
On Liouville's Function 

By R. Sherman Lehman 

1. Introduction. Liouville's function X(n) is defined by the equation X(n) = 

(-1 )' where r is the number of prime factors of n, multiple factors being counted 
according to their multiplicity. Polya [6] conjectured that the function 

L(x) = E X(n) 
n <x 

is negative or zero for all x > 2, and in fact this is true within the range where 
this function has been previously calculated. Calculations connected with the 
present study show that L(x) < 0 for 2 < x < 106. Nevertheless Haselgrove [3] 
has shown that the Polya conjecture is false and that there are infinitely many 
integers x for which L(x) > 0. However, his method does not furnish explicitly an 
x for which the conjecture fails; and in fact it does not give an upper bound for the 
first counterexample. In the present paper we shall describe calculations which lead 
to the result that L(906,180,359) = +1. We have not found a smaller value of 
? for which the conjecture fails, but also we have not proved that this is the smallest 
x greater than 2 for which L(x) is positive. 

2. Background and Heuristic Considerations. Liouville's function is connected 
with the Riemann zeta function by the equation 

(2s) _ X(n) 
c(S) n=1 ni 

Let the zeros of t(s) on the line Re s = I be pn = 4 + iyn (n = +1, ?2, .) 
with 'Y-n = - n and let yo = 0. If it is assumed that these zeros are all simple, 
then the function t(2s)/(s (s)) has simple poles at I + iy,, for n = 0, +1, ?2, *.. 

with residues 

1 ~ (2p,) 

a O = .( a7 = J-- (n = ? 1, ?2, 3, .) . 

Fawaz [1] has obtained an explicit formula for L(x) which is valid if the Riemann 
hypothesis holds and the zeros of t(s) are simple. Under these assumptions he 
showed that there is a sequence of numbers Tk , with k < Tk < k + 1, for which 

(1) L(x) = lim Ea anx'+i'7' + 0(1) 
k-0o I Yl,|CTk 

for x > 0. 
Let 

(2) A T(U) = E 

Fawaz's result suggests that one study numerically the behavior of A l(u) for 
different values of T. Since AT(U) should be an approximation to e-67L(e'), one 
might expect L(e') to be positive for a u for which AT(U) > 0. 
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In ?5 we shall show that if the Riemann hypothesis holds, if the zeros of c(s) 
are simple, and if a conjectured estimate for l/1'(pn) holds, then 

(3) lim Kj KT(u - w)e-'uL(eU) du - a, 0, 
W-oo I' t0 i <T f 

where 

K4(t) sin Tt 
7rt 

This suggests that the sum AT(U) will represent a smoothing of the func- 
tion e-uL(eu) which effectively operates over an interval of width about 27r/T. 
However, since the kernel KT(t) is not always positive, the sum does not represent 
a true smoothing of e-C2L(eu). Thus, if we find a maximum of the sum AT(U) we 
cannot always expect that there will be a value of e`uL(eu) in the vicinity which 
is as high. Instead it is possible for a rapid falling off of e-!uL(e2L) at a distance 
away of from 7r/T to 27r/T to be translated into an extra high peak of AT(U). 1On 
the other hand, high values of AT(U) for several different choices of T will make 
such behavior appear less likely., 

Haselgrove's disproof of the P6lya conjecture was based on a numerical study of 
the similar sum 

AT* (u) =YETanX - _ | e i 'fnl<T T 
Ingham [5] had shown that for any u0 

AT*(nO) < lim sup e-FuL(eu). 

Hence to disprove the Polya conjecture it was sufficient to find a T and u0 for which 
Ar*(uo) > 0. Haselgrove found that A*roo(831.847) = 0.00495. 

