu), allows you to create a
primitive object, or metabox. Then, by simply pressing
a button, Metaform turns this primitive angled shape
into a smooth, organic model. Now the problem is that
if you only create a primitive in the general shape and
size of what you want the final object to look like and
press the button, you will most likely end up with an
amorphous blob instead of the nice organic model you
expected. Don't worry—this happens to just about
everyone the first few times they experiment with
Metaform. So don’t panic.

When LightWave 3.5 first arrived, 1 was very excit-
ed about Metaform. After playing with it for several
hours, though, I came to the conclusion that
Metaform was going to be useful for making blob-type
objects but not much else. It could not possibly
replace spline modeling for building complex-looking
objects like automobiles and airplanes, which require
precise curves. There just wasn't enough control.
Well, let me tell you that I could not have been more
wrong. Not only can Metaform produce just about any
smooth object you can think of, but it can also do it
quickly, and is nowhere near as complicated as mod-
eling with curves or splines.

Before using any modeling tool, know the require-
ments that need to be met for it to function correctly.
Metaform, thankfully, has only a few prerequisites
that need to be met for it to work properly. Let’s go
over them:

The main requirement is that your primitive
object—or metabox, as I like to call it—consist sen-

K3 1 ichTwavEPRO

tirely of three- or four-sided polygons. Metaform will

not work with polygons that have been created using

more than four points and doesn't like triangles (three-
sided polygons) as much as four-sided polygons.

Although it will function with them, it has a tendency to

cinch up in the place where you have triangles. So

remember, always try to use quads (four-sided poly-
gons) if possible when making your primitive.

The only other requirement for Metaform is that your
object be closed up on all sides. You should not leave
any open ends in the geometry of the primitive or else
strange things can happen when you Metaform. Other
than that, only the general rules apply. These include not
having any duplicate points or polygons; therefore, use
Merge points (Tools menu) and Unify polygons
(Polygon menu) before you Metaform. Additionally, the
object should be tripled before rendering.

That’s about it for requirements. There’s nothing
better than the hands-on approach, so let’s get started
on the tutorial.

e Go into Modeler and select the Box tool (Objects).
Hit (n) for numeric and accept the default values
by clicking OK. Now hit return to create the box.

e Press the (a) key on the keyboard to autosize the
display. Then go to the Polygon menu and click on
the Subdiv (Subdivide) button. You'll see the
requester shown in Figure 1.

Figure 1: The Subdiv requester

e If Metaform is not already highlighted, select it by
clicking on it. Then click on OK. Your cube has
gone through a one-level transformation with
Metaform and should now look like Figure 2. Click
Metaform two more times. Your cube has turned
into a sphere.

This is as good a place as any to stop and think

about what I was discussing earlier. Let’s review for a

By David Jones

Figure 2

moment. You made a box, then hit Metaform. The
cube started collapsing in on itself and got rounder
with each subsequent metaform until finally becoming
a sphere. However, what if my intention was to make a
box with rounded edges, like dice (something with
tight curves and closely rounded edges)? Now, pay
close attention, because this may seem trivial, but it
opens up many exciting possibilities. If you can con-
trol how tight the metaformed curve will be, just about
anything can be created with it.

e (o into another layer, build the default box again
and autosize it with the (a) key. Now select the
Multiply button at the top of the screen, find
Bevel and click on it.

e In the Bevel requester, enter an Inset of 35 and a
Shift of 0. Make sure to set your Units to mm.
Your requester window should look like Figure 3.
Select OK and watch as Bevel adds a new set of
polygons on the same plane as the originals, but
inset 35 mm toward the center

Figure 3: The Bevel requester

Figure 4: The top sequence shows a normal cube
metaformed into a sphere. The botiom sequence shows
how beveling the edges of the cube first helps contain
the metaform.

e Now Metaform the primitive again, making sure
no polygons are selected. Notice how the edges of
the box hold their shape and don’t collapse inward
as much as they did before. Metaform the object
two more times and it should look like Figure 4.

e Once this has been completed, hit (d) on the key-
board to bring up the display options and select a
Moving Solid preview. Rotate the object around in
the preview window and examine the edges.
Observe how they are nice and round but still have
tight curves. This time, when you metaformed the
object, it didn't turn into a sphere. The reason is
that the new polygons added to the box by the bevel
operation acted as restraining polygons; thus,
Metaform kept the curves it created tight.

