Numerical Integration Formulas of Degree Two

By A. H. Stroud

1. Introduction. Here we discuss numerical integration formulas of the form

faf(w)w(z) dz = Z a; f(v:)

where R is a region in n-dimensional, real, euclidean space; z = (21, 22, - , Za);
the a; are constants; and the »; are points in the space. Most previous authors
have given formulas for special regions (for a bibliography see [4]). Thacher [7]
has given a method for constructing formulas of degree 2 with » + 1 points for
general regions and of degree 3 with 2n points for certain symmetric regions; with
his method, however, each region must also be treated separately. Our main re-
sults are to obtain specific formulas of degree 2 with » + 1 points for a general
region satisfying a certain condition of non-degeneracy, and to show that for
these regions such formulas cannot be obtained with fewer points. We also give a
specific 2n point formula of degree 3 for a general centrally symmetric region.
These results are a generalization of those of Georgiev (1, 2, 3] who has obtained
similar results (but gives no general formulas) for n = 2, 3 with w(z) = 1. Our
results are obtained by a different method which was developed without knowledge
of Georgiev’s work.

2. Formulas of degree 2. We assume at first that an integration formula of
degree 2 for R with respect to w(z) can be obtained with » + 1 points

V¢=(Vﬂ,"',v,',,), i=0,1,---,n,

Then the equations

) + o + o+ an = 0o
(1) aovo; + ;i 4 o+ Qv = Coj
Qovovor + v + 00 F GavniVae = Cik LHhk=1,2--,n

must be solved for both the a; and the »;, where
C = f w(z) dx, Coj = f z; w(z) dr, Cip = f z;x, w(z) dr.
R R R

We begin by writing (1) as the matrix equation

(2) UTAU = C
where
1 vo -++ won @ 0 --- 0 Co Co -+ Con
v={!m o 4=10 @ - 0 colm o o e
1 v ot an 00 - a o O e o

and where we assume 0 < ¢ < © and 0 < |det C| < .
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Since C is non-singular we can find a matrix T such that
(3) TTUTAUT = T°CT = cE

where E is a diagonal matrix with elements 4-1. The method for finding T is well
known (see [5], p. 56); we illustrate it using n = 3.
Since ¢, % 0 we define t; = —coi/c, t = 1, 2, 3, and form

@ 0 0 O

1 tn ln tos .
T, = |—0 1 0 O Cr = T7CT, = 0 P ¢ ¥
1 l-g g é ? 1= 1 1= 0 c§l) c;;) cgg) .

0 cff off ¥
Now if ¢f’* = 0 some c{}’ = 0 since det C = 0. Assuming c{?’ > 0 we form
1000 Co 0 0 0

r ~|—0 100 oo 0 2held + 1l @ + hef @ + hell

2_I-O h10 S P D) 4 et on e
0001 1) (1) (1) (1)
0 c13’ + hez; Ca3 C33

and choose & so that ¢f = 2hely + h'cfy’ = 0;if c¢f’* = 0 we take h = 0sothat
¢ = ¢{1". In this way we are assured that the element in the 1, 1 position is =0.

Similarly we may find matrices Ts, T4 and T's such that

¢ O 0 0 0 0 0
R o o L ] To7C, Ts =30 ar 0 0
0 0 2 P LO 0 a0
L» 0 o c;§>J 0 0 0 e

where ¢i7 and ¢y’ are #0. Defining T's as the diagonal matrix
(1, leo/| et I, feo/] 62 11, Len/| €3 V)

we have ﬁnally T = T1T2T3T4T57 6 -

We can assume E has the form [1,1,---,1, —1, ---, —1] since any other
arrangement of +1’s and —1’s can be put into this form by a suitable interchange
of the rows of UT and the corresponding columns of T™U™. If C is positive definite
(for example if w(x) is of constant sign on R) E will be the identity. It should
be noted that the first element of E will always be positive.

