
Rotors in Polygons and Polyhedra 

By Michael Goldberg 

1. Introduction. Curves of constant width are closed curves which can be 
rotated through all orientations between two fixed parallel straight lines while re- 
maining tangent to these lines. They are also known as curves of constant breadth, 
Gleichdicke (in German), or orbiformes (in French). They have been studied by 
mathematicians beginning with Euler [1], Minkowski [3], Blaschke [8, 9], Schilling 
[11], and others to the present time. They have been applied in mechanisms to 
generate a wide variety of periodic motions. They have been used as the shapes of 
drills for drilling square and hexagonal holes. They have been produced uninten- 
tionally in certain manufacturing processes when only precise circular cylinders 
were desired. 

Two more fixed parallel lines may be added without constraining the rotation. 
In particular, the four lines may form a square. Hence, the curve may rotate while 
remaining tangent to all sides of the square. For this reason I call the curve a 
rotor in a square. 

Immediately, there arises the question whether non-circular rotors exist for 
other polygons. It has been found that they exist for all regular polygons and 
various methods of deriving them have been developed. The earliest complete de- 
velopment was published in 1909 by Meissner, a Swiss mathematician [4]. He 
derived the rotors in the n-gons and described them analytically by means of the 
polar tangential equation 

00 

p = ao + Z (ak cos kO + bk sin kO) 
k=1 

where p is the distance from the origin to the tangent to the curve, 0 is the angle 
which the normal makes with the reference axis, the ak and bk are arbitrary con- 
stants except that 

ak,bk = 0 for k$ ? I(modn). 

(For example, if n = 6, the terms which do not have to be zero are obtained for 
k = 1, 5, 7, 11, 13, 17, 19, etc.) Hence, for each polygon there is an infinity of 
different rotors. For convexity, the constants ak and bk are limited by certain in- 
equality relationships. 

2. Circular-Arc Rotors. Special cases have received special attention. In 
particular, those rotors which are bounded entirely by arcs of circles have been 
considered. Euler considered the rotor made of three equal arcs, each centered on 
a vertex of an equilateral triangle. Reuleaux [2] considered rotors of an odd num- 
ber of circular arcs of equal radii. They have been called Reuleaux polygons, but 
I prefer to call them Reuleaux rotors since they are not polygons. The regular 
Reuleaux rotors are rotors in a square. 
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FIG. 1.-Circular-arc rotors in regular polygons. 
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FIG. 2.-Regular trammel rotors in regular polygons. 

Fujiwara [14] considered rotors in a triangle. He showed that some of the 
Reuleaux rotors are also rotors in a triangle. Besides these, he derived the rotors 
of two, four and five circular arcs. No such rotors of three arcs exist. Of the pos- 
sible rotors of two arcs, one had already been published by Reuleaux [2]. A circular- 
arc rotor for the pentagon is also described by Fujiwara [14, pp. 245-246]. In 1948, 
I published a paper describing the construction of circular-arc rotors for all the 
regular polygons [29]. The method is shown in Figure 1 where the centers of the 
arcs are regularly distributed on two generating circles, except for n = 6 where 
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three generating circles are used. Note that for n > 4, the rotors for the even poly- 
gons possess only one axis of symmetry (unequal generating circles), while the 
rotors in the odd polygons possess two axes of symmetry (equal generating circles). 
In these, the radii of the arcs are not equal. In particular, note that the rotor in 
the pentagon is composed of two pairs of arcs, the radii of one pair being twice 
the radii of the other pair. It is conjectured that, among all the rotors whose con- 
tours are made of discrete circular arcs, these have the least number of arcs. 

In 1957, I published a new series of circular-arc rotors which are characterized 
by higher orders of symmetry [32]. They are illustrated in Figure 2. These regular 
rotors in a regular n-gon are of two types. The upper series is made of (n - 1) 
equal segments. The lower series is made of (n + 1) equal segments. For n > 4, 
each segment is made of three or more circular arcs, each arc being tangent to its 
neighboring arcs except at the ends of the segments. 

