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A Problem in Abelian Groups, with Application 
to the Transposition of a Matrix on an 

Electronic Computer 

By Gordon Pall and Esther Seiden 

1. Introduction. Mr. G. A. Westlund of "Mura" (Midwestern Universities Re- 
search Association) was asked to formulate a code to transpose a matrix stored 
in the memory of IBM 704, using very little additional space. It appeared that 
such a code, by Mr. William Shooman of General Electric in Evendale, was al- 
ready available and had been distributed on June 15, 1957, to SHARE members 
of IBM 704. Mr. Westlund asked whether there exists a more efficient method for 
this purpose. 

A matrix of m rows and n columns is stored in the computer with the elements of 
each column listed in order and followed by those of the next column. The positions 
can benumbered asmj + i (i = 0, 1, ... , m - 1;j = 0 1, ... , n -1). To trans- 
pose the matrix, the element in position mj + i must be moved to position ni + j. 
The key remark is that the new position number is obtained from the old by multi- 
plication by n, and reducing mod N( = mn - 1). Starting with any element (which 
we will call a leader), we multiply its position number by n and replace mod N, 
repeat this operation with the new position number again and again, and thus have 
a cycle of elements which are permuted cyclically in the process of transposing a 
matrix. If v is the g.c.d. of any of the position numbers and N, then the number 
of elements in the cycle is equal to the least positive integer r for which 
n -- 1 (mod N/v). 

The questions then arise: (a) can a method be devised of choosing one and only 
one leader in every cycle; and (b) if this is done, will the new method of transposing 
a matrix compare favorably in machine time with the existing method? Both ques- 
tions are answered affirmatively in this note. 

A program for transposing a matrix, once a set of leaders is given, was con- 
structed at our request by G. A. Westlund, under the direction of M. R. Storm, 
head of the computing section at Mura. The suggestion was made that our method 
for forming a set of leaders (see ?2) might also be programmed by building a table 
of indices and primitive roots into the computer. We felt that it would be more 
economical to carry out the construction of a set of leaders by hand. The construc- 
tion of a table of leaders for all pairs m, n with certain properties is under investi- 
gation. 

In transposing a matrix by the Mura program, the machine time is much smaller 
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than that by the General Electric method (Matrix Transposed on Itself, Shooman 
at Evendale, June 21, 1957). By the latter method the total number of switches is 
?n (m - 1 )n(n - 1)/4, and is roughly proportional to the square of the number of 
elements of the matrix. By our method the number of switches is roughly propor- 
tional to the number of elements of the matrix. Here are some examples of machine 
times. 

Size of matrix. Time by Mura Program. Time by G. E. program. 

8 by 7 Too small to measure Too small to measure 
21 by 14 Too small to measure 2.5 seconds 
18 by 15 Too small to measure 2 seconds 
31 by 8 Too small to measure 2 seconds 
24 by 35 Less than a second 23 seconds 
23 by 25 Less than a second 20.5 seconds 
25 by 31 Less than a second 21 seconds 
75 by 73 Less than five seconds 17.5 minutes. 

2. Background Theory. Let G be the group of residues prime to N modulo N, 
and let n be an integer prime to N. We will give an algorithm for choosing a set 
S(n, N), containing exactly one element of each coset in G of the group of powers 
of n modulo N. 

Itseems necessary to remark that it seems not to be trivial-as we at first sup- 
posed-to devise a general method of choosing a complete set of representatives of 
a group modulo a subgroup-if one does not wish to take the time to write out coset 
after coset, and see what remains. Notice for example that if p and q are distinct 
primes, and if p divides q - 1, the solvability for x of an' _b (mod p') and for y 
of art'n" b (mod q') may impose on x and y inconsistent conditions modulo p,- 
and so a and b can be in the same coset mod pT and mod q8 without being so for 
their product. It will be seen in the vector representation which follows that now 
one and now another of the components dominates the congruence conditions, and 
an unsystematic analysis may be difficult. Perhaps indeed our algorithm may have 
value beyond this present application. 

As is well known, if p = pi is an odd prime, and t = tj a positive integer, there 
is al integer g = gi (a primitive root of p') such that every residue k prime to 
p module p' is associated uniquely with an index e mod Ni, where 

(1) =ori 2 piti-t(i- 1), 

such that k ge (mod p'). If p = 2 and t 2 2, there are two indices eo and el cor- 
responding to any given odd residue k mod 2' such that 

(2) k (-1)e 5e1 (mod 2'), with eo determined mod No, and el mod N1, 

where No = 2 and Ni = 2'-2. This extends to t = 1 if we choose No = N1 = 1. 

Index tables exist for prime-powers up to 10,000 from which corresponding values 
k and e, or k and eo, el may be read. 

Write N = pi" P. as a product of powers of distinct primes. If N is even, 
take pi = 2 and No, N, as above; otherwise use (1). Then by the preceding para- 
graph and the Chinese Remainder Theorem, there is associated with each residue 

prime to N modulo NT a unique index vector (eh, eh+l, * **, e8) with components 
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determined respectively to the moduli VhV, - , N. ; h is 0 or 1 according as N is 
even or odd. The group G is isomorphic to the "additive group" of these vectors. 

