
TECHNICAL NOTES AND SHORT PAPERS 

Permanents of Incidence Matrices 

By Paul J. Nikolai 

1. Introduction. This paper describes the evaluation of the permanents of cer- 
tain incidence matrices using the UNIVAC Scientific 1103A Computer. 

The permanent of an n by n matrix A = [aij] with elements in a commutative 
ring is defined by the relation 

per (A) = Zalii a2i2 
.. 

anin 

where the sum extends over all n! permutations of 1, 2, * , n. The permanent is 
thus similar in definition to the determinant and suggests a theory for permanents 
analogous to that for determinants. No such theory is available, however, since 
permanents do not obey the analogue of the basic multiplicative law of deter- 
minants 

det (AB) = det (A) det (B). 

The analogue of the Laplace expansion is easily shown to remain valid for the 
permanent, but for computational purposes it is of little help. The calculations 
described in this paper were made practicable by a computational device given by 
H. J. Ryser. I shall state Ryser's result, which has heretofore not been published, 
as a theorem. 

THEOREM 1. Denote by Ar a matrix obtained from A by replacing r of the col- 
umn vectors of A by zero vectors. Denote by S(Ar) the product of the row sums 
of Ar. Then 

(1.1) per (A) = S(A)- E S(A1) + Zy S(A2) - * + (-1)n1 E S(An-1) 
C In C2n Cn 

n-1 

where each sum extends over all the Crn ways of forming Ar. 
Proof. The proof is based on the Principle of Inclusion and Exclusion or Sieve 

of Sylvester [2]. 
Consider an element of the form 

a = aj,1 a2j2 * ain 

where the ji may assume any of the values 1, 2, * * * , n. Let r denote the number of 
these integers not among ji, j2,.. * in . Suppose r > 0. Then a appears in (1.1) 

1 time in S(A), 

Cir times in E S(A1), 

C2 times in S(A2), 

CrT times in E S(Ar) 
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or 

1 - C0 + C2- + (1)Cr = O 

times in all. 
On the other hand, if j] , j2 ,* j is a permutation of 1, 2, * , n, r = 0 and 

a appears in (1.1) exactly once. 
One obvious advantage in using Theorem 1 is that the number of summands 

required to calculate per (A) is reduced from n! to 2". Other features of this device 
are noted in Section 5. 

2. The v, k, X Problem. Let it be required to arrange v elements into v sets such 
that every set contains exactly k distinct elements and such that every pair of sets 
has exactly X elements in common, 0 < X < k < v. This problem is referred to as 
the v, k, X problem and the resulting arrangement is called a v, k, X configuration or 
symmetric balanced incomplete block design. For a v, k, X configuration list the ele- 
ments X1, X2, - - *, Xv in a row and the sets T1, T2, - - *, T, in a column. Insert 1 
in row i and column j if Xj belongs to set Ti and 0 otherwise. In this way is obtained 
a v by v matrix A of 0's and l's called the incidence matrix of the v, k, X configura- 
tion. It is not difficult to show that 

X = k(k - 1)/(v - 1) 

and that 

Idet (A)I = k(k - X) 2 

Two v, k, X configurations DI and D2 will be termed isomorphic if there is a one-to- 
one correspondence X1 -X2 = (Xi)a between the elements {X1} of D1 and the 
elements {X2} of A and a one-to-one correspondence T1 - T2= (T1)#3 between 
the sets { T1} of D1 and the sets { T2} of D2 , such that if X1 e T1, then (Xi)a e ( T1)f. 
An isomorphism of a design with itself is called a collineation. 

These combinatorial designs and their associated incidence matrices have been 
extensively studied. An excellent summary of the problem together with an exten- 
sive bibliography can be found in [3]. 

3. Permanents of Incidence Matrices. A set R = {X1, X2, * n X,, } will be 
called a system of distinct representatives for the subsets T1, T2 , * * , Tn of the set 
D in case Xi e Ti and Xi 9 Xj for i 5 A i = 1, 2, * * *, n. The permanent of an 
incidence matrix possesses combinatorial significance in that it equals the number 
of systems of distinct representatives of the class of sets T1, T2, * -*, T2,, . As 
pointed out in Section 2, the determinant of the incidence matrix of a v, k, X con- 
figuration is an elementary function of v, k, and X alone. It seemed of interest to 
know whether or not the permanent possesses a similar property. Before trying 
calculations on UNIVAC Scientific, it seemed clear that per (A) could not be a 
simple function of v, k, and X but it remained an open question whether or not non- 
isomorphic designs having the same parameters v, k, and X could possess unequal 
permanents. The answers to these questions would be of greater interest in the case 
of finite projective planes with n + 1 points per line which are v, k, X designs with 
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v =2 + n + 1, k = n + 1, and X = 1. Unfortunately, the first case of non- 
isomorphic planes arises for n = 9 with incidence matrices of order 91. Present 
theory does not permit calculation of the permanent of an incidence matrix of this 
size. There are known to be no instances of -lon-isomorphic v, k, X configurations 
for v < 15. Different 15, 7, 3 designs, however, do exist, and the permanents of their 
incidence matrices were easily calculated on UNIVAC Scientific. 