3. Trammel Method of Construction. All the circular-arc rotors may be ob- 
tained kinematically by a graphical method which I call a trammel construction. 
This consists of moving the rotor so that, for each portion of the motion, two points 
of the rotor trace two fixed straight lines. In Figure 3, the rotor to be generated in 
the hexagon is based on a regular pentagon shown in dotted lines. The pentagon 
is turned counter-clockwise so that the vertices B and C move along the straight 
sides of the hexagon until the next vertex D touches the hexagon. The motion is 
continued with vertices C and D moving along the sides of the hexagon. During 
these motions, the sides of the fixed hexagon will mold a rotor based on the dotted 
pentagon; that is, the rotor is the envelope of the sides of the hexagon on the plane 
of the moving pentagon. 

4. Any Rotor as the Sum of Trammel Rotors. Every rotor in a kn-gon (where 
k is any integer) is also a rotor in an n-gon. Hence, we have obtained an infinite 
number of circular-arc rotors for each polygon. Furthermore, if pi = fi(0) and 

P2 = f2(0) are the polar tangential equations of two trammel rotors in a given 
polygon, then their weighted mean, given analytically as 

p3 = [Ufi(O) + Vf2(O)]/(U + V) 

where u and v are any real numbers, is the polar tangential equation of a new rotor 
in the same polygon. By extension, any rotor in a polygon can be expressed as a 
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weighted mean of a series (possibly infinite) of regular trammel rotors. This is 
similar to the Fourier series expansion used by Meissner as described in Section 1. 

5. Basic Rotors and their Construction. In Meissner's equation, each variable 
term in the right-hand member can serve as the entire variable part of the right- 
hand member of the equation for a rotor. These rotors, which I call basic rotors, 
resemble the regular circular-arc rotors [311. However, the curvature of the arcs 
varies continuously instead of remaining constant by segments. 

Each basic rotor can be obtained cinematically by the following method. Con- 
sider a fixed circle of circumference c. Compare with Figure 4. Let another circle 
of circumference cn/(n + 1), where n is any integer, roll within the first circle 
without slipping. Then each point of the rolling circle describes a hypocycloid of 
(n + 1) cusps. Let a straight line be carried by the rolling circle. The envelope of 
the positions of this straight line will be a parallel curve of the hypocycloid. If the 
straight line is sufficiently distant from the center of the rolling circle, the envelope 
will be convex. This convex curve of (n + 1) maximal points or lobes is a basic 
rotor in a regular n-gon, as shown by the following argument. 

When the center of the rolling circle returns to its initial position, the circle 
and the carried straight line will have undergone a rotation of 27r/n. As the rolling 
is repeated successively, there will be n symmetric positions of the straight line. 
Therefore, the n positions of the straight line will form a regular n-gon. The rolling 
circle can then be considered to carry the regular n-gon. As it rolls, the n envelopes 
of the n sides are the same. Therefore, each side of the n-gon keeps in contact 
with the envelope as the n-gon is rotated. Inversely, the (n + 1)-lobed rotor can 
rotate continuously within the n-gon while keeping contact with all the sides of 
the n-gon. 

A similar procedure obtains for (n - 1)-lobed rotors in a regular n-gon. 

G 4 
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FIG. 4.-Generation of basic rotors. 
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FIG. 5.-Conical rotors in pyramid 

6. Rotors mn Spherical Polygons. The concept of rotors has been generalized 
from the two dimensions of the plane to three and more dimensions. However, the 
intermediate case of rotors in spherical polygons has received very little attention. 
Blaschke [9] and Santal6 [25] have considered ovals of constant width on the 
surface of the sphere. These are ovals which remain tangent to the two meridians 
which bound a line. 

