
Products of Laguerre Polynomials 

By Joseph Gillis and George Weiss 

1. Problems occasionally arise in theoretical physics where one wishes to ex- 
press the product of two linear combinations of Laguerre polynomials as a linear 
series of these same polynomials. The purpose of this note is to investigate the 
coefficients C,8t where the following definitions are used: 

(1) Ln(x) -E (-1) ir/r 

(2) Lr(x)Ls(x) = E C8,tLt(x) 
t- I -8 I 

The limits of the sum in (2) follow, in fact, from repeated application of the re- 
currence formula for the Ln's. This can be written [11 in the form 

(3) xL8(x) = -(n + Il)Ln+1(X) + (2n + i)Ln(x) -nL,-I(x). 

It follows from the orthogonality properties of Laguerre polynomials that 

(4) Cr( - ex'Lr(x)L,(x)Lt(x) dx 

and, in particular, is symmetric in r, s, t. A closed formula has been obtained for 
Cry by Watson [41. We begin by obtaining the same formula by a very simple 
argument. In ? wce (lerive a simple recurrence relation suitable for rapidly gen- 
erating the coefficients as needed when working with a high speed computing ma- 
chine. This will be seen to be more useful in practice than the formal expression in 
equation (7). 

2. It is known [1t that the Laplace transform of L,(x) is p"'(p - 1) while 
that of Lh(x)Lk(X) is 

(h + k\ (p- )h+k pF.p.2 .. -h P U 2)] 
\h / h+k+t 21L,-h _; h' k;'(P - ) 

Hence, taking Laplace transforms of both sides of (2), we get 

(r + s) p 
(rp8-l(p 

- 2)T)2F [-r,-s;-r-s;P(p _1J 

(5)~ ~~~~~ ~~~~ C p--P (p 1t 

= "I C78tp (P - i)t. 

With q = 1 p- we have 

(6) E2 C78tqt = (r + s) q F2Fl[-r, -s; -r - s; (2q - 1)/q21. 

Received August 27, 1959. 
60 



PRODUCTS OF LAGUERRE POLYNOMIALS 61 

Comparing coefficients of qt in (6) gives us 

-Cr = (r + s -A 0 (2 2)2n-r_,+g n ) 
(7) ~ ~n!l(r - n)!(s - n)! (22n7+ 

(2m - 8 +t 

")PI 2 lp 2 n (r +s -n)! 
2 n (r - n) (s-n)!(2n - p)!(p-n)! 

where we have written p = r + s - t. This is equivalent to Watson's formula. 
The limits of the sum in (7) are defined by the requirement that none of the 

arguments of the factorials can be negative. It is easily confirmed from this, in- 
cidentally, that there can be no terms in the sum if t lies outside the range (I r - s 
r+ s). 

3. To establish a recurrence relation we base ourselves on the well-known result 
[3] that, if u(x), v(x) satisfy the normalized differential equations 

u"(x) + I(x)u(x) = 0 

v"(x) + J(x)v(x) = 0, 

then y = uv satisfies the equation 

(9) ~ d by"'/ + 2(I + J)y' + (I' + )y] + (I -J)Y = ? 

provided that I 0 J. In case I 3 J, y satisfies the third order equation 

(10) y"' + 4Iy' + 2I'y = 0. 

Applying this result to the differential equation satisfied by Laguerre polynomials, 
after normalization, we obtain the following equation for y = L7(x)L.(x) (r ' s) 

D(y) = x-y(iv) + x(5 -4x)y"' + [4 + (2a - 1a)x + 5x2]y" 

+ [(3a - 8)-4( (- 3)x -2x2]y' + [62 - 3(a - 1)+2(a - 1)x]y = 0 

where 

(12) a-r + 8 + I 

In fact, equation (11) holds whether or not r = s. We now substitute from (2) 
into xD(y), making use of the following formulas: 

(13) xL t' = -(1 - x)Lt' - tLt, 

(14) x2LA' = [2 - (t + 2)x + x2]Li' + t(2 -x)L, 

(15) x3Liv) = -{6 - 2(2t + 3)x + (2t + 3)x2 --x3L' 

- t{6 -(t + 3)x + x2Lt. 