Nandi [1] has constructed all 15, 7, 3 designs. There are five non-isomorphic 
examples. Study of these five designs revealed that exactly two which Nandi denotes 
by (yy') and (alal'), possess a collineation of order 7 fixing one element (and one 
set) and permuting the remaining 14 elements (sets) in two cycles of length 7. 
For both designs let X; Al, A2 , , A7 ; Bl, B2, ). , B7 denote the 15 elements. 
Each design has a set IA1 , A2 , - A7} fixed by the collineation (X) (A1A2 ... A7) 
(B1B2 ... B7). (yy') and (aiai') can be displayed in the form 

[Al , A2, A3 A4, A5, A6, A7} [Al , A2, A3, A4, A5, A6, A7} 
I X, A1,A2, A4, B1, B2, B4} I X, A1, A2, A4, B1, B3, B4} 

X, A2, A3,A5, B2, B3, B5} I X, A2, A3, A5, B2, B4, B5} 

X, A7,A1,A3, B7, B1, B3} and f X, A7, A1, A3, B7, B2, B3} 
{Al, A2 , A4 , B3 , B5, B6 , B7} Al, A2, A4 , B2, B.5, B6 , B7} 

{A2 , A3, A5, B4, B6, B7, B1} {A2, A3, A5, B3, B6, B7, B1} 

(A7, A1, A3, B2, B4, B5, B6} {A7, A1, A3, B1, B4, B5, B6} 

respectively. Thus their corresponding incidence matrices appear as follows reflect- 
ing the collineation: 

0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 
1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 0 0 
1 0 1 1 0 1 000 1 1 0 1 00 1 0 1 1 0 1 000 1 0 1 1 00 
1 00 1 1 0 1 000 1 1 0 1 0 1 00 1 1 0 1 000 1 0 1 1 0 
1 000 1 1 0 1 000 1 1 0 1 1 000 1 1 0 1 000 1 0 1 1 
1 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 
1 0 1 000 1 1 0 1 000 1 1 1 0 1 000 1 1 1 1 000 1 0 
1 1 0 1 000 1 1 0 1 000 1 1 10 1 000 1 0 1 1 000 1 
0 1 1 0 1 0 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1 
00 1 1 0 1 00 1 00 1 0 1 1 00 1 1 0 1 00 1 0 1 00 1 1 
000 1 1 0 1 0 1 1 00 1 0 1 000 1 1 0 1 0 1 1 0 1 00 1 
0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 
0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 
0 0 1 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 
0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 0 

The permanent of each matrix is the sum of the equal minors belonging to the 
fixed row which represents the fixed set. This row and one column containing a 1 
in this row can be deleted reducing the order of the matrix by one. The permanent 
of the reduced matrix is computed and multiplied by the number of 1's per row to 
yield the permanent of the incidence matrix. 

4. Results. The computational advantage offered by the collineations made 
the choice of (ry') and (aial')l for a first trial a natural one. The permanents of 
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the incidence matrices of these designs were found to be 24, 601, 472 and 24, 567, 
424 respectively. Thus nonisomorphic designs having the same parameters v, k, and 
X may have unequal permanents, so that the permanent is not a function of v, k, 
and X alone. 

The program for evaluation of these permanents turned out to be an efficient one 
requiring about four minutes of computer time for each matrix. The remaining 15, 
7, 3 designs were also run with the following results: 

Design Permanent 

(alal')2 24,572,288 
(a2a2') 24,567,424 
(j1'j3") 24,582,016 

As computer time became available it was decided to calculate the permanents 
of the incidence matrices of all cyclic designs with prime v and v < 23. Cyclic designs 
with their simple structure and with v a prime might have yielded possible clues to 
a formula for the permanent in the cyclic case or to possible divisibility properties. 
Unfortunately no distinct cyclic designs with the same parameters arise for v < 31. 
Results of this survey are given as follows: 

v k X per (A) 

7 3 1 24 
7 4 2 144 

11 5 2 12,105 
11 6 3 75,510 
13 4 1 3,852 
13 9 6 64,803,969 
19 9 4 142,408,674,153 
19 10 5 952,709,388,762 

In addition, the permanent of the incidence matrix of the projective plane of 
order 4, a cyclic 21, 5, 1 design, was computed and found to be 18, 534, 400. Here, 
as with two of the 15, 7, 3 designs, the use of a collineation reduced computation 
time by more than one half. This was a significant saving, better than four hours 
of computer time. 

5. Description of the Code for the UNIVAC Scientific Computer. Ones comple- 
ment binary arithmetic, two address logic, and an extensive array of logical instruc- 
tions together with equation (1.1) applied to 0,1 matrices contributed to a short, 
fast computer code for UNIVAC Scientific. The v rows of the square matrix A of 
O's and 1's were stored in the higher order v stages of v consecutive storage cells. 
An index r, 0 < r < 2v - 1, counted the number of Ar'S formed, and served as a 
logical multiplier in forming Ar . If no row of Ar were zero, S(Ar) was calculated 
and added or subtracted from the accumulated sum according as the number of 
l's in the binary representation of r was even or odd. Ari1 was formed next and the 
calculation continued. The magnitude of the final sum was then per (A). 

All loops of the code were checked using the v by v matrix S of all 1s. per (S) = 

v !. Machine accuracy was checked by running each calculation twice in every case. 
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On the Numerical Treatment of Heat Conduction 
Problems with Mixed Boundary Conditions 

By Arnold N. Lowan 

Abstract. The two-dimensional problem of heat conduction in a rectangle where 
the temperature is prescribed over a portion of the boundary while the temperature 
gradient is prescribed over the remainder of the boundary, may be treated nu- 
merically by replacing the differential equation of heat conduction and the equations 
expressing the given initial and boundary conditions by their difference analogs 

Cs 

FIG. 1-Rectangular domain with "mixed" boundary conditions. 

Received September 15, 1959. 


	Cit r64_c70: 


