
On the Conjecture of Hardy & Littlewood 
concerning the Number of Primes of the 

Form n2 + a 

By Daniel Shanks 

1. Introduction. In a famous paper, [1], Hardy and Littlewood developed a 
number of conjectures concerning the twin primes, the Goldbach problem, and 
other unsettled questions. One of these, Conjecture F, concerned the number of 
primes of the form Am2 + Bm + C. We reword this conjecture, and at the same 
time reduce its generality somewhat, as follows: 

CONJECTURE. If a is an integer which is not a negative square, a # - k2, and if 
Pa(N) is the number of primes of the form n2 + a for 1 < n < N, then 

(1) Pa(N) l haf dn 
2 2 log n 

where the constant ha is the infinite product 
00 

(2) ha = 1 _(-a ___ 

taken over all odd primes, w, which do not divide a, and for which (-a/w) is the 
Legendre symbol. 

In the trivial cases, a = -k2, since (k2/w) = +1 for every w, we have ha = 0 
on the one hand, and on the other there can be at most one prime of the form 
n2 _ k2 = (n - k) (n + k). For any other a, ha > 0, and the conjecture indicates 
that there are infinitely many primes. But for no a has this been proven. 

In particular, for a = 1, since (-1 /w) equals +1 or -1 according as w - 

4m + 1 or 4m- 1, we have 

(3) h1 = (1 + )(1 - 1) (1 + F(1 + (1 = 1.37281346 *.* 
and therefore (1) implies that 

CN dn 
(4) P1(N) 0.68640673 ] n 2 log n 

A. E. Western [2] verified that the number of primes of the form n2 + 1 agreed well 
with the right side of (4) up to N = 15,000. 

In a recent paper [3] a sieve method was developed for factoring numbers of 
the form n2 + 1, and more generally of the form n2 + a, and it was 
shown that the good agreement in (4) continues to hold out to N = 180,000; 
(N2 + 1 = 32,400,000,001). This verification, however, was not applied to (4) 
directly but to the related formula, (7), given below. 

Let *a(N) be the number of odd primes, q, which are <N, which do not divide 
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a, and for which (-a/q) = -1. These are the primes which never divide n2 + a. 
It is well known that 

(5) #a(N) 1 
f 

d 
22log n 

and therefore (1) can be rewritten as 

Pa(N) ha 

(6) a( N) 

Likewise (4) can be rewritten as 

(7) P1(N) 1.37281346 
*- . 

Since, in [3], we had PI(180,000) = 11223, irl(180,000) = 8178, and 11223/8178 = 

1.37234, the agreement with the right side of (7) was even better than could be 
expected. 

It is clear that the #a(N) in (6) could be replaced by the asymptotically equal 

4Pr (N) or by +a(N), (for the latter number we count the p's such that 
(-a/p) = + 1). But (6) as it stands is to be preferred for two reasons. First, ra(N) 

JN 

is generally much closer to dn/log n than are either of the other two counts. 
2 

See [4, sec. 10 and Table 7] for a discussion of the case a = 1. Second, the ratio 
in (6) has a simple geometric interpretation in the algebraic number field R(/-a). 
See [3, p. 82] for a discussion of the case a = 1, the Gauss plane. 

In the present paper [5] we first develop an interesting and rapidly converging 
formula for computing the ha and we tabulate these constants for a = -4(1)4. 
We then present short tables of Pa(N) and *a(N) for a = ?t2, ?3, +4, and for 
N = 10,000(10,000)180,000 which show that (6) also gives good agreement in 
these five cases. Finally we present an elementary (sieve) argument which makes 
it plausible that the Hardy-Littlewood conjecture is true for every a. Further, an 
analysis of this computation enables us to isolate the essential difficulty in obtaining 
a proof. 