In the following we write

1 a0 -+ & 1 v .- VOn.I 1 70 - TOn‘I
UT = 1 gn o+ &n|_|1 w © Vi 0 m™ ' - Tia
1 Enl e Elm 1 Val *°° Van 0 Tal " Tnn

Because UT is non-singular and E~' = E we easily obtain from (3)
(UT)E(UT)T = cA™.
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In terms of the £; this equation is

@ T4 tabn+ - 4 Eipkip — bipri biprr — - —emsjn=%af,-

iyjy = Oxly RPN (0
where p + 1,0 < p = n, is the number of +lis in E. We discuss the .,solution
of (4); the v, are obtained from the & by vi; = 70, + far1; + - + EinTrnj, ¢ =
0,1,---,n,7=1,---,n, where

’ '
1 70 ctc Ton
’ ’
1 0 7u +++ 7ia
T = .
’ ’
'\0 S TnnJ

We are only interested in real solutions of (1) and therefore precisely n — p + 1
of the a; must be negative by Sylvester’s “law of inertia” ([5], p. 36). If £ is the
identity (p = n) clearly we must have 0 < a; < ¢ ;if p < n the only condition
for the a; is that they be non-zero.

Table 1 gives a particular solution of (4); we have assumed ay, -« - , @._, NEga-
tive and @n—p41, -+ *, @ positive. In the places where a double sign occurs we
mean to use the lower sign for the last n — p components of each vector and the
upper sign for the first p components. Each £; is real.

(0 0.---.0.0 G = G 1

Y b b ’ :hao

5 =000 colco — a0 — ay) UZ:F +a, |2
! v ' :I:(Co e ao)al ! Co — Qo

TaBLE 1

colco — @y — ay — as) |2 +coa 1z +a U
&L= 0,0,“', = - , - »:F :
+(co — ap — alas (co — ao)(co — ap — av) Co — Qo
*colco — @ — -+ — @na) |12
taa={0, L
(co—ap— *++ — Gng)anz
- +cot vz 7 +coay vz :F- +q, |12
" lle—a—a)w—a —ar—a) | | (co—a)lco—a—a) | " | co— a
teoloo — ao— - —any) P2 _[ +Coln_s T2
tp1 = b + ’
(co— @ — -+ = @n2)@n ] | (o — @y — +++ — @n-g)(co — @ — **+ — @ay)
= +coan 12 qﬁ— £coar e =F- +a, |2
T lla=—a—a)o—aw—a—a) |’ [(o—a)o—a—a) | |c— ao]
4 Co8n T [ 4 CoGn_ Tz
€n=(* —— ¥ 2
(co— @y — +++ — an—z)an_ __(Co — Qg — *°° — Gn—;)(Co — Q= - an-z)_

+coa. 1/2 +coa 12 /2
o F 0 a2 o CoQy ¥ +as
(co — a0 — a)(co — a0 — a1 — @) (co — ao){co — a0 — ar) Co— @o
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From a particular solution £;; of (4) other solutions may be obtained as follows.
If
it 0 --- 0

0 ou -+ o
S = 1 1n

0 Onl  °°° Onn
is a cogredient automorph of E, that is if SES™ = E, then
Eo= Eaoij + o0 + Emoy;

is also a solution. If @ is an arbitrary skew matrix of order n + 1, with first row
and column entirely zero, such that det (E + Q)(E — Q) # 0, then

S=(E+Q7(E-Q)

is a cogredient automorph of £ (see [5], p. 65) of the above form. If E is the identity
S is orthogonal. We remark that in this latter case (4) determines the distances
d(fir 0) and d(£t7 EJ)’ 7".7 = 07 17 P () i #.77

d(&,0) = (e — a))/al  d(&, &) = [e(a: + a;)/aa;l

The formulas discussed above are minimal; that is, similar formulas cannot
be obtained with fewer points. For if a formula could be obtained with m + 1
points »;, 7 = 0, 1, --- , m, m < n, then equation (2) would still hold, where C

is the same as before and
P Yor - ,,On‘l I’ao 0o --. ()‘I
U = L v Vlnl 4 = 0 al.::- 0 :
l_l Vml s Vm"_l LO 0 PR amJ

that is, U is a rectangular matrix. Since U and A have rank at most m + 1, then
UTAU has rank at most m + 1 and therefore det (U7 AU) = 0. By assumption
det C = 0 and thus (2) cannot hold for m < n.

