Values of
$$\frac{2}{\pi} \int_0^{\infty} \left(\frac{\sin t}{t}\right)^n dt$$

By Kasaburô Harumi,† Shigetoshi Katsura,† and John W. Wrench, Jr.‡

In discussing the equation of state for the molecules of one-dimensional square well potential [1], the first two authors required the numerical values of the integral

$$I_n = \frac{2}{\pi} \int_0^{\infty} \left(\frac{\sin t}{t} \right)^n dt = \frac{1}{2^{n-1} \Gamma(n)} \sum_{p=0}^{\lceil (n-1)/2 \rceil} (-1)^p \binom{n}{p} (n-2p)^{n-1}.$$

Inasmuch as these values seem to be of use in other applications, and apparently have not been previously tabulated, the first two authors calculated on SENAC-1 (Sendai Automatic Computer 1) a six-place table of I_n for n = 1(1) 30.

The last author reviewed this table and recalculated the data, finding the corresponding exact rational values.

The authors have decided to publish the ten-place table of I_n which is appended.

Table of
$$I_n \equiv \frac{2}{\pi} \int_0^{\infty} \left(\frac{\sin t}{t}\right)^n dt$$

n	I_n	n	I_n
1	1.00000 00000	16	0.34224 02614
2	1.00000 00000	17	$0.33220\ 82691$
3	$0.75000\ 00000$	18	0.3230093942
f 4	0.66666 66667	19	$0.31453\ 44009$
5	0.59895 83333	20	$0.30669\ 31017$
6	0.55000 00000	21	$0.29941\ 02903$
7	$0.51102\ 43056$	22	$0.29262\ 26872$
8	$0.47936\ 50794$	23	$0.28627\ 66141$
9	$0.45292\ 09682$	24	$0.28032\ 61985$
10	$0.43041\ 77690$	25	$0.27473\ 19735$
11	$0.41096\ 26428$	26	$0.26945\ 97712$
12	$0.39392\ 55652$	27	$0.26447\ 98425$
13	$0.37884\ 40845$	28	$0.25976\ 61480$
14	$0.36537\ 08695$	29	$0.25529\ 57845$
15	0.35323 91567	30	$0.25104\ 85320$

[†]Department of Applied Science

Tohoku University

Sendai, Japan; and

David Taylor Model Basin

Washington 7, District of Columbia

1. S. Katsura & K. Harumi, "A note on the Born-Green linearized integral equation," Phys. Soc. of London, *Proc.*, v. 75, 1960, p. 826–832.

Received August 6, 1959; revised March 7, 1960.

[‡]Applied Mathematics Laboratory