Using an IBM 701 at the University of California, Berkeley, we have inde- 
pendently computed approximations to the zeros of P(s) and the residues a,, and 
have confirmed Haselgrove's result. We have also obtained a smaller value of u0 for 
which A*ooo(uo) is positive. Our values to 4 decimal places are 

Aiooo(831.847) 0.0050, Alooo(831.847) = 0.0526 

A* oo(814.492) = 0.0782, Aioo(814.492) = 0.1102. 

As a result of a search for smaller values of u for which Aiooo(u) > 0 we found 

A* oo(79.28) = -0.0418, Aloo(79.28) = 0.0075. 

The number e79,28 is still a very large number, and there does not seem to be 
any more hope of calculating L(x) for x =e7928 than for x = e831847. On the other 
hand, it is possible to find a method for calculating L(x) at isolated values which is 
quite feasible with present-day computers for x as large as 109. Therefore, we com- 
puted AT(U) for u = 12.5(0.01)20.69 with Y = 100 and T = 200, covering ap- 
proximately the range 2.7. 105 < x < 9.7. 108. The vicinities of several high points 
were then selected for further study. The most promising of these was near 
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FIG. 1-The functions AT(U) for al = 100, 200, 500, 1000. The maximum of Aooo(u) is 
near u = 20.623 =log (9.05.-108). 

u = 20.62. Figure 1 shows a graph of A T(U) for u in this vicinity with four different 
values of T. Although none of the functions A T(U) graphed is positive there, the 
strong upward trend suggested the conjecture that L(x) is positive for some x 
near 9.05 * 108. 

3. A Formula for Calculating L(x). A direct calculation of L(x) for all x ? 09 
by factoring each number would require far too much machine time to be feasible 
on the IBM 704-at least 1000 hours. Fortunately it is possible to devise an ap- 
propriate method for calculating L(x) at isolated values. 
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We begin with the known formula 

(4) E= rvo 
where by [y] we mean the greatest integer less than or equal to y. This formula is 
not suitable for calculating L(x) for two reasons. First, there are [x] terms in it; 
and second, to calculate L(x) requires knowledge of values of the function L at 
large arguments such as x/2, x/3, etc. The formula can, however, be modified to 
get around both of these difficulties. 

THEOREM 1. Let k, 1, and m be variables ranging over the positive integers. Let 
ft(n) be the Mobius function. Let v, w, and x be positive real numbers with v < w < x. 
Then 

L(x) = to u(m) {[v - E (k) -([ [ 
<x m_ k<v km -mv 

-w 

- E L(-) u(m). w -X<m<- W ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~= 
-<1?- 

Proof: Replacing x by x/m in (4) and breaking the sum into three parts, we 
obtain 

[x L (x + EL ()+ EL(- 
n< -<n<- ~~~~~~-<nI ? 
mw mw -mv m, -m 

We multiply each of these sums by ,(m) and sum for m _ x/w, obtaining 

, ,(m) A L(-L ) = ZL (-)Z (m) = (z), 
x x mn 1 al 

m<- n< I< 
-w -mw -w 

= mw =mv w -v rl 

Ep(m) E L(-)= Z (m) Z X(k) 1 

x k v x x 

"I<- -<n<- <-< -o - 

-w my -km 

= ZA, Am) Z () ([?1 [ ]) 
t~x k<v km Lm 

( 5 ) m | I~~~~~X~) 
m<_ 

Tw 

Rearrangement of terms then yields the theorem. 
We observe that if v ~x1 and w X21 then the number of operations is pro- 

portional to X21' if one has available a table of X(n) for n < w, a table of 

t (l) = E m 
(5) mj 1 

m-w 

for I ? x/v, and a table of A(m) for m ? x/w. 
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In practice it turns out to be more efficient to use a somewhat more complicated 
formula. Let k range over positive integers, and let 1', i', and n' range over positive 
odd integers. From (4) we obtain 

z2 L(j) = [VI] 

If x is replaced by x/m' and the sum is treated as in the proof of Theorem 1, we 
obtain 

L(x)= E ) 
m' ?- 

-W 

Em I X) E A (ml)* 

-w ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~- 

We remark that similar formulas can be obtained for 

M((x) 6 [(n) 
nex 

by modifying the formula 

EM() 1 forx ?1. 
n<x 

4. Numerical Computations. The computations described in this section were 
performed on an IBM 704 at the University of California, Berkeley. 