These were generalized by the author to include rotors in all the regular spherical 
polygons. The trammel rotor method of constructing circular-arc rotors in plane 
polygons is also applicable for the construction of rotors in spherical polygons. 
This time, however, the generated arcs are not plane and, therefore, they are not 
circular [30]. 

Also, the spherical rotors corresponding to the basic plane rotors can be gen- 
erated by the rolling circle method. In this case, the rolling circle carries an arc 
of a great circle instead of a straight line. (See Figure 4.) The symmetric positions 
of this great circle make a regular spherical polygon [31]. 

Every rotor in a plane polygon has its counterpart as a rotor in a spherical 
polygon. However, there are more types of spherical rotors for two reasons. The 
most obvious reason is that regular spherical polygons of the same number of sides 
are not similar; their shape depends upon their size. Therefore, their rotors are 
correspondingly different. But the more surprising difference between plane and 
spherical rotors is the fact that spherical ovals of constant width, which are tangent 
to two arcs of great circles, are distinct from rotors in a spherical quadrilateral. In 
the plane, these two sets of rotors are identical. 

Models of spherical surfaces are difficult to construct and to demonstrate. 
However, every spherical polygon can be converted into a pyramid by passing 
planes through the great circles by which it is bounded. The rotor in the spherical 
polygon is replaced by a non-circular cone which is now a rotor in a pyramid. 
Models of several conical trammel rotors are shown in Figure 5. 

7. Rotors Tangent to n Circles. The trammel method and the rolling circle 
method may be applied in the derivation of other types of rotors. For example, 
n equal circles may replace the n straight lines of a plane regular n-gon [33]. Among 
the interesting possibilities is a series of rotors which approximate regular polygons. 
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FIG. 6.-Rotors tangent to n fixed circles. 

Several are shown in Figure 6. Also, the methods are just as applicable on the 
surface of a sphere. 

A further generalization is the use of a set of n symmetric curves instead of n 
circles. No special interesting cases are available at present. 

8. Rotors in Regular Polyhedra. The first extensive study of surfaces of con- 
stant width was made by Minkowski [3]. He devised general geometric methods 
of deriving many of them. Many beautiful theorems concerning them were ob- 
tained. The most obvious method of generating one is by revolving a symmetric 
oval of constant width about its axis of symmetry. A more unusual surface is based 
on a regular tetrahedron [6]. Each vertex serves as a center of a spherical surface 
passing through the other vertices. However, one edge of each pair of opposite 
edges must be chamfered to a portion of a toroidal surface. The foregoing shapes 
are shown as A and B of Figure 7. 

The surface of constant width is a rotor in a cube. The general investigation of 
rotors for all the regular polyhedra was first considered by Meissner. In a very 
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elegant paper [7], he showed that non-spherical rotors exist for the regular tetra- 
hedron, the cube and the regular octahedron, and that they do not exist for the 
regular dodecahedron (12 faces) and the regular icosahedron (20 faces). Just as 
Meissner used a Fourier series development for rotors in plane polygons, he used 
a spherical harmonic development for studying rotors in regular polyhedra. He 
showed that the rotors in the cube may be described by the polar tangential equa- 
tion 

p(O,4)) = ao + Y, + Y3 + Y6 + Y7 + 

the rotors in the tetrahedron may be written as 

p(0 4) = ao + Yj + Y2 + Y5; 

and the rotors in the octahedron may be written as 

p(0,0) = ao + Y1 + Y5 

where Yj (a function of 0 and 4) is the spherical surface harmonic of the ith degree. 
The number of arbitrary parameters in the equation for the rotor in the cube 

is infinite. The number of parameters for the rotor in the tetrahedron is eleven, 
while the number of parameters for the rotor in the octahedron is eight. Several 
rotors for the tetrahedron are shown in Figure 8. A rotor for the octahedron is 
shown on the extreme right of Figure 7. 