What this should tell you is that if you want to make

a tight curve, add extra polygons where you want the

resulting curve to be tight. Metaform looks at the space
between the polygons, and when it subdivides them it
creates new polygons at the halfway point. If you
already have polygons that are close together in the
primitive, Metaform still adds new geometry there, but
it won't pull it in and curve it as much.

I hope that this simple tutorial was helpful in illus-
trating how to hold curves with Metaform. Although
beveling is only one way to add extra geometry to a
primitive, it is used frequently and seems to work well.
Remember that the best way to learn a new tool is to
use it, and this advice is especially true with Metaform.
So what are you waiting for? Start modeling!

David Jones is an animator for Amblin Imaging
currently working on Star Trek: Voyager.

Tearing Through Canyons

continued from page 5

scape. You can avoid this problem in a couple of
ways. The easiest is to run an object that would
believably be part of the landscape (a tree, for exam-
ple) between the camera and the flying object every
now and then. Another way, which is a topic for
another time, would be to use the same image
sequence as the Foreground Image sequence and a
companion FG Alpha Image sequence to “manifest”
those portions of the landscape behind which you
want to fly into the foreground.

Close Enough for...

This method of using a 2D background movie to
simulate flying through a 3D terrain may be eschewed by
the 3D purist simply because it uses 2D animation. But
the fact remains that this method can actually reduce
both rendering time and the total time for completion of
the project. It is also true that you can get a more realis-
tic-looking landscape in a shorter period of time than if
you try to create a spline patch landscape and then paint
it. But the real advantage is that when you hear “And

make it fly through a killer landscape,” you know the
landscape is actually going to be the easiest part.

The next time you have a difficult 3D problem,
don’t let any potential 2D solutions go unconsidered.

Wayne Cole is the proprietor of Infinity Heart
Enterprises in Santa Barbara, Calif. He can be
reached at (805) 964-9540, or via CompuServe at
76370,621.

Have Starfield, Will Travel

continued from page 9

offering this additional tip. As seen in the end credits
for Deep Space Nine, the principle of parallax pro-
vides a more accurate representation of what warping
through space might look like. This means that as we
are traveling forward (or any direction, for that mat-
ter), the closest stars will appear to move the greatest,
causing the longest blurs, and the most distant stars
might not appear to move at all. Two possible solutions
exist to mimic this phenomenon. Either build a com-
pletely realistic, physically accurate spherical starfield,
as we did earlier (scaled extremely large), to act as a

mock galaxy, or create a “shell” of particles surround-
ing the warp column to act as a static background wall
of stars (Figure 5). In both cases, make sure to set a
Distance Dissolve (Objects panel) for the star objects
you'll be warping through. Aren’t space scenes fun?!

Docking Bay

Here are some astronomical constants that might
be useful:

1 astronomical unit = 1.5x 1011 m

1 light year = 9.4605 x 1015 m

1 parsec = 206,265 A.U. or 3.202 light years

Milky Way radius = =55,000 light years

Number of stars in the Milky Way = >200 billion

Next time, we'll tackle some of the more interesting
stellar phenomena, such as globular clusters, spiral
galaxies, black holes, comets and solar flares. Until
then, keep looking up!

Send questions, comments or frozen pizzas to
Blue-Line Imaging, c/o William Frawley, 315 W.
Fifth Street, Muscataine, IA 52761.

N ease Gall

t the top 10 Fractal Noise tips and LightWave 4.0 benchmark tests.

e ye

SHTWAVEPRO disk subscriptions and back issues are available six times through-
; proximately every other month). Enhance your LightWave 3D knowledge with
rmation-packed disks that help you to better understand ARexx scripts, objects and macros
d in ZWPRO tutorials. Disk subscriptions are $30 per year(Canada and Mexico add $10;
3ac es are $7 each (Canada and Mexico add $3; overseas add $8).
! isk copies, please call 1-800-322-AVID or write to: LIGHTWAVEPRO
Subscriptions, 273 N. Mathilda Ave., Sunnyvale, CA 94080.

