
Numerical Quadrature over a Rectangular Domain 
in Two or More Dimensions 

Part 2. Quadrature in several dimensions, using special points 

By J. C. P. Miller 

1. Introduction. In Part 1 (1], several approximate formulas were developed 
for quadrature over a rectangular domain (reduced to a square by scale changes) 
in the form 

rh rh 

(1.1) I 
fl f(x,:y) dxdy, At f(sh, th) 

-rh -rh 

using some or all of a lattice of 9 or 16 points equally spaced over the square. 
In this note, the restriction to equal spacing is relaxed, to allow points to be 

chosen to give greater accuracy in the approximation to the integral. The restric- 
tion to two dimensions or variables is also removed in some cases. 

It is still assumed that the integrandf(x1, x2, * - *, x.) may be expanded in a 
power series as far as we please in all variables-in other words, that for the precision 
desired, the integrand may be replaced by a polynomial of suitable degree. Con- 
siderations of symmetry once again ensure that we need concern ourselves only 
with terms of even degree in each variable separately. By scale changes we also 
make the range of integration -h to +h in each variable. 

2. Expansion in Taylor Series. We need then, to find values x,,t, At such that 

h It 

I d &r** f (XIl,4 **, X2n) don 
-h -h = f-h fhf~~~~~~~xn1,Af~x ..x2. (2.1) 

(2hn E t7lg x,,* Xn,t) 

where the points {a,.s are chosen in symmetrical groups which are such that 
f(xl t, x2, , . - *, x1,,n) is free of all odd powers, just as the integral I is free of 

such powers by symmetry. 
We expand f(x1 , xi, , , .z,) as a Taylor series and evaluate the integral. We 

use the notation of Bicklev [21, somewhat extended, namely, 

S2 = E a 3 V-0 &' = __t_ 3)4 

(2.2) 
t U 

_ _ __ _ __ 

S2,2,2 = a 2 -- 
3 S2,2,2,2 = a 2a 2aX 2 2 X 

t, uir OX*t *u &X& tuV'w Oet *XuXXw = 

where the asterisk indicates that the suffixes t, u, v, w are unequal in pairs through- 
out. 
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This gives, withfo for f(O, 0, 0, *, 0) 

J I/(2h)' = fo+ h 2f + (4 + 4 fo 

(2.3) + h (V6 + 4AY + 6 3 )f 

+ s 16 8 + 28 V2 6 192 8V) foi + 

where we have used such formulas as 

(44-2 )4)4o S' 
16 

- (63v 4+s) E4 Cz4 
E d 2 = ('V _ 

3V25)4 + 33' q6 

(2.4) 6 
S4o2 = = (42a -5 

See David & Kendall [3] for extended tables of coefficients. 

3. Summation over Sets of Points. We now choose appropriate sets of sym- 
metrically placed points. We tabulate and label a few sets below. 

Label Coordinates Number of Points 

ro (0,O ,**, ) 1 

a(a) ( 4ah, 0, * , o) with 9n1 

all permutations 
d(b) (-i(bh, ?bh, 0, ,0) 

(3.1) with all permutations 2n(n - 1) 
7(c, d) (wit ch, ail p, uOns .4, -) 

with all permutations 4n(n - 1) 
i(e) ( =[=eh, -4eh, ---eh, O,. * * , O) 
t ~~with all permutations An ( n- 1)(n-' 2) i3; 

In the formula (2.1) we have one arbitrary constant for the point 0, two con- 
stants for each set of type a, j3, or 6, three constants for each set of type -y, and 
so on. We naturally wish to minimize the total number of points, but we note also 
that sets of type 0 and a alone are useless when dealing with terms involving 0, 

36, Q8, etc., while sets of 0, a, j3, y, only are useless for 36 or Q8, and so on. 
If we expand f(x , x2, , x,) at each point and sum over the set, we obtain 

the following expressions for the sums: 

(3.21) 0 Jo 

(322) a(a) 2nf,+ a2V2fo+ a4S4 + aS6 + Sh a6Ss+ 
2 ! ~ 41 6! aI 

-2nf .+ -2 a2 V2 Jo + 2h a4 (V4- 2 )f 
4 ! 

