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On the Numerical Treatment of Heat Conduction 
Problems with Mixed Boundary Conditions 

By Arnold N. Lowan 

Abstract. The two-dimensional problem of heat conduction in a rectangle where 
the temperature is prescribed over a portion of the boundary while the temperature 
gradient is prescribed over the remainder of the boundary, may be treated nu- 
merically by replacing the differential equation of heat conduction and the equations 
expressing the given initial and boundary conditions by their difference analogs 

Cs 

FIG. 1-Rectangular domain with "mixed" boundary conditions. 
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and solving the resulting system. It is shown that if the scheme is to be stable the 
intervals Ax and Ay must be chosen so that kAt/(Ax)2 + kAt/ (Ay)2 < 2. 

Consider the two-dimensional problem of heat conduction in a rectangle, Figure 
1, when the temperature is prescribed over the thin line portion of the boundary, 
while the temperature gradient is prescribed over the heavy line portion of the 
boundary. This is a typical problem with "mixed" boundary conditions and should 
not be confused with the considerably simpler problem when the temperature is 
prescribed over certain complete sides of the rectangle, while the temperature 
gradient is prescribed over the remaining sides. As far as the writer is aware no 
analytical solution of the mixed boundary value problem above formulated (or 
of the analogous problem for the cylinder) is to be found in the literature. We must 
therefore (if interested in numerical answers) resort to the alternative of substituting 
for the differential equation of heat conduction and for the equations expressing 
the initial and boundary conditions their appropriate difference analogs, and solving 
the resulting system. 

The mathematical formulation of the problem is as follows: 

(1) &TT = kdT a&T O < x< aO y < bt > 0 

(2) T(x, y, 0) = f(x, y) 

(3) T (0O y, t) =0 O < y b 

(4) T(x,0,t) =0 0?<x C1 

(5) [ T(x, y, t) =0 c1 < a 

(6) F2a T(x, y, t)l = y < b 
L &x jx-a 

(7) [aT(x,y,t)] =0 c2?x a 

(8) T (x, b, t) = 0 0 < X-< C2 

where for the sake of simplicity we have at first assumed that the prescribed tem- 
perature and temperature gradient are = 0. The difference analogs of the above 
equations are: 

(1*) Thk,,+l = 03 Th,k-l,n + a Th-l ,k,n + (1 - 2a - 23) Th,k,n 

+ a Th+l,kn+f Thk+l,n h= 1, 2, 3, *. M, k = 1, 2, 3 N 

(2*) Th,k,o = f(hAx, kAy) 

(3*) To,k,n = 0 1 < k < N 

(4*) Th,o,n = 0 1 < h < c1/Ax 

(5*) Th,l,n = Th,On c1/Ax < h < a/Ax 
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(6*) Tm+=,k n Tmkn 1 < k < N 

(7*) ThN?,l = ThNn c2/Ax < h ? a/Ax 

(8*) Th,N?1,n = 0 1 < h < c2/Ax 

where 

kAt kcAt 
Th,k,n, = T(hAx,kAy,nAt); a (=-( - (Ay)2 

Ax = a/(M + 1) and Ay = b/(N + 1). 

It will be convenient to consider the MN temperatures Thk,n with h = 1, 2, 3, * - . 

M and k = 1, 2, 3, * * * N as the components of an M X N - dimensional vector to 
be denoted by Tn. It will also be convenient to replace the two subscripts h and k 
identifying the lattice point Phk (i.e., the point with coordinate x = hAx and y = 
kAy) by the single subscript p running from p = 1 to p = MN with the under- 
standing that for the M lattice points corresponding to k = 1, p runs from 1 to M, 
for the next set of M lattice points corresponding to k = 2 p runs from M + 1 to 
2M, ... etc. The system of MN equation (1*) may then be written in the matrix- 
vector form 

(9) T =+1 = ATn. 

As is well known, to prove the stability of (9), it suffices to prove that if S denotes 
the largest of the sums of absolute values of the elements of the rows of A then 
S _ 1. 

Let Q denote the set of lattice points closest to the boundary. It is clear that if the 
difference equation (1*) is applied to lattice points lying inside of Q, the resulting 
equation (which is in fact equation (1*) itself) has the five non-vanishing coeffi- 
cients /3, a, 1 - 2a -213, a and /3. If we assume 1 - 2a -2: > 0 or a + a ? 2 

it is clear that the sum of the absolute values of the coefficients is = 1. We shall 
show that if (1*) is applied to lattice points belonging to the set Q, the resulting 
equation may be characterized by the fact that the sum of absolute values of the 
coefficients is smaller than unity. Consider for instance the form taken by (1*) 
when applied to a point of ? such that hAx < cl. Since for such a point Tho = 0 
the resulting equation has the four non-vanishing coefficients a, 1 - 2a -2/3, a and 
/3. If again we assume 1 - 2a - 2/ > 0, it follows that the sum of the absolute 
values of the coefficients is = 1 - / < 1. In an entirely similar manner it is shown 
that if (1*) is applied to lattice points in Q for which hAx > c2 and the boundary 
condition (5*) is taken into account, the sum of the absolute values of the coeffi- 
cients of the resulting equation is 1 - a < 1. Similar conclusions may be drawn in 
the case of all lattice points in U. Thus the quantity S previously defined is = 1. 
The stability of the difference scheme under consideration is thus proven, provided 
that the intervals Ax and At are chosen so that 

