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1. Introduction. The primary purpose of this paper is to provide a practical 
method of constructing Galois fields of characteristic 2 of large orders and thereby 
simultaneously give a practical way of generating a large supply of polynomials 
of high degree irreducible modulo 2. These polynomials are of special interest in 
connection with the theory of linear recursive sequences. See, for example [3]; 
some applications are suggested in [4]. 

The basic structure of Galois fields is extremely simple. For each prime q and 
each n there is one and (up to isomorphism) only one finite field of order qf, desig- 
nated by GF(qn). Its additive group is the elementary abelian group; the direct 
sum of n cyclic groups of order q. The multiplicative group of the non-zero elements 
is cyclic. The field GF(qnm) may be constructed from a given GF(q') by finding a 
polynomial of degree m, irreducible over GF(qn) and considering the set of poly- 
nomials with coefficients in GF(q') modulis q and the irreducible polynomial. 
The subfields of GF(q ) are precisely GF(qd) where d I n; if g is a primitive gen- 
erator of GF(q'), i.e. of the multiplicative subgroup of its non-zero elements, gm 
is a primitive generator of GF(qd) where m = (q _- 1)/(qd _ 1). 

These theorems, covered by many basic texts of algebra since the original work 
of L. E. Dickson [2], essentially dispose of the elementary theory of these fields. 
A particularly complete theory is contained in [1] which also has a bibliography 
listing a number of items from the extensive literature of the deeper arithmetic of 
the Galois fields. In general, results quoted without proof in this paper may either 
be found directly in [1] or are immediate consequences of statements proved therein. 

From a practical standpoint, the only problems left by the structure theorems 
are those of finding an irreducible polynomial of degree m over the base field and 
of finding a primitive generator of the field with respect to this polynomial. In 
certain cases an irreducible polynomial is readily available and we are here con- 
cerned with the exploitation of these cases. 

2. Cyclotomic polynomials over GF(2). Let p be a prime for which 2 is a primi- 
tive root; then the cyclotomic polynomial fp(x) = (.xP + 1) / (.r + 1) is irreducible 
over GF(2). Thus for such primes the theory permits the realization of GF(2'-'). 
Further, if g is a primitive generator of this field we may realize GF(2d) by cotI- 
sidering powers of gm, rm (2- - 1)/(2- 1) when d (p - 1). Since the only 
obvious restriction imposed on p by the condition that 2 be a primitive root of p 
is that p _?-3 (mod 8), it is likely that all fields GF(2?a), it # 0 (mod 8), may 
be realized in this way for sufficiently large p. The smallest fields which cannot. be 
constructed from polynomials listed in this paper are those for which n = 8, 16. 17. 

If z is any element of GF(2') the powers zo, z', * , Z" will be linearly dependent 
over GF(2) and the resulting relation of dependence f(z) = 0 will give an irreducible 
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polynomial f(z) if z does not lie in a proper subfield of GF(23). If z is a primitive 
generator of GF(23), f(z) will be, by definition, primitive irreducible. All irreducible 
polynomials over GF(2) may be constructed in this way. 

By simple counting arguments we see that the number of irreducible polynomials 
of degree n is 

- (2R - Z2 n', + 2'2OlQ - ..) 
n 

where the qi are the distinct prime divisors of n. Similarly, the number of primitive 
irreducible polynomials of this degree is (1/n)sp(2^ - 1) where so is the Euler 
totient. 

The actual problem of construction of these fields now reduces to finding a 
generator of the cyclic group. It is at this point that the theory carries us no further 
and resort must he taken to high speed computing machinery. It is easy to see that, 
for p > 5, any generator module the cyclotomic polynomial must be of degree at 
least :3. In particular, since xP = 1, x and xe are of order p. To investigate the orders 
of the other linear arnd quadratic forms we study z = x + 1/x; define h(z) = 

x7mf,(x) where m = (p - 1)/2; h is a polynomial of degree m in z. Thus z belongs 
to the sub-field (h'-(2m) and the order of z is a divisor of 2m - 1. Now (x + 1)2 = 

x2 + 1 = .rz; thus the order of . 2 + 1 is a divisor of p(2m - 1) and the order of 
x + I is the same as that of its square. Again x(x + 1) has the same order as x + 1. 
Finally .2 + X + I = .x(z + 1) and z + 1 is also in GF(2M). Thus the order of 
all linear and (quadratic forms divides p(2' - 1) < 2' - 1 for p > 5. 