+ 2h, a6 V 3V2 j) + 338f 
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+ 
2h aS (ve - 414 + 208 + 4v2 e - 4Q8)fo + 

+8! 

(3.23) (b) 2n(n )fo + 4(n - 1)h bVfo 
2! 

+ 4 b (n - 1)V- 2(n -4)0Z}fo 4!. 

+ 46h b6 (n -1)v - 3(n - 6)V2 Z + 3(n - 16)e1fo 

+ 48h b{ (n-1)v8 - 4(n -8)V4 4+ 2(n + 6)08 
8! 

+ 4(n - 43)VV - 4(n- 64)08lfo 

(3.24) (c, d) 4n(n - )o+ 4(n -)h2 2 

4h4 2I 61 
+ Th [(n -1 ac4 d)V4- 21 (n -1) (c4 + d4) - 6c? d2:4 

+ 6h [(n -1 c + c06)v 

-3t(n- 1)(c + d6) _52d (c2 + d2) V24 

+ 31 (n- 1) (C6 + d) - 1V2 (C2 + d2)lfo 

+ 8 
W 

[(n-1) (C8+ d)V 

-41{(n - 1) (C81 + a) _ 74? 
2 

(C 
4 

+d ) }V4 j) 

+ 2(n.- 1)(c8 +d) -28C2 (c +d4) +7Ocd& 1 

+ 4 (n - i)(C8 + d8) - 7cdf(cW + d4) - 70c1d'1V 3b 

-4 (n- 1)(c8 + d) -22d2(c+ d4)-7 04ed'Q8lfo 

4 4(n -1)( - 2) h?2f (3.25) (e) n(n - 1)(n - 2)fo + 2! A e272f8 

+ 4(n 
- 2) h4 e l(n-1)V4-2(n-7) VIlfo 

+ Gh e6 {(n - i)(n - 2)V6 - 3(n - 2)(n - )V2 4 

+ 3(n2 - 33n + 122)3 fo 
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+48 e8 (n - 1)(n - 2)V - 4(n - 2)(n - 15)V4 +8! 

+ 2(n-2)(n + 13)8 + 4(n2 - 87n + 380)V238 

- 4(n2 _ 129n + 1094)Q8lfo + -- 

We use parts of (3.22), (3.23) and (3.25) in the present note; the rest is given for 
reference. 

4. Formulas Accurate to Terms in h4. We now seek a formula to giveJ accurately 
as far as terms in h4, that is, including the first four distinct terms in (2.3). We need 
a(a) and ,@(b) and shall retain the point 0; this gives five disposable constants, 
counting the three multipliers, which we shall now denote by A0, A., A, . This 
is apparently more than we need, but in fact, the fifth constant turns out to provide 
an essential extra degree of freedom. 

We attempt, then, to satisfy as well as possible 

(4.1) J = Asfo + E A;f(xa) + E Asf(xo) 

using xa and x, for typical sets of coordinates. If we now equate coefficients of 
fo, V2fo, V4fo and D4fo, we obtain: 

rAo + 2nAa + 2n(n - 1)A = 1 

(4.2) ) 2a2A, + 4(n - 1)b2A = 

- 2a 4A, - 8(n - 4)b4A = A. 
We write A0 = X and retain this, and solve for a, b, A., AO. It may be noted 

that the second and third equations are no longer inconsistent, as they were for 
equally spaced points in Part 1 [1]. 

We use the last two equations to give A. and A4 in terms of a4 and b4; then 
substitute in the first two equations and eliminate a2 to give 

(4.1*3) 41 5n + 4 30+ 18(5n -7) + 9(14- n)X 0 
b4 2 b2 f (n - 1) 

whence 

(4.4) 1 30 6 A/ (5n -14)t(5n +4)X - 4 
b2 5n + 4 5n + 4 2n(n-1) 

The values of 1/b1 are real for X = 0 only if n _ 2.8, that is, if n = 1 or 2. When 
n > 3, we must have X > 4/(5n + 4) for real values of b2, indicating that the fifth 
disposable constant is essential. 

We next consider several special cases; error terms will be considered indi- 
vidually. 