LIGHTWAVEPRO

Editor's Message

continued from page 3

but not angry. If you are depending upon materials that
do not exist yet, you are making a very unwise business
decision. A product will ship when it's done (and
sometimes a bit before!).

Now that I've had my little tirade, I think it would be
nice to tell you about some of the new features in
LightWave 4.0. This, of course, is just a quick list. We'll go
into much more detail in the next and upcoming issues.

The most exciting thing about the new LightWave is
definitely its ability to allow third-party manufacturers to
supply plug-in capabilities. Layout will provide for dis-
placement, image post-processing, motion and shader fil-
ters. Note the word “shader™: these filters are much more
advanced than simple textures. Modeler allows support
for plug-in macros and custom tools.

Layout's Objects panel now allows you to make an
object unaffected by fog or unseen by ray tracing. Both
options can be very handy for composition work.
Bones now allow for a minimum and maximum influ-
ence range.

It seems each new version of LightWave introduces
something you can’t see how you ever did without.
Version 2.0 brought us automatic texture sizing. 3.0
introduced us to macros. And 3.5 brought us Metaform.
I believe 4.0's must-have feature may very well be its sur-
face samples. This feature gives you the ability to quickly

render out small tests of a surface as many times as
needed. On the Amiga, they render out in rows on your
selected display device. On non-Amiga versions, they ren-
der out in a vertical “filmstrip” mounted on the edge of
the Surfaces panel. By the way, every once in a while, a
LightWave option comes along that just doesn’t seem to
make sense to some people. (An animator I know used
to wonder why anyone would want a “Clear Light.”) The
Surface Sphere Diameter may be such an option.
Defaulted to 1.0, it lets you change the relative size of the
sample spheres that you can render. The sample sphere
doesn’t actually render out any larger, but you will notice
a texture change if you adjust to this value. Remember to
give this option a value close to the size of your surface,
or you won't get accurate-looking results. I've made the
mistake myself of not seeing my texture on the sample
sphere when I was trying to map a planet, but instead
looking at a 1-meter sphere.

Layout now supports Flyer clips. This should be a wel-
come addition for those with a Flyer edit suite.

Layout’s Camera panel has been revamped as well,
with the addition of custom pixel aspects and a field-
of-view readout. I just recently used the custom pixel
aspect feature to complete a cinemascope film teaser
for the movie CutThroat Island (check out the end of
the preview for the LightWave stuff). There are now

frame boundaries in the camera view that dynamically
change whenever you adjust resolution and pixel
aspects. I'm sure you'll agree they are a great addition.

Modeler now sports a few more layers and (ta da!)
multiple undo/redo. You can even adjust the number of
undo/redo operations available. There are a few new jitter
and array options and Metaform now allows you to use a
smoothing angle to “hold” sharp edges.

The units field in all requesters is now absent. Instead,
you can just type in the abbreviation of the unit you wish to
use and Modeler will automatically convert it to the units
of measurement you have set in the Display options. Along
with this new feature comes another valuable one: the abil-
ity to perform basic mathematical functions in the numeric
field of requesters. Simply type a formula such as
“21.527m + 19.34in” and Modeler will insert the answer
in the field when you hit return. Very nice.

Add in the ability to view solid, static models and
save separate layer, zoom and window positions onto
numeric keys, and you round out some of Modeler’s
new capabilities.

As I mentioned above, we'll be covering these and
more new features in upcoming issues.