Before leaving three dimensions, it may be fitting to consider other possibilities. 
It is conceivable that non-regular polyhedra may have non-spherical rotors. In 
particular, it is not known whether open-ended regular prisms can have non- 

A 

FIG. 7.-Rotors in cube. 
A. Rotor based on tetrahedron; B. Rotor of revolution; C. Three-lobed rotor; D. Five- 

lobed rotor; E. Rotor in octahedron. 

FIG. 8.-Rotors in regular tetrahedron. 
A. Prolate rotor of revolution; B. Oblate rotor of revolution; C. Triaxial rotor. 
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spherical rotors besides the well-known rotors in a rhombic prism which are surfaces 
of constant width. 

9. Rotors in Higher Dimensions. Surfaces of constant width have been gen- 
eralized to rotors in higher dimensions. Santalo [26] derived relations between 
measures of their boundaries and their contents as generalizations of relations 
derived by Minkowski [3, pp. 215-220]. Rotors in the simplex (the analogue of 
the triangle and the tetrahedron) also exist. Simple examples are the bodies of 
revolution given by the following polar tangential equations: 

p = a + b cos 24, Rotor in simplex, 

p = a + b cos 3q5, Rotor in hypercube. 

Non-spherical rotors for the analogue of the octahedron have not been mentioned 
in the literature. 

10. Polygon Rotors in Ovals. If a rotor in a regular polygon is held fixed while 
the polygon is rotated about it, all the vertices of the polygon trace the same 
curve. Therefore, if this curve is fixed, the regular polygon can be rotated within 
it while all the vertices lie on the curve. Hence, for each rotor in a polygon, we 
have a curve within which the polygon can be rotated. See Figure 9. An application 
of a triangular rotor in an oval is a recent design, by the German engineer Felix 
Wanke!, of a non-reciprocating internal combustion engine. Test models of this 
engine have been made for the Curtiss-Wright Corporation. 

This relation also applies for rotors in spherical polygons from which we obtain 
pyramidal rotors in non-circular cones. 

However, in three dimensions, this relation does not apply. If a non-spherical 
rotor in a polyhedron is held fixed while the polyhedron is rotated, the vertices 
of the polyhedron do not lie on a surface. Instead, the positions of the vertices 

FIG. 9.-(a) Triangle rotor in an oval; (b) Square rotor in an oval. 
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FIG. 10.-Double-contact cam. 

fill a volume bounded by two closed surfaces. The ellipsoid is the only known 
surface possessing the property that the vertices of all the circumscribing rectangu- 
lar parallelepipeds lie on a sphere. It has been conjectured that every other body 
generates a volume in this manner and not a surface [10]. 

11. Mechanisms Related to Rotors. The use of drills in the shape of rotors in 
polygons has been extended from the drilling of even polygons (the square and 
the hexagon) to the drilling of odd polygons (the triangle and the pentagon). 
Several other problems, closely related to rotors in polygons, have been investi- 
gated. One is the determination of the non-circular shapes of pivoted rotors which 
remain in contact with two straight arms of a pivoted rocker arm. See Figure 10. 
Again, the only admissible angles between the arms are rational fractions of a 
circle as are the angles of a regular polygon. Examples of the ovals are described by 

p1(0) = COS P2(0) 

where p2(0) = mr/2n + k sin nO, which is a rotor in a polygon. A geometer would 
describe these ovals as curves whose isoptic curves are circles [281. They are the 
basis of a patent issued for a series of double-contact cam mechanisms [36]. 

Another related mechanism is the intermittent rotor [34]. This makes contact 
with a series of fixed elements but not always with all the elements. In the example 
shown in Figure 11, the rotor is restrained in its motion by contact with three of 
the four fixed points until all four of the fixed points are touched. The motion may 
then be continued with another set of three fixed points as constraints. 

The presentation of new and unfamiliar basic mechanisms in this paper shows 
that the ancient science of mechanisms is far from exhausted. When the engineer 
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FIG. 11.-Intermittent rotor. 

and designer become more familiar with them, it is expected that more applications 
will be made. 
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