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Given a sample of n from N(Ml, a2), it is desired to determine from the sample 
a quantity a (or b) such that with probability y, the interval (- oo, a) (or the 
interval (b, oo)) will include at least the fraction 1 -xa of the population. The 
tables give valuesof K to 3D forn = 3(1)25(5)50, y = .75, .9, .95, .99, and a = 
.25, .1, .05, .01, .001, such that a = X - Ks and b = X- Ks, where X is the sample 
mean and S2 is the usual unbiased estimate of 2. For more extensive tables and a 
more complete discussion see [1]. 
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Given a sample of n from N(,u, a2) with x the sample mean and S2 the usual 
unbiased estimate of a2 these tables give values of k for which 

Pr[Pr(x < x + ks) > P] = y. 

As stated, Table I is a reproduction of one given by Johnson & Welch [1] in which 
values of k are given to 3D for - = .95, n = 5 (1) 10, 17, 37, 145, x 
and P = 0.7(.05).85, .875, .9, .935, .95, .96, .975, .99, .995, .996, .9975, .999, .9995. 
It is also explained that Table II was obtained from Resnikoff & Lieberman's 
table of percentage points of the noncentral t-distribution [2] appropriately modi- 
fied to give k values to 3D for n = 3(1)25(5)50, oc and P = .75, .85, .9, .935, 
.96, .975, .99, .996, .9975, .999 for y - .75, .9, .95. For y = .99, .995, 
n = 6(1)25(5)50, oo, while P has the same range as before. The more extensive 
Table III gives values to 5D obtained by an approximative method due to Wallis 
[3] for n = 2(1)200(5)400(25)1000, o0, P = .7, .8, .9, .95, .99, .999, and y = 
.7, .8, .9, .95, .99, .999. For small n and the larger values of P and y, the approxi- 
mation breaks down and the entry is left blank or given with a warning sign that 
comparison should be made with neighboring values. (However it looks to the 
reviewer as if this sign has been omitted from the entries for n 3 2, P = .99, .999, 
and oy = .999.) Finally Table IV is obtained from Bowker's table of two-sided 
tolerance limits [3] by an approximate procedure suggested by McClung [4] to 
give conservative values of k for one-sided limits. Here values are given to 3D for 
n = 2(1)102(2)180(5)300(10)400(25)750(50)10001 oo, P = .875, .95, .975, .995, 
.9995, and y = .75, .9, .99. 

In an appendix auxiliary tables compare values in the four tables for selected 
values of the four parameters. The maximum difference shown between Tables I 
and II is .01. It is concluded that values in Table III will probably be underesti- 
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mates for y < .95 and overestimates for y _ .99, while in Table IV, k is probably 
underestimated for P = .875 and overestimated for the other P values. Differences 
shown between Table II and Table III values in a few cases exceed 20 % of the 
presumably more accurate Table II values and differences shown between Table 
II and Table IV sometimes exceed 10 % of the Table II values. 
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Consider the F statistics, S - , 
i = 1, 2, , k, in which Si, S2, * , Sk and 

S are mutually independent, with each Sila2 having a x2 distribution under the 
null hypothesis with t degrees of freedom and S/o2 a x2 distribution with m d.f. 
There are numerous applications of statistical methods, a few of which are dis- 

cussed, in which one needs the value of V for which Pr I Vf = 1- a. 

The author tabulates lower 5 % points of 5mm * for values of t, m and k as follows: 

For t = 1, m > 5, k = 1(1)8 to IS; for t = 2,5 < m < 10 and m > 12, k = 1(1)8 
to 3D; for t = 3, 4, 6, m = 5, 6(2)12, 20, 24, co, k = 1(1)8 to 3D; 
for t = 1(1)4(2)12, 16, 20, m = c, k = 1(1)8 to 3D; for t = 1(1)4(2)12, 16, 20, 
m = 5, 6(2)12, 20, 24, oo, k = 1, 2, 3 to 3D. 
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parameters by order statistics from singly and doubly censored samples. Part 
II.," Ann. Math. Stat., v. 29, 1958, p. 79-105. 

This paper, a continuation of a previous one [1], is mainly devoted to an ex- 
tension of tables given in the earlier paper to cover samples 11 < n < 15 and to 
a discussion of efficiencies of the estimators used. Samples of n are from N(,u, a2); 
r1 and r2 observations are censored in the left and right tails respectively (rlr2 > 0); 

and x and a are estimated by the most efficient linear forms in the ordered un- 
censored observations. Table I gives the coefficients for these best linear systematic 
statistics to 4D for all combinations of r1 , r2 for n = 11(1)15. Table II gives vari- 
ances and the covariance of these estimates to 4D for n = 11(1)15 and all pairs of 
r1, r2 values. In Table III efficiencies of the two estimates relative to that for un- 
censored samples are given to 4D for the same range of values of n and r1, r2 . For 


