
Numerical Integration Formulas of Degree Two 
By A. H. Stroud 

1. Introduction. Here we discuss numerical integration formulas of the form 

ff(x)w(x) dx ?e ajf(vs) 

where R is a region in n-dimensional, real, euclidean space; x = (xi, X2, ** , ; 

the ai are constants; and the vP are points in the space. Most previous authors 
have given formulas for special regions (for a bibliography see [4]). Thacher [71 
has given a method for constructing formulas of degree 2 with n + 1 points for 
general regions and of degree 3 with 2n points for certain symmetric regions; with 
his method, however, each region must also be treated separately. Our main re- 
sults are to obtain specific formulas of degree 2 with n + 1 points for a general 
region satisfying a certain condition of non-degeneracy, and to show that for 
these regions such formulas cannot be obtained with fewer points. We also give a 
specific 2n point formula of degree 3 for a general centrally symmetric region. 
These results are a generalization of those of Georgiev [1, 2, 3] who has obtained 
similar results (but gives no general formulas) for n = 2, 3 with w(x) -- 1. Our 
results are obtained by a different method which was developed without knowledge 
of Georgiev's work. 

2. Formulas of degree 2. We assume at first that an integration formula of 
degree 2 for R with respect to w(x) can be obtained with n + 1 points 

Pi= (vil y**, Pin), 0i=O,1, **,n. 

Then the equations 

ao + a, + + an = Co 

(1) aovoj + aiv1, + *. + ani = C- 

aOvOjvOk + aivIJVlk + + anVnjPnk = Cjk j, k = 1, 2, ,n 
must be solved for both the as and the vi, where 

co = f w(x) dx, coj = xi w(x) dx, Cjk = X;k W(x) dx. 

We begin by writing (1) as the matrix equation 
(2) UTAU = C 

where 

Vol ... [ao 0 0O C1O c COn 
1 = 1| ... |n A=LO a, 7. 0 c C01 | .. CCn 

ld 1 Vnh .* **a nne <C < * an CO, Cln * *nn 

and where are assume 0 < co < Xo and 0 < I det C I < oo. 
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Since C is non-singular we can find a matrix T such that 

(3) TTUTAUT = TTCT = coE 

where E is a diagonal matrix with elements z1 1. The method for finding T is well 
known (see [5], p. 56); we illustrate it using n = 3. 

Since co 0 0 we define toi = -coi/co, i = 1, 2, 3, and form 

r boi to~~~~~~~~~~ ~co 0 0 01 

T t 1 0 01 W c~i0 0 1 0 11T 0 C 
c) c12 cIA? T, =O o I O Cit = TJtCT, = | l) (l) (l) 1 

0 0 1 L c(1) (1) (1) 

Now if c') = O some d) 0 0 since det C # 0. Assuming c<A) # 0 we form 

r1 00 ol [~~ ~~~~ ~~CO 0 0 0 1 
to ol C J o 0 2hcf=V + h 2C1 c8? + hcW2 Cal) + hCI l 10 h1 01 21 j 1c2 + 2c2 I2 2 1 

O 0 0 1 Lo CM + hcal) CM C J3) 

and choose h so that c(l) 2hc(l) + h2c(l) # 0; if c(l) 0 we take h = Osothat 
CMl = C(l) . In this way we are assured that the element in the 1, 1 position is -0. 

Similarly we may find matrices T3, T4 and T5 such that 

CO 0 0 0 

C3 = T4'T3'C2T3T4 0 6C3 T5 2) ? 
22 23 ) C(3 

LO 0 C2 3 

where c 2) and c(3) are H0. Defining T6 as the diagonal matrix 

[1, [co/I c81) U'I [C/Il C(2) 1II, [Co/I C(3) 11I] 

we have finally T = T1T2T3T4T5T6. 
We can assume E has the form [1,1, *- , 1, -1, *-,-1] since any other 

arrangement of + l's and - l's can be put into this form by a suitable interchange 
of the rows of UT and the corresponding columns of TTUT. If C is positive definite 
(for example if w(x) is of constant sign on R) E will be the identity. It should 
be noted that the first element of E will always be positive. 

