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1. Introduction. The description of phenomena involving phase transitions 
leads to a class of parabolic partial differential equations with a free interior bound- 
ary which marks the interface separating the phases. The simplest nonlinear prob- 
lem of this type was first treated by J. Stefan in 1891 and considerable attention 
has been focused on such problems in recent years [4], [6], [9]. 

A typical mathematical formulation of this type of problem is the following: 
PROBLEM I: Determine functions x(t) and u(x, t) satisfying 

(a) uxx(x, t) =ut(x, t), 0 < x < x(t), t > 0 

(b) ux(0, t) = -1, t > 0 

(1) ~~~~~~(c) x-t) = -UX(X(t), t, t > 0 

(d) u (x, t) = O. x _ x (t), t > 0 

(e) x(0) = 0. 

With suitable choice of units this formulation describes, for example, the recrystal- 
lization due to uniform heating at one end of a semi-infinite substance which is 
initially at its critical temperature [3]. Equations (ic), (id), and (le) serve to de- 
scribe the interface separating the phases of crystalline state. Effective numerical 
procedures and proofs of their validity have been described by Douglas and Gallie 
[2], and Trench [8]. 

The object of this paper is to suggest a computational approach to general 
problems of this type which has the feature that the path of the interface is not 
regarded as an explicitly imposed interior boundary condition. The method is 
closely related to a proposal by P. Lax [7] for calculating weak solutions of hyper- 
bolic equations in conservation form as the limits of suitable finite difference equa- 
tions. Several problems involving shocks and contact discontinuities have been 
successfully treated by Lax from this point of view. The present investigation was 
motivated by the question of whether or not phase-change interfaces were sus- 
ceptible to a similar treatment, particularly in view of the fact that such interfaces 
also arise as discontinuity surfaces in the general treatment of the equations of 
hydrodynamics (Keller [5]). 

In the first part of this paper a formulation of certain phase transition phenomena 
is described (Problem II) and the concept of their weak solutions is introduced. 
Heuristic arguments are given serving to identify a weak solution of Problem II 
with the solution of Problem I. The results of several calculations are cited to lend 
support to a conjecture that the solution of certain natural finite difference equa- 
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tions related to Problem II converge to a relevant (essentially unique) weak solu- 
tion of the problem. In addition, a random walk process suggested by the difference 
equation is mentioned which tends to illuminate certain aspects of phase transition 
processes and suggests an additional computational approach to such problems. 

The author wishes to express his appreciation to P. Lax and E. Isaacson for 
their interest and discussions concerning this paper and to N. Metropolis for dis- 
cussions of the random walk formulation. 

2. Weak Solutions of Phase Transition Processes. We begin by deriving equa- 
tions governing a particular example of a process involving a phase transition.* 
Consider [3] a bar of uniform cross-section of a substance which undergoes a change 
in crystalline form with negligible change in density involving a latent heat of 
crystallization. Let e denote the specific internal energy, q the heat flux, T the tem- 
perature and p the density. The equation 

(2) (pe)t + q. = 0 

expresses the conservation of energy of the process (we use the notation v., 
av/ax, etc.). 

We assume Fourier's law, 

(3) q = -kTx 

where k is the coefficient of thermal conductivity. Finally recalling our assumption 
that the density is constant, we assume an equation of state given by 

(4) T = T(e). 

In a region in which this transformation is one to one we obtain 

Tt = a 2Tx 

with a2 = k/peT. This is the usual equation of heat conduction. However for 
processes in which a latent heat of recrystallization occurs the transformation (4) 
is no longer one to one; the following relationship is typical of such processes (see 
Figure 1). 

(4') T = a(e) + To 

with 

[e *(e eo) e < eo 

,y(e) = eo < e ? eo + H 
t+z~e- (H + eo)], e > eo + H. 

Here H is the latent heat of recrystallization and y- and y+ are non-negative 
quantities related to the specific heat of the material. Without loss of generality we 
may assume eo = 0 and To = 0. 

If we adjoin to equations (2), (3) and (4') appropriate initial and boundary 
conditions it seems reasonable to suppose our formulation describes a unique and 
well-posed physical problem. Summarizing, we formulate 

* Our discussion is easily generalized to several space dimensions. 
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FIG. 1.-Equation of state for a recrystallization process. 