Formula (6) contains two parameters v and w which can be chosen to minimize 
computation time. We chose to fix x/w = 1000 and take v = (103x)112 in order to 
make the program suitable for values of x near 109. Two preliminary programs 
were then used to compute tables of X(n) for n _ 106 and t(1), defined by (5), 
for odd 1 < 106. 

In 1955 using the ORDVAC at Aberdeen Proving Ground, W. G. Spohn and 
the author computed Liouville's function for n < 802,000 and verified that the 
P6lya conjecture holds up to this limit. In the present computation, the same 
method was used to obtain a table of X(n) for n < 106. If one is given a table of 
X(n) for n < N/2, then the following sieving process will allow the extension of 
the table to N. One begins by entering -1 as the value for each integer from N/2 
to N. One then considers in turn each of the primes p _ \VN, and one runs through 
the multiples of p among the integers from N/2 to N. If n is such a multiple, one 
sets X(n) = -X(n/p) after erasing the value already recorded for n. When this 
is done for all multiples of primes < VA/, the table is complete. For a machine 
with enough storage space to hold the table of X(n) for n < N/2, this method is 
much more efficient than factoring each integer in succession. 

The table of X(n) was placed on magnetic tape with each value taking up one 
bit. This table was then summed to compute L(x) for x = 100(100)1,000,000. 
The values for x = 1000(1000)802,000 were compared with the ORDVAC com- 
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putation and all were found to agree. Also a comparison for x = 100,000(100,000)- 
600,000 was made with a computation of D. H. Lehmer. Finally as a further check, 
the formula (6) was later used to compute L (x) for x = 200,000(200,000)1,000,000. 
The values found agreed with those obtained by summing the table of X(n). (The 
circularity here is only apparent; in these cases the formula (6) makes no use of 
the table for X(n) beyond n = 1000). To compute the table for X(n) and sum it to 
obtain L(x) required approximately 30 minutes of machine time. 

A table of the function t(1) was also needed for odd 1 < 106. By a combinatorial 
argument, which is easy but requires consideration of a number of cases, one can 
show that if 1 < 106, then -7 < t(l) ? 7. Hence each value requires just 4 bits of 
storage. Again the table was put on magnetic tape. The method for computation 
was quite straightforward. Each odd square-free number m < 1000 was considered, 
and for each of its multiples M(m) was added to a corresponding accumulator. A 
cheek of the accuracy of the computation was made by using the formula 

_E<! 

t(1/) = 
z;?3 

(MI) x + 
I 

1, <X ~ m'<103 2 

with X = 106 and 1' and m' running over positive odd integers. The program for 
t(l) required approximately 20 minutes. 

Next a program for computing L(x) by the formula (6) was constructed. The 
odd square-free numbers m' < 1000 together with the values ,u(i') were stored as 
constants. Newton's method was used to compute [Vy] with especial care taken to 
avoid error due to round-off when \/yj is an integer. The tables of X(n) and t(l) 
on magnetic tapes were used as inputs, and L(x/l') was obtained by summing the 
table of X(n). To obtain L(x) for a value of x near 9.108 required approximately 
16 minutes. 

Table 1 contains values of L(x) computed in connection with the search for 
a positive value. The order of computation is indicated in the last column. The 
values of x were chosen partly by guess and partly by heuristic considerations based 
on (3). There seem to he two separate peaks which for the functions AT(U) were 
smoothed into a single maximum. After we found a positive value on the seventh 
trial, it did not seem worthwhile to pursue an investigation of the other peak. 
Hence we do not know whether the maximum for the other peak is also positive. 

