
Numerical Quadrature Over a Rectangular 
Domain in Two or More Dimensions 

Part 1. Quadrature over a Square, Using up to Sixteen Equally Spaced Points 

By J. C. P. Miller 

1. Introduction. Except for a section of a paper by Bickley [1] which gives some 
of the results that follow, there seems to be very little in print concerning numerical 
quadrature over rectangular domains in two or more dimensions. This is perhaps 
because numerical evaluations can be readily made by using one-dimensional 
formulas on each variable in turn-such formulas as the Euler-MNaclaurin formula, 
Gregory's formula, Simpson's rule, Newton's three-eighths rule, or Gauss's formu- 
las, to name a few. This restriction to "products" of one-dimensional formulas 
limits the field unduly, and may lead to an excessively large amount of work. 
Thus, in n dimensions, use of Gauss's 3-point formula involves 3' points, whereas 
comparable accuracy may be obtained with about 2n2 points. 

In this first note we explore some of the simple possibilities corresponding to 
Simpson's rule and the three-eighths rule, applied to 9 or 16 points equally spaced 
over a square, the corner points being included. 

2. Integration over a Square. We restrict the domain of integration to be a 
square; this covers any rectangular domain by change of scale. We take the center 
of the square as origin of coordinates, and in the first place take the side of the 
square to be 2h; and the integral as 

h h 

(2.1) I= L ff(xy)dxdy. 
h h 

We assume that f(x, y) can be expanded as far as we need in a Taylor series in 
x and y. In other words, we suppose that f(x, y) can be represented adequately by 
a polynomial in x and y, with an error term which we shall suppose may be esti- 
mated by considering a few of the more significant neglected terms. We shall not 
give an accurate error analysis. 

It is clear that polynomial terms involving an odd power of either variable 
will contribute nothing to the integral; we shall also group ordinates in sets such 
that the total contribution to their sum is zero for such terms involving an odd 
power of either variable. For example, the points (h, 0), (-h, 0), (0, h), (0, -h) 
form one such group. With this grouping we can then eliminate from considera- 
tion all terms of the Taylor expansion which do not involve an even power of both 
variables. 

3. Method of Derivation. Ve seek approximate formulas of the form 
h h 

(3.1) I= f(x, y) dx dy A,,, A, (rh,sh), 
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in which Ar,., = A,7 = A1,1.11, X and which will be exact for appropriate poly- 
nomial functions f(x, y) of sufficiently low degree. 

Two approaches, not entirely distinct, may be used: 
(i) We may give f(x, y) special forms and choose coefficients A,,, to fit these 

exactly. Such forms are 1, x2 (or the equivalent symmetrical form X2 + y2), X4, 

2y2, etc 
(ii) We may expand f(x, y) as a Taylor series and evaluate I both by means 

of the integral and by means of the sum, and equate coefficients. 
We shall give an example of each approach, in order to bring out an interesting 

point concerning the proper choice of special forms. 

4. Nine-point Formulas (i). Consider the nine points, grouped as indicated 
by the semi-colons: (0, 0); (h, 0), (-h, 0), (0, h), (0, -h); (h, h), (-h, h), 
(h, -h), (-h, -h); and the four special functions f(x, y) = 1, X2, X4, X2y2 with 
values at the nine points as follows 

111 101 101 101 
(4.1) 1 1 1 1 0 1 1 0 1 0 0 0 

1 1 1 1 0 1 1 0 1 1 0 1 

The values of I/4h2 are 

(4.2) 1, a,1 isN 

Hence, we wish to have 

rAo0o + 4A1,o + 4Ak,, = 1 

(4.3) 2A.o + 4Ak,, 
= 3 

2Ako + 4Ak,, = 
4Ak, = ' 

We note at once that two of the equations are incompatible. Since we have 4 
equations for 3 unknowns, we can still solve them if we discard the third (since 
the correct result for x- must have precedence over the correct result for X4). We 
obtain 

Aoo = Alo = Allj=W 

which is precisely the Simpson's rule "product," see Bickley [1], eq. (22), with 
multipliers 