2. The Right Side of (6). To compute the ha we will want the following 
LEMMA. For I x 1<2,I 

1 ____Xs__ 
s 

(8) 1- 2X =II Q 

where the exponents b(s) are given by b(1) = b(2) = b(3) = 1, b(4) = 2, b(5) = 3, 
b(6) = 5, and, in general, if d is an odd divisor of s and ,u(d) is its Mobius func- 
tion, then 

(9) b(s) = - A(d)2. 2s d 

Examples of (9): A.) If s = p, an odd prime, d = or d = p and [6] 

(9a) b(p) = (2P - 2)/2p = (2P' - 1)/p. 
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B.) If s = 2k, then d can only equal 1 and 

(9b) b(s) = 28 1/S. 

Therefore b(7) = 9 and b(8) = 16. 
PROOF OF THE LEMMA. After taking the logarithm of both sides of (8), 

0c 

(10) -In (1 - 2x) = 1 b(s) In [(1 + x)/(l - x8)], 
8=1 

we expand both sides in Maclaurin series and identify the corresponding coefficients. 
This yields the condition, for s = 2km, with m odd, 

(11) 28-1 = b (). 
d/m dd 

Now applying the M6bius inversion formula we obtain (9). Since from (11) we 
also have b(s) < 28/2s it follows that (10) converges if I x I < - and the steps may 
be reversed to yield (8). 

Now for any a $ -k2 let pi be the odd primes such that (-a/p) +1, let 
qi be the odd primes such that (-a/q) = -1, and let ri = 2, r2, r3, ... , r. be 
the (finite number of) primes which divide 2a. Further, for s = 1, 2, 3, * , let 

(12) La (s) = 1 _ ) (1 
+ 

S] 

the product being taken over the p's and q's in numerical order. Finally 
for s = 2, 3, 4, **,let 

(13) ra(5) = P(S) TI (1-rid) 
i=l 

where c(s) is the Riemann zeta function. 
THEOREM. If 

(14) fa( = a(2)/La(1) and Ka(?)(S) =a(2s)/La(W)Sa(5) 

for s = 2, 3, 4, ... ,then 
00 

(15) ha = fa(?0 * TI [Ka(O)(S)]b(8)y 
8=2 

where b(s) is given by (9). More generally, for more rapid convergence, we may select 
a positive integer u and define 

(16) fa(U) = fa(0 (1 - 
2 1)) = fa j (1 - - 11, 

and 

(17) Ka(U)(S) = Ka()(S) f (1 + _2 ) = a(0 X (S) pI i + 

Then for every u = 0, 1, 2, --., 
00 

(18) ha = fa(U) TI [Ka(u) (S) Ib(s) 
s=2 
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PROOF. For every s = 2, 3, 4, ... * 

c(s) = [Thr(1 a) (1 s) (i t)iF 

and we easily verify that 

(19) 1 = Ka.0)(8) fl (p8 + 1) 

We likewise find that 

(20) ha = fa(?0 Il 1 ) (P + 1) 

so for any positive integer m, we have from (19) and (20) 

ha = fa(u) [KII U)(S)]b() fj (1 - 2K) (P + A * + )iPi b + ) 

Since m is finite the order of the products may be changed to give 

TI) [Ka ()(S)]19) 2TIs 
ha = fa(Ui (1 - ) l (pe + i) 

Now every p > 2, and we may therefore use (8) with x = 1/pi to obtain 
m o o oo 8 

1 b(8) 

ha = fa(U) mI [Ka()()] b(8) * II II pi - 1 
8=2 i-u+l 9=m+l pi 

But it may be readily seen that the double infinite product on the right converges 
(monotonically increasing) to 1 as m -* oo, and it thus follows that the right side 
of (18) converges (monotonically decreasing) to ha as m -*> oo. 