5. Quadrature over a Square. Case n = 2. We take X = 0 in (4.3); then 

(5.1) b4 30 27 = 0 
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whence 

(5.21) L =3 1 =0 Aa = A0 b2 a; 
or 

(5.22) 1 = 9 9 = 7 Aa =0 At 9 

The first of these (5.21) is a degenerate case; it is in fact the product-Gauss 
two-point formula, with error term of order h4 instead of the expected order h6. 

The second case (5.22) gives a useful approximate formula 

J = I/(4h)2 = 10 ,?) +f (- hi ,/ o) 

(5.3) 
+ 

? 
f 

(V h, h+ 

+f (?- h)} 

9 f ( - hef hi :V h) + f (V/ h - hi'7 h) 

+f- 3 A,<A -3 3 -3 ) 

with the main error term 

(54) k~~~~6 ( 212 v+ 1612 v2 I fo 
6! 14-175 V + 4725 V /5) o 

We may also seek a formula with a = b; this turns out to be the "product- 
Gauss" formula, see ?6. Another idea that comes to mind is to choose X so that 
a and b are both rational; this does not seem to be possible, although one or other 
of a, b may take any value we please. Thus 

2 5 64 2 121 (5.5) a= 1 gives b2 = with AO= A = A = 
11 ~~~225 4 0 

h68 (4v6+ 268V 2D4\ 
(5.6) and main error term 6! \ 1155 / A 

2 2 2 5 1 
(5.7) b= 1 gives a with Ao= - -a A$ = 3 5 ~~~~9 18 3 

(5.8) and main error term + h( + 344V A4\ 

Note the possibly useful opposition of signs in the two error terms. 

6. Quadrature over Cube and Hypercube. We now consider general n. 
Equation (4.4) gives the following restrictions for AO = X if a, b are to be real. 

n 1 2 3 4 5 

(6.1) Ao ? 4 ? < 2 >4 ! 2 2 4 
9 7 19 6 29 
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Since we have one disposable constant, and X = 0 is excluded for n _ 3, it 
is not as easy as in ?5 to pick out an obviously convenient formula-there remains 
scope for investigation. 

One choice is of interest. This is to put a = b. We then find 

a2=b2=2 3 25n2-115n+162 a =-b A 5 = 162 
(6.2) 

A" 4-n 
A$_2 

_= - .162 324 
The points given by a = iV3/75, b = +V3/5 are the "Product-Gauss" 

points with at most two non-zero coordinates. In detail we have 

4 5 1 205 
(6.31) n = 1 AO = 4 a 18 ( = 324) 3 points 

(6.32) n=2 A 8=1 A 81 A = 2 9 points 

7 _ 5 250 (6.33) n = 3 Ao = A, 1 A = 19 points 

17 16 325 

(6.34) n = 4 Ao = -7 A = -- A= 25 33 points 27 a 27 324 

We observe that for n = 1, 2 these are respectively the Gauss and Product- 
Gauss formulas. For n _ 3, although the error term is still of order A6 in I/(2h) n 

, 

the number of points is fewer than 3 n, (it is, in fact, 2n2 + 1) and the Gauss co- 
efficients are lost. 

The leading error term in 1/(2h)n is 

4k6 16 24 893 6A (6.4) 25.7! y -7 + 3V274 - -6a 5) fo 

which does not depend on n. Of course, 36fo = 0 if n = I or 2. 
For comparison we quote the 3-dimensional Product-Gauss formula, which 

uses the sets of points 0, a(v"3/,), ,3(V ) and 6(V/7). 
64 40 25 1255 

(6.5) n = 3 AO = 9 A 729 As 2 A, = 2 27 points A 
729 72972 5832 

with leading error term 

(6.6) 24k6 (-V8 + 3V2D4- 356)f 0- -h S6. 25.7! 257.7 

The form of error term for (6.33) and (6.5) suggests further the complete 
elimination of 36fo to yield 

430 289_ 41. 893 
(6.7) nf=3 A= A, 8 As= A -f 89 

5103 5103 10206 40824 

27 points 
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iNth leading error term 

4h6 v 3vj4 (6.8) 2.! (-V6 + .3v24)f0 

which vanishes for a harmonic function, and, in fact, also for the example of the 
next section with f(x, y, z) = cos x cos y cos z, since this is a solution of the partial 
(lifferential equation 

-74,- 3JD = 0. 