1 4 1 *36 
(A) 4 16 4 

1 4 1 

to give I/4h2. The main error term clearly concerns the coefficients of the terms 
in X4 and y4 and is 

4 4 4 . 
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5. Nine-point Formulas (ii). We now consider the same problem by expanding 
and equating, coefficients. We have, using f,, for f(rh, sh), and fo simply for f(0, 0), 

f~~xY)=foizJ0o++Ifo Xa+Y6x Y +fo Y 
(5-1) A(Z, Y) = Ao + 2 -z + 82 !-2+4 - + + ! xfy + f+ ** (5.1) ~~~~2!0aX2 2!y2 4!X_4 4! 0x20y2 4! 0y4 

whence 

(5.2) 1= 4h2 [fo + ..] (f? + a + h a fo 10 dfo + 

Following Bickley [1], we write this concisely in terms of 

V2 a 2 +a2 an 4=a4~y 4) 
-+- and x2y 

OX2 0y2 a2j2 

Then, adding further terms for later use, 

2 + I/4h2 = f + Vf + 
(V4fo + f+ h 

(V6f + 404V2f0) 

(+ (V8fo + 85)4V4fo + 15)6f) + *- 

We have likewise 

fo,o = fo 

fio + foAl + J-1'o + fo-i =4fo + 2 
h2V2fo +2 h4(V74fo - 25D4fo) 

(5.5) 
4+ 6! h6(V6fo - 3gD4V2fo) + 

2 
h8(Vfo 

- 4V4fo 
+ 2sfo) + 

(5.5) ~6! 8! 

fii + f-i,i + fi,-i + f-i,- = 4fo + 2h2V2 4! h V+ D4fo) 
4 6 ( ~fo +2!4Vfo + )4jifo +4~ 

+ 6? h6(Vf0 + l2D4V2fo) + ? h8(V8fo + 2454V4f + 165)fo) + 

From these relations we obtain, for terms to h4 in I/4h2 

rAoo + 4Ao + 4A1, = 1 
) 2A1,0 + 4A11 = 

(5.6) - 

2A1,o + 4A,1 = 

4 -4A,,o + 16A1,1 = 

The first three equations are as in (4.3), and the second and third remain in- 
compatible. Neglecting the third we can solve to give (see Bickley [1], eq. (20)) 
the multipliers for I/4h2; 

7 16 7 *180 h 
(B) 16 88 16 The main error term is -80 V4fo 

7 16 718 
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The difference in the fourth equation between (4.3) and (5.6) leads to different 
formulas. The cause is reflected in the error term. In the second case we have 
ignored a term in Vfo and removed the remaining term in rfo ; in 4 we have ignored 
a term in 

'04f + '6,f 

+X4 oy4 
and removed the remaining term in t4fo. The error term in the product-Simpson 
formula can be expressed alternatively in the form 

180 (V4fo - 2 Vfo). 

It is perhaps a moot point which formula will give better results, unless it is 
known that f(x, y) is exactly, or almost a harmonic function. It is perhaps worth 
noting that for the method of 4 to yield the formula (B) it is necessary only to 
take a harmonic function instead of X2y2 in deriving the last equation. For ex- 
ample, f(x, y) = X- 

4 
x2y2 + y4 gives values 

-4 1 -4 
(5-7) 1 0 1 and I/4h2 - - h4 

-4 1 -4 

and the fourth equation 

(5.8) -4A1,o + 16A1,1 = A-. 

6. Five-point and Other Formulas. The impossibility of removing all of the 
h4 terms in the error in I/4h2 by using 9 points, suggests the possibility of using 
fewer points, in fact five or eight, while still retaining an error of order h4. There 
are three possibilities, using the first two equations only of (4.3) or (5.6). 

(i) Take Ao0o = 0; this yields multipliers 

-1 4 -1 ?12 
(C) 4 0 4 with main error h4(V4f0 - 224fo) . 

-1 4 -1 

(ii) Take Al l = 0, giving 

0 1 0 ?6 
(D) 1 2 1 with main error h4(V4f - 74fo). 