The computation of the ha from (18) requires knowledge of the La(s). Now 
every La(s) has a Dirichlet series 

00 

La(S) = Ed,,(a) n- 
n=1 

with real periodic coefficients. Specifically we have 

Li(s) = 1 - 3-8 + 5-8 - 7-8 +_+ 

L2(s) = 1 + 3-` - 5 8 - 7 8 + +__ 

(21) LL2(s) = 1 - 3- - 5-8 + 78 + + 

L3(s) = 1 - 5-8 + 7-8 - 1- +_+ 

L-3(s) = 1 - 5-` - 7-8 + ii-8 + 

L4(s) = 1 - 3-` + 5-8 - 7-8 +_+ 

The La(l), which enter into fa(?) as defined by eq. (14), may be obtained in 
closed form by use of Gauss sums and Fourier series, [7]. Specifically, for a > 0 
we have the simple 

(22) La(1) = qa 2Va 
where the qa for 1 ? a ? 100 are listed in Table 1. 
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TABLE 1 

a a a a a a qa 

1 _ 26 6 51 6 76 6 
2 1 27 3 52 4 77 8 
3 1 28 2 53 6 78 4 
4 1 29 6 54 6 79 5 
5 2 30 4 55 4 80 8 
6 2 31 3 56 8 81 6 
7 1 32 4 57 4 82 4 
8 2 33 4 58 2 83 9 
9 2 34 4 59 9 84 8 

10 2 35 6 60 4 85 4 
11 3 36 4 61 6 86 10 
12 2 37 2 62 8 87 6 
13 2 38 6 63 4 88 4 
14 4 39 4 64 4 89 12 
15 2 40 4 65 8 90 8 
16 2 41 8 66 8 91 6 
17 4 42 4 67 3 92 6 
18 2 43 3 68 8 93 4 
19 3 44 6 69 8 94 8 
20 4 45 4 70 4 95 8 
21 4 46 4 71 7 96 8 
22 2 47 5 72 4 97 4 
23 3 48 4 73 4 98 8 
24 4 49 4 74 10 99 6 
25 2 50 6 75 6 100 4 

TABLE 2 

a ha 

-4 0 
-3 1.38342429 
-2 1.85005441 
-1 0 

0 0 
1 1.37281346 
2 0.71306310 
3 1.12073275 
4 1.37281346 

The La(l) for negative a are a little more complicated and will not be listed 
here. As regards La(s) for other values of s, Li (s) is a well known function, but 
except for a few scattered results, [8], values of the other L's do not seem to have 
been published. J. W. Wrench, Jr. has computed unpublished tables of La(s) for 
a = ?E2 and ?E3. With his permission the author used these tables, together with 
(18), to compute the four corresponding values of ha in Table 2. The remaining 
entries, h-4 = h-i = ho = 0 and h4 = h1, are trivial. 

The variation of the ha in Table 2 is notable. For example, there should be 
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more than two and one-half times as many primes of the form n2 - 2 as of the 
form W2 + 2. As a side remark, we note from (15) that f.() = 2Da(2) Vai/7rqa is the 
leading factor of ha . Thus for a > 0, n2 + a will therefore have few or many primes 
according as qa is large or small (relative to 2A/ar). From Table 1 we see that 
there will be few primes for a = 2, 5, 11, 14, 26, 41, 89, and 194, (q194 = 20) and 
there will be many primes for a = 7, 37, 58, and 163, (q163 = 3). The famous func- 
tion of Euler, n + n + 41, equals '[(2n + 1)2 + 163] and its well-known richness 
in primes is thus closely related to the small value of q163. This, in turn, is related 
in class number theory to the unique factorization of the integers in the algebraic 
number field R(V\/- 163). 

3. The Left Side of (6). Tables of Pa(N) and #ra(N) for a = - 2, ?3, +4, and 
N = 100k (k = 1, 2, ... , 1800) were computed with an IBM 704 program based 
on the sieve method and the p-adic square roots of -a, [3, sec. 9]. At the same 
time the prime divisors of n2 + a which do not exceed N were counted, and from 
these counts the values of 7ra(N) are easily obtained. Summaries of these results 
are given in Tables 3, 4, and 5. In the last of these, the results for a = 4 are com- 
pared with the previous results [3] for a = 1. 