kcAt kAt 1 
a+ 0 

it+kl < 1 (x2 (Ay)2 =2 

In the above discussion we assumed that the prescribed temperature is = 0C on 
the thin line portion of the boundary. If instead, nonvanishing temperatures are 
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prescribed on this portion, the criterion of stability is the same as before, since the 
error vector satisfies (1*) and evidently is = 0 on the portion of the boundary in 
question. 

We shall now discuss the modifications in the above analysis if the prescribed 
temperature gradient does not vanish. Let the above boundary conditions (5), (6) 
and (7) be replaced by 

(10) T= 41(x, t) cl ? x < a, y = 0 
a~y 

(11) _ byt)x = a,0 _ yT < b 

(12) a 02 (X,) C2 _x < a, y= b. 

The difference analogs of the last three equations are 

(10*) Th,o,n = Thln + A\y )1(hAx, nAt) c1/Ax < h ? a/Ax 

(11*) TM+1,kn = TM,k,n - Axx4(kAy, nAt) 1 ? k < N 

(12*) ThN+1,n = ThNn - AY.42(hAx, nAt) c2/Ax ? h ? a/Ax 

If the difference equation (1*) is applied to the lattice points for which the last 
three equations hold, we ultimately get 

(13) Thln+l = aTh1ln + (1 - 2a - 23)Thln + aTh+1,1,n 

+ f3Th,2,n + Uhln c1/Ax ? h ? a/ Ax 

(14) Tmkn+l = fTM,kl,n + aTM-l,k,n + (1 - 2a - 20)TM,k,n 

+ I3TM,k+l,n + UM,k,n 1 ? k ? N 

(15) ThNn+l = fTh,Nl ,n+ aTh-1 ,N,n + (1 - 2a - 23) ThNn 

+ Th+l,N,n + Uh,N,n 

where we have put 

Uhln = O3Aycp1(hAx, nAt) c1/Ax ? h < a/Ax 

(16) UMkn = -aAx 4(kAy, nAt) 1 ? k ? N 

UhA n = -3AgY 2(hAx, nAt) C2/Ax ? h ? a/Ax. 

The system of MN equations obtained by applying (1*) to the MN lattice 
points may be written in the form 

(17) Tn+1 = ATn + Un 

where Un is a vector whose non-vanishing components are defined in (16) and whose 
remaining components are = 0. Since the error vector En satisfies the difference 
equation (17) it is readily seen that 
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(18) E,+, = AnEo + An-1UO + An-2U1 + .. + Unc1e 

From (18) it follows at once that the criterion for the stability of (17) is identical 
with that for (9), namely that Ax and Ay must be chosen so that a + 3 < 2. 

It may be briefly mentioned that the above analysis may be extended to the 
more general case of the boundary conditions pT + q(QT/an) = F(t) where p and 
q take on prescribed values along the boundary. It may also be mentioned that the 
above analysis may be extended to problems with cylindrical and spherical sym- 
metry. 
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High Precision Calculation of Arcsin x, Arccos x, 
and Arctan x 

By I. E. Perlin and J. R. Garrett 

1. Introduction. In this paper a polynomial approximation for Arctan x in the 
interval 0 ? x < tan ir/24, accurate to twenty decimal places for fixed point rou- 
tines, and having an error of at most 2 in the twentieth significant figure for floating 
point routines is developed. By means of this polynomial Arctan x can be calculated 
for all real values of x. Arcsin x and Arccos x can be calculated by means of the 
identities: 

Arctan = Arcsin x = 2 - Arccos x. 
N/1- X22 

2. Polynomial Approximation for Arctan x. A polynomial approximation for 
the Arctangent is obtained from the following Fourier series expansion, given by 
Kogbetliantz [1], [2] and Luke [3]. 

(2.1) Arctan (x tan 20) = 2 E (-1 )(tan 0) 2i+l T21 (x) 
i=O 2i+1I 

where Ti(x) are the Chebyshev polynomials, i.e., Ti(cos y) = cos (iy). The ex- 
pansion (2.1) is absolutely and uniformly convergent for I x i < 1 and 0 < 0 < 7r/4. 

An approximating polynomial is obtained by truncating (2.1) after n terms. 
Thus, 

(2.2) P(x tan 20) = 2 
' 

1 
2i+1 ) 

The truncation error is 

(2.3) | ET I< tan 20. (tan 0)2n I x 
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