It is of interest to note that the order of z is precisely 2' - 1 for all suitable 
pr imes p ? 13:9 except for 037 and 101 for which it is i the maximum. 

We must, thent, seek among the cubic or higher polynomials for our generators 
and we turn to a considerations of the computations by which this may be done. 

3. The power routine. The primary tool in the investigation is a high-speed 
routine programnimel for SWAC which finds prescribed powers of polynomials 
F(x) modulis polynomiials G((x) and 2. The routine has two parts and the second 
part may be used( as many times as desired without return to the first. The initial 
part receives F(.x) and ((x) as inputs and computes n successive squares (F(x) )2, 

(F(x)), ' where n is the degree of G(x), reducing the results modulis 
2 and G'(.r). The Ilast square is a check; if G(x) is irreducible, (F(x))2* = F(x). 
The second receives as input the exponent of the power of F(x) desired, the upper 
limit being 2" - 1, and computes this power by multiplying together the appropriate 
stored powers from the first. routine. The routines are quadruple precision and, 
since SWAC has a 3)6 bit. word, degrees and powers are limited to 143 and 2"43- 1 
respectively. About I second per multiplication is required in either routine. This 
means a maximum of 75 seconds for completion in either case. 

To apply this routine to the problem of determining a primitive generator, f,(x) 
is used for G(x) and possible generators are used as F(x) in lexicographic succes- 
sion. The exponents are (2 " - 1 )/qi where q1 are the prime divisors of (2'-1 ) . 
(It is a fortunate circumstance that all necessary factorizations are known [3].) 
If the power of F(x) is 1 for any of these exponents, F(x) is not a primitive genera- 
tor, and conversely. As a check the power is also calculated for qi = 1; here the value 
must be 1. Table 1 lists the earliest primitive generator for each prime. 
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TABLE 1 

Generating polynomials for GF(21'); to be used modulis 2 and (x' + 1)/(x + 1) 

P ~~~~~~~~~~~~polynomlial 

3 X 
5 X+ 1 

11 3+ x+1l 
13 X3+X+ 1 
19 x4 + x + 1 
29 X5 + x3 + X +1 
37 XS + x2 +1 
53 x4 + x,+ I 
59 X3+X+1 
61 X3 + X +1 
67 X5 + X2 + 
83 x3+x+ 1 

101 X5 + X4 + X2 + X +1 
107 X3 + X + 
131 X3 + X +1 
139 X4 + X + 1 

4. Generators of subfields of the cyclotomic fields. There are 16 primes covered 
by Table 1. If subfields are considered, 24 additional fields may be constructed. 
Specifically, for each polynomial in Table 1 as F(x) and its corresponding fp(x) 
as G(x) we compute the (2' - 1)/(2d _ 1)-th power of F(x) for each divisor 
d of p - 1, 2 < d < p - 1. The results are tabulated in Table 2. Here, in the 
largest case, the result is a polynomial of degree 138 and we-have adopted a con- 
densation of coefficients into octal notation to bring the result within manageable 
proportions. For example, x7 + X5 + X4 + X2 + X + 1 may be represented first by 
the ordered octuple of its coefficients: 10 110 111, and these may be read in groups 
of three as octal numbers. Thus the polynomial would appear as 267. 

1 The polynomials of Table 2 are not necessarily the lexicographically earliest 
generators of their fields. It would be quite impossible to find such generators. 
However the disadvantages of polynomials of large degree are not as great as might 
be assumed at first thought. If a number of powers are to be computed, the full size 
of the registers is needed for the reduction modulo f,(x) and no more additions are 
needed to compute the irreducible polynomials than if the degrees were smaller. 
The only unavoidable disadvantage is the danger of an error in transcription. 
The entries in the table have been preserved against error by a comparison of 
output decks on successive runs and careful proofreading. 