4. Both Sides of (6). In Figure 1 we plot Pa(N)/#ra(N) versus N together with 
the conjectured limits, ha , for a = ?2 and ?i3. The cases a = 1 and a = 4, (which 
should be asymptotically equal since h, = h4), are not included in this figure for 
clarity. If included, these two graphs would intertwine that for the case a = -3. 

5. An Elementary Interpretation. The over-all impression of the foregoing results 
is that (6) and its equivalent (1) are almost surely true for a = 1, ?2, ?3, 4. 

TABLE 3 

N P2(N) i72(N) P2(N)/172(N) P_2(N) fr-2(N) P_2(N)/i_2(N) 

10000 446 622 0.6737 1153 625 1.8448 
20000 817 1134 0.7205 2140 1140 1.8772 
30000 1180 1632 0.7230 3087 1631 1.8927 
40000 1494 2117 0.7057 3977 2112 1.8830 
50000 1821 2580 0.7058 4824 2587 1.8647 
60000 2160 3051 0.7080 5643 3041 1.8556 
70000 2489 3478 0.7156 6464 3481 1.8569 
80000 2823 3942 0.7161 7296 3927 1.8579 
90000 3139 4378 0.7170 8083 4374 1.8480 

100000 3422 4798 0.7132 8888 4808 1.8486 
110000 3721 5229 0.7116 9681 5242 1.8468 
120000 4027 5649 0.7129 10500 5682 1.8479 
130000 4347 6090 0.7138 11304 6117 1.8480 
140000 4652 6516 0.7139 12086 6533 1.8500 
150000 4966 6945 0.7150 12828 6956 1.8442 
160000 5250 7347 0.7146 13628 7362 1.8511 
170000 5522 7767 0.7110 14397 7763 1.8546 
180000 5847 8192 0.7138 15134 8184 1.8492 
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TABLE 4 

N P3(N) irta(N) Pa(N)/8N) P-a(N) ,ifS(N) Pa(N)/17._.(N) 

10000 711 616 1.1542 850 620 1.3710 
20000 1302 1136 1.1461 1569 1139 1.3775 
30000 1851 1633 1.1335 2238 1637 1.3671 
40000 2378 2112 1.1259 2903 2108 1.3771 
50000 2920 2575 1.1340 3550 2577 1.3776 
60000 3428 3041 1.1273 4168 3030 1.3756 
70000 3967 3490 1.1367 4796 3466 1.3837 
80000 4463 3937 1.1336 5442 3935 1.3830 
90000 4941 4373 1.1299 6049 4374 1.3829 

100000 5426 4806. 1.1290 6664 4819 1.3829 
110000 5917 5233 1.1307 7253 5247 1.3823 
120000 6410 5665 1.1315 7874 5673 1.3880 
130000 6873 6105 1.1258 8491 6097 1.3927 
140000 7337 6532 1.1232 9073 6524 1.3907 
150000 7823 6940 1.1272 9663 6950 1.3904 
160000 8302 7361 1.1278 10236 7363 1.3902 
170000 8781 7768 1.1304 10799 7765 1.3907 
180000 9240 8195 1.1275 11354 8200 1.3846 

TABLE 5 

N P4(N) ir4(N) = 71(N) P4(N)/l4(N) P1(N) Pi()ii(N) Pi(N)/Pl(N) 

10000 870 619 1.4055 841 1.3586 0.967 
20000 1554 1136 1.3680 1559 1.3724 1.003 
30000 2216 1633 1.3570 2268 1.3889 1.023 
40000 2838 2117 1.3406 2952 1.3944 1.040 
50000 3459 2583 1.3391 3613 1.3988 1.045 
60000 4083 3038 1.3440 4252 1.3996 1.041 
70000 4690 3485 1.3458 4888 1.4026 1.042 
80000 5281 3933 1.3427 5513 1.4017 1.044 
90000 5903 4364 1.3527 6084 1.3941 1.031 