Of these equations, (13) is simply the differential equation of Li, while (14) and 
(15) are obtained from it by differentiation followed by substitution from (13) 
itself. We thus obtain, after some reduction, 

(16) xD(Lt) = rx(l - 2x)Lt' + {2rx- + x[(2- - - _(2t + 3)j)Lj 
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'Where 

(17) r = -t- = r+ s-t 

But, [1], 

(18) xLt' = (t + 1)Lt+ -(t + 1 x)Lt. 

Substituting from (18) into (16) and making repeated use of (3) leads finally to 

19) xD(Lt) = 2T(t + 1)(t + 2)Lt+2 - (t + 1)T(4t + 5) + (52 _ t2)]Lt+l 
+ (2t + 1)[(t + 1)r + 62 - e2ILt,- _t(52_t2 - 

For fixed r, s write C,,t = At . It follows from (19) that 

(20) xD( A jLt) = BLt 

where 

Bt= -(t+ 1)2 - (t + 1)2IAe+1 

(21) + (2t+ 1)[62_t2+ (t+1)a- (t+1)2]At 

-t[ [- (t - 1)2 + (4t + l)(a - t)]At-. + 2t(t - 1)(a - t + 1)At-2 

We thus obtain the recurrence relation 

(t + 1)[62 (t + 1)2 ]At+, = (2t + 1)[62 _ t2 + (t + 1)(T _t _ )]At 

(22) - t[2 _ (t 1)2 + (4t + 1)(a -t)]At 

+ 2t(t - 1)(o - t + 1)At-2. 

We know that At= 0 for t < 5. However (22) becomes indeterminate for t = 5 - 1 

and so A5 has to bee calculated independently. This was to have been expected since 
equation (1l) is homogeneous. It follows immediately from (7) that 

/r\ 
(23) A - = Cr,s,r-s 

When working with an electronic (computer it will nearly always be more efficient 
to use (.22) and ('23) than (7). All that one need store is the binomial coefficients 
(23) and a sub-routine for effecting (22). 

4. It may be of interest to consider some values of Cr.t for special values of 
r, s, t. The value of Cr,s,r-s is given by (2.3) and we deduce, by means of (22), that 

Crsr-s -2s ( ad 

(Cr s r-s+2 (0 - s + 1)'s[(2s - 1)(r + 1) -2s2l (8) 
We can calculate directly from (7) that 

fc _ {~r + s 
|Cr,s,r+s = 

(25) Cr,s,r+s8- = - 2(r + s-1) (r +s- 2) 

Crsr 
= 2rs - r - s + 1) (r +s- 1) 
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One might also draw attention to some elementary arithmetical properties of 
the coefficients Cry. In the first place, it is clear from (7) that the sign of CrG is 
that of (-1 )P and so of (-1)r+8+t. Again, it follows from the same formula that 
Cret is always an integer. For the expression 

(r + s-n)! 
(r-n)!(s -n)! (2n-p)! (p-n)! 

is an integer, being a multinomial coefficient. Also, the occurrence of the term 
(2n - p)! in the denominator imposes the limitation 2n ' p on the range of n. 
The result is immediate. Finally, we deduce, by putting x 0 in (1) and (2) that 

(26) E C'st = 1 

and, from symmetry, that the summation in (26) could equally be taken over s or r. 
5. The relation (22) is, as we have said, well adapted to machine work. It is 

rather complicated for hand computation and the authors are indebted to a referee 
who drew their attention to the alternative relation 

(27) (r + 1)Cr+1,8.e = (t + 1)Cr,8, +l + 2(t - r)Cr,8,t - rCr-l,v,t + tC,,,,t.. C 

This follows immediately from the orthogonality and recurrence relations of the 
Laguerre polynomials, and is very much simpler arithmetically than (22). There 
is no doubt that many other relations of this type could be found. However, for 
machine computation they would all share the disadvantage of (27), namely, the 
increased programming complications involved in varying two of the subscripts. 
They would also be slower to generate since, to arrive at a given r, s, t, one would 
have to progress through a much larger number of intermediate terms. 
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