In the following we write 

1O1t ... * 1 n ... * POn1 01 Toni 

UT- 1 t 11 - kl 1 P11 ... Pln | 7 11 *- 1n 

Because UT is non-singular and E1 = E we easily obtain from (3) 

(UT)E(UT)' = coA1. 
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In terms of the (j this equation is 

1 + 01I tj1 + + (ip {jp - 
(i,pAl tj,p+l - -i jn =a- 

Co 
1 

(4) 

ij,=Ol,-- -,n. 

where p + 1, 0 _ p < n, is the number of +1's in E. We discuss the solution 
of (4); the vi are obtained from the ti by Vij = ro, + IijTij + + i , i = 

07 ,1 **, n, j = 1,... , n, where 

0 1 * O Tfn 

0 7'l 
.. 

* fl 

T-1 = 

L0 n ** jnn 

We are only interested in real solutions of (1) and therefore precisely n - p + 1 
of the ai must be negative by Sylvester's "law of inertia" ([5], p. 56). If E is the 
identity (p = n) clearly we must have 0 < ai < co ; if p < n the only condition 
for the ai is that they be non-zero. 

Table 1 gives a particular solution of (4); we have assumed a0, , an-p nega- 
tive and an-,+I, *** , an positive. In the places where a double sign occurs we 
mean to use the lower sign for the last n - p components of each vector and the 
upper sign for the first p components. Each tj is real. 

TABLE 1 

(3 = (? ? 0) .. * '; 0' ?'[ -ao ] 

/ (o ~ Co(Co - ao - a,) 112 [ Aao 1/2) 

01 = t01 
of .. 