100000 6517 4808 1.3554 6656 1.3844 1.021 
110000 7099 5247 1.3530 7239 1.3796 1.020 
120000 7700 5675 1.3568 7795 1.3736 1.012 
130000 8300 6103 1.3600 8369 1.3713 1.008 
140000 8893 6531 1.3617 8944 1.3695 1.006 
150000 9442 6941 1.3603 9505 1.3694 1.007 
160000 10008 7361 1.3596 10072 1.3683 1.006 
170000 10565 7770 1.3597 10658 1.3717 1.009 
180000 11143 8178 1.3626 11223 1.3723 1.007 

We now offer a theoretical argument in favour of these asymptotic equations for 
all a. We will specifically carry it through for a = 1, but the argument is easily 
generalized. The case a = 1 is the only one which Hardy and Littlewood treated 
in detail. Their computation, however, was deep and function-theoretic. In con- 
trast, the present argument is elementary, [9]. It will be assumed that the reader is 
acquainted with the n2 + 1 sieve which is described in detail in [3]. 
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P0 (N) 

2.0 
n2- 2 h 2 1.850054 

-2 

1.5(N)| _ l \ < n2-3 h = 1.383424 

I_._ 

V__A: 

n2 +3 h -1.120733 
3 

1.0 

n2+ I :0,713063 
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50,000 100,000 150,000 200,000 0 

N 

FIG. 1.-The Hardy Littlewood Conjecture. 

Consider the infinite product (3) for ht, not in the form in which it was given 
by Hardy and Littlewood, (2), 

_ 1 + + 11 ) - 1 

since this masks its true nature; but in the equivalent form 

1 (1 
7_ 1 1 (___3 

or, even better, as 

(23) h1i ( 1 ___ (_ 1 ( 1 (I___ 

Now for a suitably large N let w* be the greatest prime satisfying w _ N and let 
p* be the greatest prime of the form 4m + 1 which satisfies p < N. We write the 
corresponding partial product of (23), which approximates hi, as follows: 

(24) hi t- N (2 (5 N ( ) 1 p) 

Now this approximation to hi is in turn seen to be approximated (and we will 
inquire later as to the degree of the approximation) by N times the ratio of the 
primes which remain in two sieves, the Eratosthenes sieve (for all primes) from 
n = 1 ton = N2 in the denominator and the n2 + 1 sieve from n2. + 1 = 2 to 
n2 + 1 = N2+ 1 in the numerator. 
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Without attempting precision at this point-that is, without bounding the 
error-we note that in the Eratosthenes sieve one first strikes out the multiples 
of 2. This leaves N2(1 - 2) numbers (with an error of 0 or 2). One then strikes 
out the remaining multiples of 3 leaving N2(1- ) (1- ) numbers (again except 
for a possible end-effect correction.) Continuing with the primes 5, 7, ..w 
creates the denominator of (24). The latter therefore equals 

7r(NI) - (N) + E(N), 

the number of primes up to N2 minus the number of primes up to N, with an end- 
effects error, E(N), which is not yet bounded. We note that 

ir(N2) -7r(N) 2N 7r(N) -' Nir1(N) 2 

by the prime number theorem. 
In the n2 + 1 sieve we first factor a 2 from all numbers where n = 2m + 1 

leaving N( 1-) of the numbers (except for an end-effect error). We then factor 
a 5 where n = 5m + 2 and where n = 5m + 3. This leaves N(1 - 2)(1 -2) 
numbers (except for the end-effect error). Continuing with all primes of the form 
4m + 1; 13, 17, p* ,p*generates the numerator. The latter therefore equals 

P (N) - P (N ) + e (N), 

the number of primes of the form n2 + 1 up to N2 + 1 minus the number of such 
primes up to N with an end effect e(N). 