Oh, by the way, if for some reason LightWave hasn’t
shipped vet, forget I said anything. I

LWP

Fractal 3D Objects

continued from page 13

CAD-type PC programs.) That is why both TIO and
DXF2LW use a surface name beginning with “PEN” for
each color or surface. There is a maximum of eight sur-
faces/colors used in the conversion as follows:

Surface Name Color R G B
PENO Black 0 0 0
PEN1 Red 255 0 0
PEN2 Yellow 255 255 0
PEN3 Green 0 255 0
PEN4 Cyan 0 255 255
PEN5 Blue 0 0 255
PENG Magenta 255 0 255
PEN7 White 255 255 255

If a color “number” in the DXF object is higher than
seven, seven is subtracted from it until it fits into the
above color scheme when converted by the DXF2LW
program. TIO also fits the DXF object colors into the
above scheme. DXF2LW was written to support only the
DXF “entity” called 3DFACE. While this conversion pro-
gram works for objects generated with the proper
LPARSER command, it does not work on all DXF-for-
matted object files. TIO supports more of the DXF for-
mat than DXF2LW does. The appendix of the LightWave
manual contains more details on the TIO conversion
program, the DXF format and other formats supported
by the TIO program.

Some of the sample “critter” or “animal” objects
look good with their LPARSER-generated color set-
tings. However, the plant objects will need to be
changed. For plants, trees and leaves generated by

KA 1 icHTwAvEPRO

LPARSER, it’s best to change yellow to brown and all
other colors to a shade of green. This step might save
you the time of rendering in Layout or selecting poly-
gons in Modeler to see what colors/surfaces are
attached to what polygons.

As you might guess, there are different surfaces (or
sets of polygons) generated for the “branches” and
“leaves.” For some of the “flower” objects, you will
need to experiment with the colors, as these objects
look more realistic with more colors than just browns
or greens. If you take the time to learn the LPARSER-
implemented I-system commands for creating your own
objects, it will be easier to originally select the color
and thus the surface you want for each object part.
When constructing your own LPARSER objects, you
have control over the parts of the object being created.
These parts can be given different colors and thus treat-
ed as separate surfaces once imported into LightWave.

Also, if you are loading more than one object that
was originally in DXF format, remember to change the
surface names to something meaningful before loading
a second object. If you load more than one object with
these same (DXF default) surface names, the objects
will share these names and their individual surfaces
cannot be changed independently.

Another surface attribute that needs to be changed
is the diffuse setting. It will be set to 0% by TIO and
should be set to 100% or somewhat less for each sur-
face to be seen. I'll leave it up to you to adjust any of the
other attributes to create the effect you want.

Object Sizing

The size of the DXF object may not quite be what
you would expect after it is imported into LightWave,
because the unit of measurement is not carried over by
the conversion process. The original object might have
been created in inches or feet. When the object is
imported into LightWave, the unit of measurement is
assumed to be meters. To fix this problem, it can be
resized in Layout, rescaled in Modeler or converted to
a proper size using the Object to Metric macro
(MetricScale.lwm) in Modeler.

Should You Be Using
LPARSER?

Some of the sample LPARSER-generated objects do
have a high point/polygon count, which increases ren-
dering time, but I think the results are worth it. By chang-
ing the original commands in the LPARSER input file you
do have some control over the size of the objects created.
Even if you do not take the time to learn the I-system
commands needed to make your own original objects,
the samples provided may be a welcome addition to your
collection. If you don’t have access to a PC to generate
these sample objects, 1 have converted them all into
LightWave format for you. They should all be available on
the next LIGHT-ROM CD from Amiga Library Services.

Earl Terwilliger can be reached on the Internet at ais-
lerwi@acs.eku.edu or on CompuServe at 70575,1330.

T0 ORDER WITH YOUR
VISA OR MASTERGARD
CALL TOLL FREE!

1(800) 322-2843

NENW-S LETTER

LIGHTWAVEPR(

0R LIGHTWAVE 3D° ANIMATORS

Make 2 Smart
Investment

subscribe Today!

Canadian/Mexico: Add $US12
Overseas: Add $US36
Allow 6-8 weeks for delivery.

Make checks payable to LIGHTWAVEPRO.
Prepayment required on all overseas orders.

YES! Enter my one-year (12 issues) subscription to
LIGHTWAVEPRO at the Special Introductory Rate of only
$48—that’s 50% off the cover price!