* *, O. (co,- ao)ai ,F CO -aOj 

['(co -ao-)a, -a-12co1a, 1/2 - at ]/2) 
~2 0, 0, 

-i-(co - ao - ai 1a2 (co- ao) (co ao a1) co -Zo 

tn-2 = (, [co(co ao an-2) 1/2 

~~~~n-2T1F 0a 1/ F~a 2 
(c - ao - * * -anD]1/n-2 

?i:C0a2 
1/2 r Acoat 11!2 F iao 112\ 

2 L(co-ao-a,)(co-ao-a,-a2)J 'L(coao)(co-ao- at) co - aoj) 

=i;co(co- ao- -an-1) 1/2 r +-ca.-2 1 
(Co - aO- *-an-2)an-1 (Co]-aO- a-a_3)(CO - ao - a--an2)]' 

:[ coa2 1/2 .coa4 11c2 [_ao 112 

(co - ao - a*) - ao- an a(co -Lca- **(* - an3)(CO - aO ) Lco - a-o) . 

r~~~~~~1 co a2 1l/2 r i co a, Vl2 r4-ao 1/20 

(c (C- ao - a,) (c - ao - at - a2) (c (C- ao) (c - ao - a,) co n- da 
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From a particular solution {jj of (4) other solutions may be obtained as follows. 
If 

F 0 o .. . o 
S=1 all .. ailn 

aoOnl *.*- ann_ 

is a cogredient automorph of E, that is if SEST = E, then 

{ij = {ilOlj + *-- + FiOalj 

is also a solution. If Q is an arbitrary skew matrix of order n + 1, with first row 
and column entirely zero, such that det (E + Q) (E - Q) s 0, then 

S = (E + Q)-1(E-Q) 

is a cogredient automorph of E (see [5], p. 65) of the above form. If E is the identity 
b is orthogonal. We remark that in this latter case (4) determines the distances 
d(1, 0) andd( d , ,), i, j = 0 1, ***, n, i # j, 

d(t%, 0) = [(co - a,)/a.2I d(t-, tj) = [co(ai + aj)/aiajI' 

The formulas discussed above are minimal; that is, similar formulas cannot 
be obtained with fewer points. For if a formula could be obtained with m + 1 
points v , i = 0, 1, ... , m, m < n, then equation (2) would still hold, where C 
is the same as before and 

I Vl ... Pvo" ra~o ... 
U = 1 Pin * l~ A = 0 a, .. O 

I V,, ... 
Vrninj L0 ... am 

that is, U is a rectangular matrix. Since U and A have rank at most m + 1, then 
ULAU has rank at most m + 1 anid therefore det (UTAU) = 0. By assumption 
det C - 0 anid thus (2) (cannot hold for m < n. 

3. Formulas of degree 3 for centrally symmetric regions. We assume R to be 
centrally symmetric with respect to the origin; then if x is in R, -x is also in R. 
Let. us further assume w( - r) = w(x) for x in R. Then 

f xiw(X) d.r = ij~kw(x) dx = 0, ij,7 = 1, ... , n. 

We may obtain an integration formula of degree 3 for R with respect to w(x) with 
2n points as follows. Take the points to be Pi P-i, i = 1, * * , n, and take Pk, 

-Pk to have common weight ak. Any 2n points chosen in this way integrate 
exactly the monomials r , - wiVjkwith respect to w(x) over R. In addition we must 
solve 

a, + a2 + + an CO 

amPl jvlk + a2v2jv2k + + a^Y~jv',k I 
Cjk j,k = 1, '-- ,n. 
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The second of these may be written as the matrix equation (2) where now 

rll V12 . 
. .*in [a, 0 0 * * C11 C12 * * CIn 

U V|r21 V22 * V2nI A C=!Fc 
a2 | 12 C22 - 2 * C2 n 

Vni Vn2 .. vnng Lo 0 - an. c*2n 
e i- cCj 

and where we assume -a < co < X and O < I det C I < oo. 
We solve this equation by a method similar to that of the preceding section. 

We find a non-singular matrix T such that 

TTUTAUT = TTCT = E 

where E is diagonal with elements i 1. Again it is convenient to assume 

E = [l,.. ,) l- l,. -,1] 

where the first p elements are +1, 0 < p ? n. Now writing 

[211 12 ... ' F l ii V12 . l1 [ 1: T 12 1 * n 

UT 1 . .. 6n 21 V22 .. * P2n 721 722 .. * 2n 

UT nl = n2 s... nn Vn1 Vn2 I * Lnn- n2 L * *' nnI 

the {ij may be solved for in terms of the ai. This gives 

(5) tii11 + + tip tjp - tip+l yjp+l - -injn tn= a jI = 1,, n 

precisely n -p of the ai must be negative in order that the (i be real. 
If at, *., ap are positive and ap41, , an negative a particular solution of 

(5) is 
(0, , 0, 1/ 1 . 1 *,0 ) i = ,***n 

where the ith component of (i is non-zero. If S = (aij) is any cogredient auto- 
morph of E then t:j = t + * o + {inOnj is also a solution of (5). If E is the 
identity, that is, C is positive-definite, the solutions of (5) correspond to the sets 
of n orthogonal vectors in the space having the property that the ith vector of 
each set is a distance v07a from the origin. 

4. Concluding remarks. The importance of the result given in this paper for 
formulas of degree 2 is that it is the first result (other than the trivial one point 
formula, the centroid of R.. which integrates any linear function) which holds for 
an arbitrary region in n-dimensional space and which gives all such formulas con- 
taining the minimum number of points. 

A question, which may have some practical importance, which may be asked 
about the above formulas of degree 2 concerns the conditions R must satisfy, say 
for w(x) l1, in order that such a formula will exist with all of its points interior 
to R. For example, can a formula interior to R be found if R is convex? if R is 
star-like about its centroid? 

The error bound of von Mises [6] for n-dimensional integration formulas is 
very well suited for use with the formulas developed in this paper. In a later paper 
we will give specific values of this error bound for various known formulas. 
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I am especially indebted to Dr. P. C. Hammer for many discussions concerning 
this subject. 
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