Therefore, we may write 

(25) hi= li. P(N) - P( N ~- 1) + e(N) 
(25) oNe 1(N) + E(N)/N 

while what we would like to write is 

hi = lim P(N. 

Now by Merten's Theorem the denominator of (24) is asymptotic to N2ve/log N 
where y is Euler's constant [10]. Therefore the end effect, E(N)/N, is not negligible 
compared with ir'(N). Instead we have 

(26) E(N)/N ,_, 0.1229 = 2e - 1. 

If we could show 

(27) (N)e(&N 1) 2eG -1 

all would be well, but the difficulty of the problem is such that we cannot even 
prove that the left side of (27) is bounded from above. If we could do that, we 
would at least have P(N) -- oo but even this "weak" result eludes us. 

It is of interest to analyze this difficulty. Let 

(28) D(N) = P(N) - P(/N-1) 
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and 

(29) S(N) = N 1-- 1 

Then the conjectured relation (27) is equivalent to the conjecture 

(30) S(N) 2e-' = 1. 1229. 
D(N) 

Now from the sieve for n' + 1, [3], we can obtain an exact formula for D(N) 
by using the "integer part of x" function, [x]. Consider the set of numbers obtained 
from 

d = 2 a* 5b. 13C .. **p*z 

by assigning (in all possible ways) 0 and 1 to the exponents a, b, c, * . . For each 
such d, let Ai be the solutions of 

A2' 1 (modd) 

which satisfy 

0 ? A < d. 

Then if d is a product of a primes, we have 

(31) D(N) = (l)a E [N + Ai] 

It may be seen that if there are M primes of the form 4m + 1 which are <N. 
then there will be 2 3M terms in this sum. Even for a very modest N, say 15, we 
have p* = 13, M = 2, and there are already 18 terms. Specifically, 

D(N) = [N] [N + 1 [N + 3] [N + 2 + [N + 7] + [N + 3] 

N+ 81 N + 5 1 N + 21 + [ + N +657 
13 IL 13 J L 26 J L 26 1'L 65 

+ N + 47 + N + 18 + N+81 FN+831 _ N+ 731 
65 651L651L130] 130J 

L N+571N+47 
130 IL 130]* 

In general, it is easily seen, the formula for S(N) may be obtained from that 
for D(N) by deleting the Ai and the square brackets. Thus for N = 15 in the ex- 
ample, we have 

S(N) N - N 2N + 2N _ 2N +2N + 4N _ 4N 
2 -5 10 1(3 26 65 130 

=N - - 2)(i -) 
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TABLE 6 

N S(N) D(N) S(N)/D(N) 

100 16.261 15 1.016 
200 28.252 28 1.009 
300 39.800 42 0.948 
400 50.696 51 0.994 
500 61.344 62 0.989 
600 71.763 68 1.055 
700 81.656 78 1.047 
800 91.345 87 1.050 
900 101.075 92 1.099 

1000 110.901 102 1.087 
1100 119.913 112 1.071 
1200 129.451 122 1.061 
1300 138.223 128 1.080 
1400 147.754 140 1.055 
1500 156.790 150 1.045 

For N small, S(N) and D(N) are nearly equal; e.g., S(15) = 3.81, D(15) = 4 
As N increases, S(N) gradually pulls ahead of D(N), as is seen in Table 6. 

The end effect 

e(N) = S(N) - D(N) 

is given by 

(32) e(N) = E (l)a {N [N+As]} 

Since the quantity in each brace is smaller in magnitude than unity, it is easy 
enough to bound e(N). What is difficult to obtain is a sufficiently good bound-that 
is, to prove in general, the extensive cancellation of terms of opposite sign which 
occurs in the sum of (32). The essential difficulty stems from the very rapid increase 
in the number of terms, 2 3m. 

Techniques of deleting or combining terms, in sieve formulations of related 
problems, have been devised by Brun and others [11] but to date nothing sufficiently 
sharp has been developed. A general assessment of sieve techniques given by Selberg 
[12] is not encouraging. 
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