3. The Algorithm. Find the index vector (uk, * - *, u.) of n. Find the g.c.d. di of 
Ni and us, and set Ki = Ni/di, i = h, *-* -, s. For each primep dividing Kh ... K., 
let j( =jp) denote the subscript of that one (or of any one) of KN, *, K, which 
contains the highest power of p. (We will speak of p as belonging to j.) For each i 
from h to s, write Ki-= LeiQ, where Qj consists of the prime factors belonging to 
i. (Thus Li is prime to Qi, and Qi may be 1.) Let Si denote the set of Li residues 
mod Ki obtained by combining each of 0, 1, - * , Li- 1 with any desired fixed 
residue mod Qi . (For example, Si can be) 

kyk + Qik + 2Qi, I...,k + (Li-1)Qj, kafixedinteger.) 

Then, a set S(n, N) is given by the vecors 

(3) (eN + djyj, * , e. + day.), uith yi ranging over Si, 

andei =O,1, *** ,di-1, (i = h, ...*,s). 

Proof. Notice first that the order of the cyclic group generated by n is equal to 
the least positive integer q such that 

(4) qu1 0 (mod Ni), (i-hi * * 8)) 

and that q = Qh* Q,, . Also, the number of vectors in (3) is da * d.L ---L. = 
Nh ... N5/q. Hence we have only to prove that no two of these vectors are in the 
same coset. Notice also that the coset of any given vector (Zh, v , Z.) is composed 
of the q vectors 

(Zh + XUh * Z + XU), x 0, 1*** q - 1; 

and for each i, the components zi + xui have a fixed residue modulo di. Hence if 
two vectors in (3), say (Zh, - , Z.) and (Zh + XUh, **, Z + xu.), are in the 
same coset, they must have the same terms es , ... , e, and, for each prime p and 
the subscript j to which p belongs, zj= z + xuj modulo the power of p in N, 
(since, for every i, zi zi + xu1 mod diQ1). Hence xuj is divisible by the power of 
p in Nj . But (excluding the trivial case where all indices uh , *-* *, u. are 0, hence 
n = 1) Ni and qu, contain the same power of p. Hence xuj is divisible by the power 
of p in quj, x by the power of p in q (this for every p), x is divisible by q, and the 
two vectors coincide. Q.E.D. 

It remains to convert the vectors in (3) into position numbers mod N. Write 
-i = N/p i (i = 1, ... , s). The expression 

(5) ]Mlegl1dlYl + .. . + Mg9 e,'''y 

the first term being replaced if N is even by MMl (-1)e0+dOy05ej+djl et and yi 
having the ranges in (3), gives exactly one leader in every cycle whose position 
numbers are prime to N. (One can of course read off the values gC+dy from the in- 
dex table.) Because of the factors M1 the leaders listed in (5) may not be ex- 
actly those specified in (3), since the expression in (5) gives the number with 
gi to the index ei' + ei + di(yi + y/'), where e,' + djy,' is the index of Mi . But 
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since e,' and yi' are fixed for each i, this has the effect of permuting the residues 
e, mod di and y1 mod Li, while keeping yi still fixed mod Qi , and thus gives another 
set S(n, N). 

For any divisor v of N, the leaders for the cycles whose position numbers have 
with N the g.c.d. v can be obtained by multiplying the elements of the set S(n, N/v) 
by v. The work can be arranged so that all the sets S(n, N/v) for all divisors v of 
N are constructed in one operation, without duplication of effort. This will be illus- 
trated by an example. The example will also make use of the obvious fact that if N 
is double an odd, S(n, N) can be derived from S(n, N/2) by simply taking the 
latter elements and adding N/2 to those of them which are even. 

4. Example. Let m = 75, n = 73. Then N = mn- 1 = 5474 = 2X7*17*23; 
73 is 31 mod 7, 35 mod 17, 54 mod 23. 

pt *(pt) u d K Q L y e Mg* 
a) 7 6 1 1 6 3 2 0,3 0 391-3, x= e + dy=0 or3 
b) 7 6 1 1 6 6 1 0 0 391-3z,x=0 

17 16 5 1 16 16 1 0 0 161-3,x = 0 
23 22 4 2 11 11 1 0 0,1 119.5z, x = O or 1. 

Notice that row a), with 2 not a factor of Q, is used when 17 is a factor of the 
modulus, since then the highest power of 2 occurs in K(17). To get the four leaders 
of primitive cycles mod 7.17-23, add either 391 or 2346 to either 119 or 595, and 
to 161. To get leaders for products by 17 of primitive cycles mod 7 23, add 391 
(from row b)) to either 119 or 595-and so forth. The results, with the residues 
adjusted to be odd as explained earlier, are: 365, 671, 1147, 5363; 3017? 3493; 3247, 
3723; 2507, 3289; 391; 161; 119, 595; 2737; also, their doubles, 730, - * * , 1190, 0,- 
thirty leaders in all. 

5. Comments. (i) This technique applies to the determination of leaders of 
cycles under multiplication by powers of n, in the ring of residues modulo N, if 
n and N are coprime,-regardless of the matrix interpretation. 

(ii) For each prime-power pt in N, a listing must be given for each power 
p' (s 1, * , t), except that 21 can be omitted as indicated. In all these, the index 
u (or the two indices if p = 2) need not be changed for gU n (mod pt) implies 

gU n (mod p'). Each power p' should have as many listings as there are different 
values Q possible for it. 

(iii) It is interesting that certain partial sums of the terms in the classical 
expression (5) give (with appropriate modifications of the exponents) the im- 
primitive leaders. 
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