In this 3-dimensional case, the further relevant error terms are 

(6.9) -h (-11v8 - io)V4 )4 + 9898 + 70V236) f0. 

7. Numerical Examples. 
(i) As in Part 1 [1, ?91 we use 

J -- I = - 
f f cos x cos y dxdy .0.70807 342 

4 4 1 -1 

for at non-harmonic illustrative example for two-dimensional formulas, and list 
the integral (.1), its e-rror (E), -,and the estimated correction (C), which is minus 
I lhe error estimate. 

Fornmula (5.3) with h = I gives 

.1 0.7-0736:2. with E -0.000711 and C +0.000782, 

aidi with It = 

.1 0 0.70806 42 with E -0.00000 92 and C +0.00000 94. 

The Gauss-product fornmllaI (6.32) with h = 1 gives 

.1 0.708125 with E 1E'7 +0.000052 and C -0.000064, 

.t,,(l with h = A 

.1 0.70807 415 with E 4- +0.00000 073 and C -0.00000 076. 

(ii) For an exainple with a harmonic integrand, as in Part 1 [1], we use 
= f2 1~.2 

J11 
= 1 sini x sinh y dxdy 0.12922 70591. 

4 4 o .o 

FormulaI (5.3) with 1 = 1 .2 gives 

.1' - 0.12922 71000 with E . +0.00000 00409 and C - -0.00000 00409, 

w-hile formula (6.32), the Gauss-product formula, also with h = 1.2, gives 

J' _'0.1292'2 70778 with fE- +0.00000 00187 and C -0.00000 00188- 

In each of these two cases our original error estimate vanishes since the integrand 
is harmonic, and the error is of order h8; in fact, they are respectively 

69128 8 8 392 
about. 12 h8 8fo//8! and 115h8j8fo/8!. 
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(iii) For a three-dimensional example, we consider 

J = 8 I = 8 L I t cos x cos y cos z dxdydz = sin3 1 -0.59582 3237. 

With h = 1, formula (6.33) gives 

J-. 0.59987 with E +0.00405 and C -0.00473 

while formula (6.5), the Gauss-product formula, gives 

J-. 0.595889 with E- +0.000066 and C -0.000095 

and the special formula (6.7) gives 

J 0.595806 with E-. -0.000017 and C +0.000020 

The last is exceptional in having an error of order h8, since, as remarked in ?6, 
sin x sin y sin z satisfies V4, - 3594 = 0. It exhibits accidentally what may be ex- 
pected with a harmonic integrand. 

With h = 4 these three formulas give 

(6.33) J 0.595871 with E +0.000048 and C -0.000050 

(6.5) J 0.59582 415 with E +0.00000 091 and C -0.00000 100 

(6.7) J 0.59582 319 with E -0.00000 004 and C +0.00000 0054 

(iv) For n 4, we consider 

J. I 1 1, L , cos x cos y cos z cos w dxdydzdw 
16 16 J1 ~ ~1J~ 

= sin4 1 -0.50136 80. 

With h = 1, we have 

(6.34) J . 0.514 with E- +0.013 and C -0.019 33 points 

(Gauss)4 J 0.501441 with E- +0.000073 81 points 

and with h = w, we have 

(6.34) J . 0.50153 with E +0.00016 and C . -0.00017 

(Gauss)4 J 0.50136 90 with E- +0.00000 10. 

These numerical examples illustrate that the extra points used in the Gauss- 
product formulas may, sometimes at any rate, have a useful effect in reducing 
error, even though the order of the error, as represented by the power of h in its 
leading term, remains the same. Comparison of (6.4) and (6.6) shows a much 
reduced coefficient of 36fo in the latter, and (6.7) is a definite improvement on 
the Gauss-product in the present case. More investigation is clearly needed of other 
formulas and of other integrandsi particularly those which do not so easily separate 
into a product of integrals. 

Once again I am pleased to acknowledge help and advice received from Dr. J. 
WV. Wrench, Jr. with the numerical examples and also to express my appreciation of 
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