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side, the yellow result light will flash on, indicating the truth value of KNpNg
for p = wrong and ¢ = wrong according to the left position of the switches for
the variables p and ¢ on the right side of the keyboard:
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Evaluation at Half Periods of Weierstrass’ Elliptic
Function with Rectangular Primitive
Period-Parallelogram

By Chih-Bing Ling

The purpose of this paper is to evaluate the following Weierstrass’ elliptic func-
tion at half periods [1],

(1) 6 = @(wl), € = &7(“’2)1 €3 = Q(""s)y
where 2w, and 2w, are double periods of the function and w; is defined by
(2) w + w + w3 = 0.

This paper tabulates only the values of the function whose primitive period-
parallelogram is a rectangle with 2w, = 1 and 2w = a7, where a = 1.
The three functions in (1) form a set of distinct roots of the cubic [1]

(3) & —pr—g=0,
where
(4) p = 1504, g = 3504,
and
=Y 1
Ok =

m, nmr—c0 (2’”“01 + 27?'0)2)21‘

EPD SIS S s

Nl Mmoo (m + na'i)”‘ )

(5)

The accent on the summation sign denotes the omission of simultaneous zero values
of m and n from the double summation.
The cubic (3) indicates that
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(6) eg+ e+ e = 0.

Also, since e, , e; and e; are distinct, the discriminant (4p° — 27¢%) of the cubic

does not vanish. As will be seen later, in the present case both ¢, and os are real

and (4p° — 27¢%) is positive. This implies that all the roots of the cubic are real.
The evaluation of ¢4 and o is facilitated by using the known relation {2]

1 —’ 1 1
7 cotx = ~ -
(7 :c x+,...2.,(m1r+x mr
where the accent on the summation sign denotes the omission of the zero value
of m from the summation. By repeated differentiation of Equation (7) and sub-
stitution of 7z for z, it is found that

- 1 2 1

®) m-:z—eo (mx + 1x)* ~ 3sinh’z + sinh‘z
- R 2 _ 1 1
m—w (mw + 1z)" 15sinh?x  sinh*z  sinh®z’

Hence we have

oy = ﬁ + ..;4_""‘_K_‘_
9) '~ 45" 3sinhira

e = g_‘nf_ _ 47°K,

®~ 045 15 sinhra
where
PRY = 1 3

(10) Ky = sinb'ra .; (sinh2n1ra + 2 sinh“n':ra)

NI - 1 15 15
Kz = sinhra ,.z;’n (sinhzmra + 2 sinh‘nra + 2 sinh‘mra) )
Consequently, we find

(11) ap’ — 21¢ _ 5Ki + 7K. | 100K;® — 147Ky’ | 2000K;*
1672 3 sinh*ra sinh‘ra sinh®ra

With the aid of known tables [3, 4], values of K;, K,, and then 0., os and
(4p° — 27(12)* are computed to 16D for ¢ = 1(0.25)2(1)6 and « as shown in
Table 1.

The subsequent evaluation of e;, :, and e; requires the solution of the cubic
(3). It appears that one of the roots, e, can be easily evaluated to 16D as shown
in Table 2 by using Newton’s method or otherwise, but difficulty arises in eval-
uating the other two roots for in most cases they are almost equal. However, they
can be separated by forming a new cubic

(12) 4+ pr—q =0

whose roots are the differences of the roots of the cubic (3). Let (e1 — €2), (e2 — €3)
and (e; — ;) be the roots of the new cubic. We have

= (e — &)(e2 — &) + (e2 — &) (es — &) + (es — &) (er — €2) = —3p,

pl
¢ = (o — &)(e — e)(a—a) = 4p° — 277

(13)
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Consequently, by taking a positive sign for ¢/, the new cubic is in the form
(14) &t — 3pz — (4p° — 278 = 0.

From this cubic, values of (e2 — e;) and then e, and e; are computed to 16D as
shown in Table 2. .

It is mentioned that the values of the function, for 0 £ ¢ < 1 or in general for
wy/w; purely imaginary, can be computed from the tabulated values with the aid
of the following relation [1]

(15) POz | Ao, han) = N@(z | w1, wn)

where \ is a constant, real or complex.

The writer wishes to express his thanks to Mr. C. P. Tsai for his assistance in
performing the numerical computations. The writer also is deeply grateful to
Professor C. W. Nelson of the University of California, Berkeley, for checking the
manuscript and verifying all the numerical values in Tables 1 and 2 by independent
calculations. Thanks are also due to the referee of the paper, who suggests a different
method of computation [5] without solving the cubic equation.
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A Note on the Nonexistence of Certain Pro-
jective Planes of Order Nine

By Raymond B. Killgrove

1. Introduction. Every finite projective plane may be coordinatized in at least
one way [1]. In this process some line is chosen to be the line at infinity, and the
points not on this line are represented by an ordered pair of elements. The elements
z and y for any point (z, y) on a given line of the plane satisfy the equa-
tion y = x-mob, where m and b are specific elements for the given line. This ternary
operation on z, m, and b includes an additive loop in a special case.

A sequence of SWAC computer routines has been written to search for all
planes having a specific additive loop in an appropriate ternary ring. Using these
routines, a complete search had been made previously using the elementary Abelian
group for the additive loop [2]. Now a complete search has been made using the
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