3. Formulas of degree 3 for centrally symmetric regions. We assume R to be
centrally symmetric with respect to the origin; then if z is in R, —z is also in R.
Let. us further assume w(—2x) = w(x) for « in R. Then

f z;w(x) dv = f rivjrew(z) dr = 0, LLk=1,---,n
R &

We may obtain an integration formula of degree 3 for R with respect to w(x) with
2n points as follows. Take the points to be »;, —»;, 7 = 1, ---, n, and take w,
— 1 to have common weight ax . Any 2n points chosen in this way integrate
exactly the monomials x, , x.x2x with respect to w(z) over R. In addition we must
solve

a + @ + -+ an = 3G

— 1 I A .
A1V1iV1k -+ A2V jVak R AnVnjVnk = 3Cjk J» k = 1, rec, N
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The second of these may be written as the matrix equation (2) where now

I-Vu Viz *°° Via a 0 --- 0 i C2 °°° Cia

v . e » 0 “ee 0 1] ¢ e

U= 21 22 2n A= as C=1 12 O Con
Val Va2 °°° Van 0 0 cee Oy Cin Cn *°* Cpn

and where we assume —© < ¢ < © and 0 < |det C | < .
We solve this equation by a method similar to that of the preceding section.
We find a non-singular matrix T such that

TTUTAUT = T'CT = E

where E is diagonal with elements ==1. Again it is convenient to assume

E=1[,---,1,—1,---, =1]
where the first p elements are +1,0 £ p = n. Now writing
’-511 [ TR ,,h'l I',.u T2 - Tin
UT = b 522 Eam |_ | ¥m m Von ™ T22 Ton
Enr b2 o Enn Vnl Vna2 v Vnﬂ_] l_‘f'nl Ta2 **°  Tnn
the £;; may be solved for in terms of the a; . This gives
(5) tatn+ -t Einkip —Eipnbipn — 0 = Einkin = '};{51‘:‘ Lj=1--,n

precisely n — p of the a; must be negative in order that the £; be real.

If a;, -+, a, are positive and a,41, ‘-, @. negative a particular solution of
(5) is

Ei=(0,"',0,\/i—/_|—a~i—,0,"‘,0) Z'=]~’”"n

where the 7th component of £; is non-zero. If S = (o;;) is any cogredient auto-
morph of £ then E:j = Ego1; + -+ + Einos; 18 also a solution of (3). If E is the
identity, that is, C is positive-definite, the solutions of (5) correspond to the sets
of n orthogonal vectors in the space having the property that the 7th vector of
each set is a distance \/1/a; from the origin.

4. Concluding remarks. The importance of the result given in this paper for
formulas of degree 2 is that it is the first result (other than the trivial one point
formula, the centroid of R, which integrates any linear function) which holds for
an arbitrary region in n-dimensional space and which gives all such formulas con-
taining the minimum number of points.

A question, which may have some practical importance, which may be asked
about the above formulas of degree 2 concerns the conditions B must satisfy, say
for w(z) = 1, in order that such a formula will exist with all of its points interior
to R. For example, can a formula interior to B be found if R is convex? if R is
star-like about its centroid?

The error bound of von Mises [6] for n-dimensional integration formulas is
very well suited for use with the formulas developed in this paper. In a later paper
we will give specific values of this error bound for various known formulas.
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I am especially indebted to Dr. P. C. Hammer for many discussions concerning
this subject.
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