0 1 0 

(iii) Take Alo = 0, giving the "diagonal Simpson's rule" 

1 0 1 + 12 
(E) 0 8 0 with main error Thh h4(V4fo + 84fo). 

1 0 1 
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The first of these has little to commend it, with its large D4f0 error term, and 
its negative multipliers. The other two (see Bickley [1], eqs. (23, 24)) are reason- 
ably good. Over large areas, with many contiguous squares of area 4he, they aver- 
age respectively 3 and 2 points per square. With a square of side 6h, for example, 
they give 

0 1 0 1 0 1 0 ?6 1 0 2 0 2 0 1 -12 
1 2 2 2 2 2 1 0 8 0 8 0 8 0 
0 2 0 2 0 2 0 2 0 4 0 4 0 2 

(F) 1 2 2 2 2 2 1 and 08 0 8 0 8 0 
0 2 0 2 0 2 0 2 0 4 0 4 0 2 
1 2 2 2 2 2 1 0 8 0 8 0 8 0 
0 1 0 1 0 1 0 1 0 2 0 2 0 1 

The first of these has interior points with multipliers 2 (or zero) only. We note 
also that combination in proportions : gives precisely the formula (B). One 
further formula is obtained by combining (D) and (E) in equal proportions: 

1 2 1 ?24 
(G) 2 12 2 with main error ysh'4(V4fo + 24fo) 

1 2 1 

and with simple multipliers and a good error term. 

7. 16-point Formulas. These follow exactly the pattern for nine-point formulas; 
we merely quote results. 

The method of 4, with the same special functions, and with similar neglect of 
the incompatible third equation gives for I/9h , where 

3h/2 3h/2 

I L1~,2 L f(x, y) dx, dy, 
3h/2 3h/2 

the multipliers 

1 3 3 1 ?64 

(A') 3 9 9 3 with main error term h3(V4fo- 2D4fo). 

1 3 3 1 

The formula corresponding to (B) of 5 is 

7 13 13 7 ?320 

(B') 13 47 47 13 with main error term gh4V4fo. 

7 13 13 1 

8. Twelve-point Formulas and Others. As in 6 we can use the first two equa- 
tions after setting one of the coefficients Aj1,, A1,3, or A3,3 equal to zero. This yields 



18 J. C. p. XER 

twelve-point formulas 
(i) with Ai.- = 0: 

-2 3 3 -2 -16 

(C') | 3 0 0 3 with main error term ibh4(V'!o - 4v4fo) 
-2 3 3 -2 

(ii) with A3,3 = 0: 

0 1 1 0 .16 

(D') 1 2 2 1 with main error term L fih3(V4fo - 7D4fo) 

0 1 1 0 

(iii) The "diagonal three-eighths rule", with A1,3 = 0: 

1 0 0 1 .16 

(E') | O , 3 0 | ~with main error term rh4(V4f0 + 13)4fo). 

1 0 0 1 

Also, as in 6, we may combine the last two in the ratio :2, to give 

1 2 2 1 ?48 

(G') 2 7 7 2 with main error term h(V4f0 _-54fo). 

1. 2 2 1 

Finally, we write out multipliers over a square of side 6h for the 12-point formu- 
las (ii) and (iii) above (which average respectively 8 and 5 points per square of 
side 3h) 

1 1 0 1 1 0 16 1 0 0 2 0 0 1 16 
1 2 2 2 2 2 1 0 3 3 0 3 3 0 
1 2 2 2 2 2 1 0 3 3 0 3 3 0 

(F') 0 2 2 0220 1 0 0 4 0 0 1 
1 2 2 2 2 2 1 0 3 3 0 3 3 0 
1 2 2 2 2 2 1 0 3 3 0 3 3 0 
0 1 1 0 1 1 0 1 0 0 2 0 0 1 

Note once again the multipliers 2 or 0 only in the interior in the first case. 

9. Numerical Illustrations and Comments. We consider the application of the 
formulas to two examples: (i) f(x, y) = cos x cos y; and (ii) f(x, y) = sin x sinh y, 
a harmonic function. 