Name

Address Apt. #
City. State Zip

(1 payment Enclosed [Bill Me

BFQLW

THE NEWSLETTER FOR LIGHTWAVE 30 ANIMATORS
torosTace LIGHTWAV
> “\\"‘» .

NECESSARY
IF MAILED
IN THE
UNITED STATES

oo s

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 2263 SUNNYVALE,CA

POSTAGE WILL BE PAID BY THE ADDRESSEE

273 North Mathilda Avenue
Sunnyvale, CA 94086-9313

TO ORDER WITH YOUR VISA
OR MASTERCARD
" CALL TOLL FREE!

el ol 1(800) 322-2843

Fractal Tree

A LightWave rendering of an LPARSER-
generated 3D fractal tree. See “Fractal
3D Objects,” page 12.

Image copyright 1995 Earl Terwilliger

£
R

MERICAY

Pleiades

A total of 56,000 particles comprise this
starfield, 40,000 of which are set to render
Particle Sizes as "Small," 15,000 "Medium"
and 1,000 as "Large." Lens flares were used
as local suns and dust clouds were planar
mapped for enhanced effect. See “Have
Starfield, Will Travel,” page 8.

Copyright 1995 Bill Frawley

Simple Refraction

Using the proper refraction settings, a
magnifying glass enlarges what's behind it.
See “Simple Refraction,” page 14.

Copyright 1995 Dan Ablan

ez Wiar Happens WHeN EVERYONE
Puts Tueir Heaps ToceTHeR. -

Raptor 3 is twice as powerful as anything qQ_p've seen before.

i

Fr it Lt A NERL s el sdaliel e - caddn an el ool sbie Sl o st il S S g

B 5 %l TSR . Meeiens i e, vl Rawrt SR Sai. iR abeudanct cl i o sheaimy Bt s S MR - liidd o g

RAPTOR 3 1 PROCESSOR InDePenDent. In orHER WoRDs, Yo suurick CPUs, not compuTees, WHen

you UPGRADE. O sTaRT ouT Wi Anorhe RISCmieopracessor ke MIPS Re600 08 Rygoo

.. AND UPGRADE LATER. TURN YOUR ATTENTION T0 THE MOTHERBOARD AND UOU'L_L FIND [T DELIVERS

30 ANIMATION RENDERING INDUSTRY AND CONTINUES TO REINVENT IT WITH AN INSATIABLE APPETITE
FOR RESCARCH, DEVELOPMENT ANDInnovATIon. THeResuL? For 3D RenberinG, RAPTOR 3 wiTH

flLpa 21161 Is HEAD AND SHOULDERS ABOVE ANYTHING ELSE: cnl-nr
EVE 3
é

£OR MORE 0N RAPTOR 3 AT TWICE THE $PEED, CALL (80o) 793-3375

Raptor and Raptor3 are trademarks of DeskStation Technology. flll other trademarks are the property of their respective companies.

o) o

"2 DESKSTATION

. $INKYOUR TEETH N0 RAPTOR 3 UITH ALPHR 2161 MIROPROCESSOR, THE MOST POWERFUL unparALLELeD 1/0 capagiimy with & PCl stors, 2 1A storsano win $CS1 poRTs, mAKINGIT -
Winows NT workstation and CPU comBinaTIoN In THE WORLD. Witk ALPHA 2116, sy T0.05¢ UWinoots 1T's Disk STRPING FEATURE THAT CAM DOUBLE HARD DISk PERFORMANCE. -
RaproR 3 1§ now TUWICE As #AsT As AnY RaPTOR T0 DATE . FOR LIGHTWAVE USER, THAT means fino 8 SIMIT) SOCKETS PROVIDE CAPACITY £OR UP TO ONE GIGABYTE OF MAIN MEMORY, Best oF ;
THIS ONE MACHINE CAN TAKE BIGGER BITES THAN €VER OF Y0UR 3 RenderinG Tasks. WHAT's more, AL, Rapror 3 15 éRom Desk$tation TecnoLocy. THe companY THAT HELPED GIVE BIRTH TO THE .