TABLE 1 

x L(x) Order of computation 

903 000 000 -952 3 
904 000 000 -1144 2 
905 000 000 -1902 1 
906 000 000 -584 4 
906 170 000 -230 10 
906 200 000 90 8 
906 300 000 648 9 
906 400 000 708 7 
906 470 000 226 11 
906 500 000 -120 5 
907 000 000 -1920 6 
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Some other values of L(x) computed by means of the main program are listed 
in Table 2. The values for x < 106 are all confirmed by agreement with those ob- 
tained by directly summing the table of X(n). 

The values of L(x) for x = 106 and 4. 106 are confirmed by results of a hand com- 
putation of D. H. Lehmer using the formula 

k<g k2) + E g()[6t] M(2) 4 

with g chosen to minimize computation. In this computation the values for M(x/k2) 
were taken from a corrected version of von Sterneck's tables of M(x) (see [7]) with 
the following values differing from those given by von Sterneck: M(444,444) = 
-37, M (106) = 212, M(4. 106) = 192. The first two of these values were obtained 
by factoring all numbers < 106. The value for 4. 106 was obtained by making small 
adjustments of von Sterneck's computation which are required because of errors 
in the earlier tables. 

After finding positive values of L(x) we next took up the question of deter- 
mining zeros of L(x). The results given in Table 1 indicated that such zeros must 
occur between 906,170,000 and 906,200,000 and between 906,470,000 and 
906,500,000. Consequently a program was constructed to factor all numbers in 
these ranges. This program required approximately one minute for each 1000 
numbers factored. As a byproduct of this computation we obtained a further check 
of the program for computing L(x) at isolated values. 

One of the results of this computation was a listing of all zeros of L(x) in the 
intervals from 906,170,000 to 906,200,000 and from 906,470,000 to 906,500,000. 
In all, 167 zeros of the function L(x) were found in these intervals. We list the 
first 16 occurring in the first interval: 

906180358, 906180362, 906180364, 906180366, 906180370, 
906180374, 906180376, 906180386, 906180388, 906180390, 
906180518, 906180520, 906180524, 906180534, 906180536, 
906180554. 

There are 34 zeros from 906,192,698 to 906,193,478 inclusive; 22 zeros from 906,- 
194,914 to 906,195,298; 19 zeros from 906,195,986 to 906,196,098; 15 zeros from 
906,477,702 to 906,477,936; 43 zeros from 906,486,640 to 906,487,288; and 18 zeros 
from 906,487,932 to 906,488,080. 

TABLE 2 

X L(X) x L(x) 

200 000 -294 10 400 000 -394 
400 000 -460 10 410 000 -330 
600 000 -802 10 420 000 -384 
800 000 -600 10 430 000 -300 

1 000 000 -530 10 440 000 -292 
4 000 000 -1098 10 450 000 -522 

10 460 000 -588 
453 200 000 -27088 
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The first value of x greater than 906,170,000 for which L(x) is positive was 
found to be 906,180,359. We, of course, are not able to say whether this is the 
smallest x greater than 2 for which L(x) is positive. To decide this question without 
the use of essentially new ideas might very well require an enormous amount of 
computation. 

5. Derivation of an Explicit Formula. In this section we give a derivation of 
equation (3), which was used heuristically in finding where L(x) is positive; this 
derivation proceeds from several unproved assumptions. We shall assume that the 
Riemann hypothesis holds and that the zeros pa = 2 + iyn (n = i1, +2, * ) of 
?(s) are all simple. In addition we shall assume that there is a real number v < 1 
such that 

(7) - O(p ) (n = i, +2, ) ... 

Numerical evidence makes this conjectured estimate appear quite plausible. The 
twelve largest values of I 1/?'(pn) I for 0 < yn < 1000 are listed in Table 3. 

