
TECHNICAL NOTES AND SHORT PAPERS 

On the Utility of Newton's Method for Computing 
Complex Roots of Equations 

By I. M. Longman 

1. Introduction. With the advent of modern high speed computers, methods 
of computation which were once regarded as being too laborious to be of practical 
use can very profitably be resuscitated. This applies particularly to iterative 
methods which are very simple to program for a machine, but which might be 
very tedious for a human operator to carry out. 

For example it has been noted by Whittaker and Robinson [1] that Newton's 
method of numerical solution of equations is theoretically applicable to complex 
as well as real roots, but would be extremely laborious to apply. 

Despite the simplicity of the method it does not appear to have had the ap- 
plication it deserves, other authors preferring more complicated methods which 
involve less cumbersome numerical work. An interesting method is described by 
Ward [2]. 

2. Examples. Consider the equation 

(1) y = f(X) _ X) + 1 = O. 

The roots of this equation are known, of course, to be x = ?i, but it is instructive 
to apply Newton's method and obtain successive approximations to the solution. 

We have 

(2) f'(x) - x, 

and so our recursion formula is 

(3) xn+= = (x - l/x.)/2. 

Now it is clear that the real axis separates those points of the complex plane nearer 
to one root from those nearer to the other. Also if we start from a first approxirna- 
tion xo which is real, all the successive x,'s must be real, in accordance with equation 
(3). Thus starting with a real xo does not lead to a convergence of the iteration. 
However if we start with any xo in the upper half-plane, the sequence (3) con- 
verges to the root x = +i and if we start with any xo in the lower half-plane the 
sequence converges to the root x- -i. That this is true may be seen from the 
following: 

If we start with xo = a + ib, 

(4) xI = (a/2)[1 - 1/(a2 + 62)] + i(b/2)[1 + l/(a2 + &)1, 

so that the imaginary part remains positive if it is initially so, and likewise remains 
negative if it is initially so. 

For example, starting with xo = 1 + i, we have the sequence 

= 0.25 + 0.75i 
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X2 -0.075 + 0.975i 

X3= +0.001715686 + 0.99730392i etc., 

which is clearly converging rapidly to the root +i. 
The second example is an equation which arose in the course of the author's 

work on the reflection of wave-pulses in elastic solids (to be published elsewhere), 
and while it was solved easily on an electronic computer (WEIZAC)* by Newton's 
method, it would seem difficult to solve it by other means. The equation is 

f(X) = (x2 + a')112 + a(x2 + b2)/2 - ipX = 

where b > a > 0, a > 0, p > 0, T > 0, and the x-plane is supposed cut along the 
imaginary axis between Sib so as to make f(x) single valued, and so that the 
radicals reduce to positive arithmetic square roots on the positive real axis. Then 
it can be shown [3] that if r > ro where 

(6) =t = (a2 _ vO2)112 + a(b - VsO2)12 + pv) 

and vo is the (unique) root of 

(7) v(a2 - 1v'"12 + av(b2 - 1v /2 = p (0 < vo < a) 

then (5) has a unique (complex) root x = X. Furthermore X lies in the positive 
quadrant of the x-plane. 

The problem was to compute X on an electronic computer for given values of 
the (real) parameters a, a, b, p, r. By applying Newton's method a recursion 
formula was found in the usual way. This method was applied to the equation 

( 2+ 1 ) 112 + (X 2 + _I ) 12- ix = 27 

and starting from .ro- 1 + i the following iterates were obtained. 

xi = .49278 43132 + .44404 59775i 

X-, = .37934 25961 + .38501 14705i 

X3 = .#36899 47789 + .38109 03135i 

X4 = .36889 46156 + .38106 80636i 

X= .36889 46067 + .38106 80642i 

Xr6 =.36889 46067 + .38106 80642i 

It is seen that the iteration converges extremely rapidly, and with many different 
values of the parameters the same rapid convergence was found. 

For a complete discussion of the conditions for convergence of Newton's method, 
and uniqueness of the root, reference may be made to Householder [41. 

Institute of Geophysics 
University of California 
Los Angeles, California 

1. E. T. WHITrrA;ER & G. ROBINSON, The Calculzlus of Observations, Blackie & Son, Glas- 
gow, 1944, p. 88. 

* WEIZAC is the name of the electronic computer at the Weizmann Institute of Science. 



A PROBLEM IN ABELIAN GROUPS 189 

2. J. A. WARD, "The downhill method of solving f(z) - 0," Jn., Assn. for Comp. Machin- 
ery., v. 4, 1957, p. 148. 

3. L. CAGNIARD, Riflexion et Refraction des Ondes Seismiques Progressives, Gauthier- 
Villars, Paris, 1939, p. 55-58. 

4. A. S. HOUSEHOLDER, Principles of Numerical Analysis, MNcGraw-Hill, New York, 1953, 
p. 118-121. 

A Problem in Abelian Groups, with Application 
to the Transposition of a Matrix on an 

Electronic Computer 

By Gordon Pall and Esther Seiden 

1. Introduction. Mr. G. A. Westlund of "Mura" (Midwestern Universities Re- 
search Association) was asked to formulate a code to transpose a matrix stored 
in the memory of IBM 704, using very little additional space. It appeared that 
such a code, by Mr. William Shooman of General Electric in Evendale, was al- 
ready available and had been distributed on June 15, 1957, to SHARE members 
of IBM 704. Mr. Westlund asked whether there exists a more efficient method for 
this purpose. 

A matrix of m rows and n columns is stored in the computer with the elements of 
each column listed in order and followed by those of the next column. The positions 
can benumbered asmj + i (i = 0, 1, ... , m - 1;j = 0 1, ... , n -1). To trans- 
pose the matrix, the element in position mj + i must be moved to position ni + j. 
The key remark is that the new position number is obtained from the old by multi- 
plication by n, and reducing mod N( = mn - 1). Starting with any element (which 
we will call a leader), we multiply its position number by n and replace mod N, 
repeat this operation with the new position number again and again, and thus have 
a cycle of elements which are permuted cyclically in the process of transposing a 
matrix. If v is the g.c.d. of any of the position numbers and N, then the number 
of elements in the cycle is equal to the least positive integer r for which 
n -- 1 (mod N/v). 

The questions then arise: (a) can a method be devised of choosing one and only 
one leader in every cycle; and (b) if this is done, will the new method of transposing 
a matrix compare favorably in machine time with the existing method? Both ques- 
tions are answered affirmatively in this note. 

A program for transposing a matrix, once a set of leaders is given, was con- 
structed at our request by G. A. Westlund, under the direction of M. R. Storm, 
head of the computing section at Mura. The suggestion was made that our method 
for forming a set of leaders (see ?2) might also be programmed by building a table 
of indices and primitive roots into the computer. We felt that it would be more 
economical to carry out the construction of a set of leaders by hand. The construc- 
tion of a table of leaders for all pairs m, n with certain properties is under investi- 
gation. 

In transposing a matrix by the Mura program, the machine time is much smaller 
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