5. Utilization of generators to produce irreducible polynomials. As indicated in 
section 2, an irreducible polynomial is produced from an element z of GF(2') not 
belonging to a proper subfield by finding the relation of dependence of 
20 zl, z2 .. Zn. In one set of n + 1 registers are initially stored the powers of z. 
Another companion set is loaded initially with a single 1 in the ith place, i = 0(1 )n. 
Whenever an operation is performed in one set of registers, the same is done to the 
companion set. By addition of other elements of the power registers the value 0 
is obtained in the 20 (or zn) register. The irreducible polynomial is then read from 



TABLE 2 

Generating polynomials for proper 8ub-fields of GF(2r1). Fields are GF(2d) for d I p - 1, d a 3. 
Generators are to be used modulis 2 and (xz + 1)/(x + 1). See section 

4 for use of octal notation to represent polynomials. 

P i d polynomial 

11 5 360 

13 6 1760 
4 1156 
3 1321 

19 9 4 77744 
6 1 26202 
3 7 63175 

29 14 10777 77705 
7 6633 66330 
4 17577 56617 

37 18 64 00000 00055 
12 75 23334 20271 
9 30 01030 20031 
6 71 22347 11234 

j 4 76 45677 73746 
3: 75 23377 31274 

5:3 26 117 77777 77777 77744 
13 117 42534 36165 21744 
41 26 50100 21003 22003 

59 29 3777 77777 77777 77760 

61 3() 17777 77777 77777 77760 
2(0 17723 64723 51515 17760 
15 17003 60103 02017 00360 
12 34564 50135 07663 71022 
1() 55263 06377 77143 15265 
6. 14477 11710 23623 74461 
5 76200 51450 24624 01174 
4 36544 52035 07653 31207 
3 10124 50147 46024 52020 

(67 33 64 00000 00000 00000 00055 
22 )75 24504 50000 00452 35255 
11 2 13043 36044 17304 32101 
6i 25 46004 02150 47301 41023 

42 11170 41201 20436 22105 

83 41 37 77777 77777s 77777 77777 77760 

101 50A) 1677 77777 77777 77777 77777 77777 77734 
25 1770 73777 77777 71554 77777 77776 70774 

I2) 1734 42260 36634 35312 16067 77653 36044 
10 620 9 20714 00420 64141 30210 01470 20231 

I 5 )100 60310 30220 00000 00220 60460 30004 
4 1667 35170 05511 25702 53322 77032 10443 

107 53 37777 77777 7777. 77777 77777 77777 77760 

131 65 377 77777 *77,. 7.77 7.77 77777 77777 77777 77760 
26 1634 45062 04144 04004 56032 04432 00042 36720 
13 1267 77723 45221 15105 11634 45045 44225 16277 77325 
10 6 520'20 00200 22004 40100 66020 12043 06000 00030 
5 1727 &-V.)523 56373 62617 70360 77432 36763 56202 57274 

139 69 4 777.7 .7777 77777 77777 77777 77777 77777 77777 77744 
46 4 76637 77731 75477 77777 77777 77775 47766 37777 54744 

1 23 4 72055 65424 32452 07006 07414 03412 45305 06566 41345 
6 1 57550 47372 56617 22064 32472 36641 62124 04335 10117 
3 3 50006 12434 15604 445M0 03000 24444 16607 05214 00270 
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the companion register. The process can be carried out by systematic diagonali- 
zation. 

As an example, we construct a primitive irreducible cubic using z = x + x7 + 
x6 + x4 +1 (1321) forp= 13. Wefind z2 = x'I + X10 + X9 +X7+X5+X4 + 

X3 + *2 and z3 = X9 + X7 + x6 + X5. The calculations can be arranged: 

1: 000 000 000 001 1: 000 000 000 001 

z: 001 011 010 001 z3+ Z: 000 000 000 001 

z2:111 011 011 100 

Z3:001 011 010 000 

z3 + Z + 1: 000 000 000 000. 

Specifically, z2 is used (vacuously) to clear the first column; then discarded. 
The second column is now empty; z2 is used to clear the third column and discarded. 
All but the last column are now clear and z3 + z is used to finish the job; the poly- 
nomial is z3 + z + 1. Alternatively we could have started from 1 and the right 
hand column: 

z + 1: 001 011 010 000 

Z2: 111 011 011 100 

Z2: 001 011 010 000, 

z+1:001 011 010 000 z3 +z+1:000 000 000 000. 

Z3: 001 011 010 000 

The diagonalization process, while requiring large storage, is very rapid. No 
more than 2pn2 additions need be performed. 
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