As in ?2 let KT(t) = (sin Tt)l(Qrt). 
LEMMA 1. If R > 0 and T > 0 and oy is a real number, then 

I + o() if I y)I < T, 

Proof: We have 

KT(t)eizt dt - 2 f sinTt cos 'yt dt 
R 7r t 

I R sin (T + y)tit + 1JR sin (T- Y)tdt 
Or n ~t Orot 

- - Si(R(T + y)) + -Si(R(T -y))) 

where 

Si(x) = f~Intd for x >0 , 
--- + 0 1 ~ for x < 0. 

The conclusion of the lemma follows immediately. 
We shall also use the following estimate for R > 0 and T > 0: 

K Tp(t) I dt = _ | n tI dt </1 dt + JRt 

(8) 

= 1 + log (RT). 
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TABLE 3 

n Tn I 1/r'( + itn) I 

1 14.134725 1.2608 
2 21.022040 0.8796 

72 185.598784 0.8109 
135 294.965370 0.8029 
298 540.213166 0.8357 
299 540.631390 0.8892 
363 630.473887 0.8334 
364 630.805781 0.9106 
436 728.405482 0.8371 
437 728.758750 0.8491 
606 946.765842 0.9744 
607 947.079183 0.9914 

We are now ready to derive (3). We shall assume throughout that R > 0, 
T > 0, and T $ -Yn for n = 1, 2, 3, *.. . The remainder of the notation is explained 
in ?2. 

Fawaz [2, p. 284] has shown (assuming the Riemann hypothesis and the sim- 
plicity of the zeros) that if u is restricted to a finite interval, then there is a positive 
constant C independent of k and u such that 

I 
iU 

I?<C 

Also I KT(U - W) ? T/7r. Consequently we can apply the Lebesgue bounded 
convergence theorem to obtain 

(0+R 

lim j (KT(U - W) x anei'rnu) du 
k-+o w-R l Ynl1 gTk 

= f KT(U - W) (lim E an ei nu) du. 
w-R k-.oo 1'YnI Tk 

Equation (1) can be written in the form 

e-'uL(eu) = lim an ane' 'n + O(e-2'f). 
k-.n lYnI1 ZTk 

Hence we obtain 
(+R R 

L|. IT(U - w)e'UL(eu) du = lim I (ane ifnw KT(t)e int dt) 
(9) kk-oo ITnlTk R 

(9) ~~~~~~~~~~~~~~~(+R 
+ | RT(U - W) O(e 'U) du. 

If Tk> 2T, then by Lemma 1 we have 
R 

ane fn | KT(t)e zint dt = ane 
in 

(10) InITk - nl?RT + 'yn^ 

0o(On2TR I T - Iy +0 \2T<TYn?Tk R(L lI, /2)) 
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Since P(1 + it) = O(log t) for t > 2, we obtain the following estimate from the 
assumption (7): 

|an - | |(2Pn)J - O(Yn 2log Yn) 
I an I I 'YnPXr(Pn) I 

for n = 1, 2, 3, ... . Since the series E converges for : > 1, (see [4, p. 57]), 
'Yn >0 

it follows that the series 

EI ai 
.Yn> >0 Yn 

converges; hence the last term on the right-hand side of (10) is O(1/R) uniformly 
in k. For fixed T the second term on the right-hand side of (10) is also O(1/R) 
since it is a finite series. 

Estimating the last term on the right-hand side of (9), we obtain 
cWAR R 

LR IKT(U - W) O(e u) du = O(e7(wR)) I KRIT(t) I dt 

= O(e-*(w-R) log (RT)) 

for R > 2/T. 
Combining (9) and (10) and letting k -> oy, we conclude that for fixed T, 

+R 2 
(d E n' + (R ) + O(ci(c-R) 

Lo-R CT(U -W)OeLe)du- an Rlog(R+0 I 'YnI ? T 

provided R > 2/T. Equation (3) can now be obtained by taking R = co/2 and 
letting X -* oo. 
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