PROBLEM II: Find solutions e(x, t), q(x, t) and T(x, t) of the equations 

(2) q+c+Tqx =O, x>Ot>O0 

(3) q + kTx = 0. x > 0. t > 0 

rye, e < 0 
(4") T =O, 0<e<H 

-+(e-H), e > H 

satisfying the initial and boundary conditions 

(5) e(x, 0) eo(x), x > 0 

(6) q(O, t) = g(t), t > 0 

Because of the mild nonlinearity introduced by equation (4") our formulation 
of Problem II may not allow a genuine solution, i.e., a solution which is continuous 
with continuous derivatives in the quarter plane D [x > 0, t > 0] for a compact 
set of initial and boundary data. The physical situation suggests that the class of 
solutions be enlarged to allow jump discontinuities along certain smooth curves 
C in D. 

We do this by introducing in the usual manner the concept of a weak solution 
of Problem II. Consider a space b of pairs of smooth testing functions (sO, A/) with 
compact support, i.e., each (<p, 4') in 4 vanishes identically outside some compact 
bounded region which lies in the half space t > 0 and does not intersect the bound- 
ary x = 0. We multiply equation (2) by so and equation (3) by A', integrate and 
then integrate by parts to obtain 

(7) f (fpt e + A. q) dx dt + fp(x, O)co(x) dx = o 

and 

(8) f(q-kT44) dxdt =0 
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recalling that c(x, 0) = eo(x). We restrict (e, q, T) to the class of functions satisfy- 
ing the boundary condition (6) and the equation of state (4") and call (e, q, T) a 
weak solution of Problem II if (7) and (8) hold for every set of test vectors (yO, 41) 
in (. 

A genuine solution is, clearly, a weak solution. On the other hand, two genuine 
solutions whose domains of definition are separated by a smooth curve C given by 
x = x(t) will constitute a weak solution if and only if the following equations 
(obtained by applying Green's theorem) hold: 

[pe]t= [q] 

and 

[T]? = 0 

where [v] denotes the jump in the quantity v across C and x =x dx/dt. Using (3), 
(4") and the assumption that p is constant we obtain 

(9) pH = -[k1Tx] 

and 

(10) [T] = 0 

which express the conditions of balance of heat flux and the continuity of tempera- 
ture across the interface. These conditions correspond to the conditions expressed 
in equations (ic) and (id) of Problem I; they result in Problem II as a requirement 
for a weak solution. 

I conjecture that a weak solution of Problem II exists which is composed of 
piecewise genuine solutions; furthermore it is the only such solution which is con- 
tinuously dependent on the initial conditions with respect to some appropriate 
norm. If this conjecture can be proved correct, the identification of this solution 
with the solution of the Stefan problem, Problem I, would follow directly through 
proper choice of the initial and boundary conditions. Probably the solution of Prob- 
lem II can be obtained as the limit of a certain set of finite difference equations 
which are described below. More precisely, 

CONJECTURE A: There is a unique weak solution (e, q, T) of Problem II com- 
posed of genuine solutions in each of the regions separated by the interface curve 
x = x(t); furthermore, the solution u of Problem I and the solution (e, q, T) of 
Problem II (with suitable initial and boundary conditions) as identified through 
the relationship T(e) = u are identical. 

CONJECTURE B: (e, q, T) may be obtained as the strong limit of the sequence 
of solutions of the finite difference equations described below (Problem IIA). 

I wish to give certain plausibility arguments which, together with the results 
of certain calculations described later, tend to support these conjectures. In doing 
so I lean heavily on the already cited paper by Lax [7]. 

The following describes the simplest finite difference approximant to Problem 
II:atapoint (i,n),i= 1,2,. ,n = 1,2,..., of ameshAof size (Ax, At) 
replace et by (ei'+' - ein)/At, qx by (qif - q'U)/Ax, and Tx by (T 7+1 - Tin) /Ax. 
This leads to 
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PROBLEM IIA: Find solutions ei', qin, and Tin of the equations 

(2A) ei ' = _ 
A ( - _ qi _1) 

(3,A) = -k(Tn~ - T n) 

(^y ei, e, < 0 
Tin = 0, 0 e < H 

t;+(ein - H), ej > H 

satisfying the initial and boundary conditions 

(5A) ej = eo(iAx) = 

(6A) =o g(nAt) g 

Here, u = At/pAx and k = k/Ax. 
Let us suppose initial and boundary conditions for which eoi 0 and gf _ 0. 