(i)I = f'f cs xcmydxdy=4sin 1 

whence IjI = 0.708073. 
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The series (5.4) gives 

fo 1.000000 
V2fo/3! - .333333 
V4fo/5! + 33333 

4 I4fo/3 .5! + 11111 
V6fo/7! - 1587 

4 4V2fo/7! - 1587 
Vlfo/9! + 44 

8 5)4V4fo/9! + 88 
16 Ofo/5-9! + 9 

Sum 0.708078 

This indicates the need for another term, and the alternation in sign, in this case, 
of terms with successive powers of h2. 

Table I shows the results of applying various formulas, with various values of 
h. Results are given to 5 decimals (based on calculations with 6-decimal function 
values). The column e gives the error (formula-true value) and column C gives 
the computed value of the leading correction term, as listed in earlier paragraphs; 
e and C are in units of the 5th decimal. 

TABLE I 

Ha i h=1/2 | - 1/3 
Formula . k 

Result c C Result e C Result 

(A) 0.71701 +894 -1111 0.70858 +51 -53 '0.70817 +10 
(B) .72641 +1834 -2222 .70909 +102 -107 
(C) .62309 -8498 +10000 .70345 -462 +481 
(D) .69353 -1454 +1667 .70730 -77 +80 0.70792 -15 
(E) .76398 +5591 -6667 .71114 +307 -320 
(G) .72876 +2069 -2500 .70922 +115 - 120 

5 = 2/3 h=1/3 
Formula- _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

Result e C Result C 

(A') 0.71199 +392 -494 0.70830 +23 -24 
(B') .71608 +801 -988 .70852 +45 -48 
(C') .61988 -8819 +10617 .70319 -488 +511 
(D') .70175 -632 +741 .70773 -34 +36 
(E') .74269 +3462 -4198 .71000 +193 -202 
(G') .71540 +733 -905 .70849 +42 -44 

TABLE II 

h = 0.6 | =0.4 
Formula Formula 

Result * C Result 4 C 

(A) 0.129414 +187 -186 (A') 0.129310 +83 -83 
(B) .129227 0 (B') .129227 0 
(D) .129879 +652 -652 (D') .129517 +290 -290 
(E) .128482 -745 +745 (E') .128689 -538 +538 
(G) .129181 -46 +47 (G') .129241 +14 - 14 
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We note that the correction estimate C is numerically larger than the actual 
error e in each case; this is due to the sign alternation mentioned earlier. We see 
also that, even with h = 1, C is quite a reasonable estimate of the size of e. 

Formulas (C), (C'), as expected, are not very good. Formulas (E), (E'), are 
also poor, since Vf0 and 504fo have the same sign. The "product-Simpson" rule 
gives the best results-best of all with h = 3. Formulas (D) and (D'), as exhibited 
in (F), (F') for a square of side 6h, suggest that (D) gives better results than 
(D') when the same points are used. 

In practice, it is useful to use two formulas, and to compare results to give an 
estimate of the possible error. For this purpose (A) and (D) or (A') and (D') 
seem suitable pairs, unless it is known that f is harmonic or V4fo is expected to be 
small compared with D4fo. 

rl.2 rl,2 (ii) 1 =f'2 f'2 sin xsinhydxdy = (1 - cos 1.2)(cosh 1.2 - 1) . 0.516908. 

Approximations to I/4 0 0.1292271 are listed; all 6 working decimals are shown 
in Table II. In this case, for a harmonic integrand, the superiority of (B) and 
(B') is evident; (G') is also good. In (B) and (B'), since V2fo = 0, the error terms 
are of order h8 inste-ad of h4. The quadrature of a harmonic function will be con- 
sidered further in al later note. 

I am glad to a knowledge help received with numerical calculations from Dr. J. 
W. Wrench, Jr. in XVashiington, D. C., and from W. R. Rosenkrantz at the Univer- 
sity of Illinois; I aim also grateful for facilities placed at my disposal at the Digital 
Computer Laboratory of the University of Illinois. 
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