It is not difficult to show then that ein > 0 and the above equations can be simpli- 
fied. Letting 

n f 0 if Oe eH 
pi =\o+fi~ if n > H Piy+Ak if eiH 

and eliminating qin and Ti in (2a), (3A) we obtain 

(eV1 -IH) = p'+1(e ?i - H) + pn i(e*-1 -H) 
(11) 

+ (1 -2pin)(ei - H) 

for n _ 0, i _ 2, and 

(12) (e H) = p2n(e2n - H) + (1 - pin)(el - H) ? pugn 

for n ? 0. 
Very likely the stability and convergence of this system is insured by requiring 

that the coefficients (1 - 2 pi ) be non-negative. This leads to the condition 

(13) At2 = 2k+ 

From the definition of pin it is easily seen from (11) that, if e X ein , and en1 
are each in the interval [0, H], then ei8+l = ein. Suppose, for example, that ini- 
tially eoi = 0. We may conclude that the width of the transition region between 
phases, i.e., the region in which ei8 varies from its initial value 0 to a value greater than 
H, is 2Ax for any line to = constant. This property provides a striking contrast to 
the spreading of shock zones in Lax's treatment of hydrodynamic problems and 
suggests that phase transitions can be determined accurately by this method. 

It is of interest to consider the interpretation of equation (11) as a random 
walk process. Consider wells each capable of holding H balls at points PO , PI, - - - 
situated on a line. A ball in a well which is not yet filled is required to remain in the 
-well (pin = 0); a ball at a point at which the well is already filled moves to the 
right or left with equal probability pin > 0 or remains at this point with probability 
(1 - 2 pi ). 

The boundary condition qon describes the rate at which balls enter the process 
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at the left and the capacity of each well measures the latent heat of the process. 
In addition to their theoretical interest, random walk processes of this type suggest 
feasible computational methods for more general, but related, problems. 

3. Numerical Computations. In this section the results of several calculations 
based on the difference scheme outlined in Problem II are described for the following 
particular problem: 

et + qz = 0 

q + T. = 0 

T _ ) 0? ? e <1 
e, e < < 

In each case the initial and boundary data were 

e(x, 0) =1, x > O 

and 

q(Ot) = -1, t > O. 

The interface curve x(t) was determined as the distance from the origin to the 
first meshpoint on the line to = constant for which T = 0. For comparison (c.f. 
eq. (9)) 

dx = TX(x(t), t) dt 

CASE Ax=.02, X= .5 0 
.8 
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.7 0 

0 

0 

.6 0 
0 

0 
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.4 0 2 . . 5 . 

00 
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.2 0 

0~~~~ 

.3 00 

.1 .223 .4 .5 . 

FIGURE 2 

FIG. 2.-Interface for ax = .02, X = .5. 
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30 d= RELATIVE ERROR= .100 
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FIGURE 3 

FIG. 3.-Dependence of relative error on X. 

TABLE 1 

Comparison of values t(x, Ax), (At/Ax2 = 

x t(x, .1) t(x, .02) 

0.1 0.110 0.108 
0.2 0.225 0.232 
0.3 0.365 0.370 
0.4 0.515 0.519 
0.5 0.675 0.679 
0.6 0.845 * 
0.7 1.025 * 
0.8 1.220 * 

* Values not calculated. 

was integrated numerically using a backward difference for T. at x(t) and the per- 
cent relative error 

d = 100 [x*(t)- x(t)] 

calculated. 
Figure 2 shows the interface for the case where Ax = .02 and At/Ax2 = .5. 

Comparison to the case in which Ax = .1 and At/Ax2 = .5 may be made from 
Table 1 which compares t(x; Ax) for these two cases. 

In Figure 3 the dependence of the relative error d on the value X = At/Ax2 is 
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given. In each case Ax = .02. As expected, instability was observed for values of 
X > 1, although this fact has not been indicated in the figure. 

4. Conclusions. The numerical evidence presented here, although somewhat 
limited, seems to support the conjectures which have been described in this paper. 
It is unlikely that the method proposed here compares with the implicit technique 
of Douglas and Gallie [2] for computational efficiency, at least for one-dimensional 
problems. However, the present method seems well suited for computation in more 
dimensions. Furthermore, it is of interest to note that if, in obtaining Problem IIA, 
we were to replace qx by [q +?1 - qn+t]/Ax, the resulting implicit difference equations 
would retain the feature of a sharply propagating interface and raise additional 
questions about the validity of our conjectures when extended to include implicit 
equations of this type. 
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