Improved Formulas for Complete and Partial
Summation of Certain Series

By Herbert E. Salzer and Genevieve M. Kimbro

Abstract. In two previous articles one of the authors gave formulas, with nu-
merous examples, for summing a series either to infinity (complete) or up to a cer-
tain number n of terms ( partlal) by considering the sum of the first j terms S, , or
some suitable modification S}, closely related to S, ,asa polynomial in 1/5. Either
So or S, was found by m-point Lagrangian extrapolation from S;,, Sj-1, ==,
Sjo—m+1 t0 1/j = 0 or 1/j = 1/n respectively. This present paper furnishes more
accurate m-point formulas for sums (or sequences) S; which behave as even func-
tions of 1/j. Tables of Lagrangian extrapolation coefficients in the variable 1/;°
are given for: complete summation, m = 2(1)7, jo, = 10, exactly and 20D, m = 11,

= 20, 30D; partial summation, m = 7, jo = 10, n = 11(1)25(5)100, 200, 500,
1000, exactly. Applications are made to calculating = or the semi-perimeters of
many-sided regular polygons, Euler’s constant,

1 1 1 .
1+§1{(4r (4r+1)2} 1"@"":,""' for j= =

(Catalan’s constant), calculation of a definite integral as the limit of a suitably
chosen sequence, determining later zeros of J,(.) from earlier zeros for suitable v,
etc. A useful device in many cases involving sums of odd functions, is to replace .S;
by a trapezoidal-type S; which is seen, from the Euler-Maclaurin formula, to be
formally a series in 1/;°. In almost every example, comparison with the earlier
(1/j)-extrapolation showed these present formulas, for 7 points, to improve re-
sults by anywhere from around 4 to 9 places.

1. Introduction. In two earlier papers, [1, 2|, one of the authors gave tables tfor
both complete summation (all terms, to infinity) and partial summation (up to a
certain number of terms) of certain kinds of slowly couvergent series. In the case
of partial summation, divergent series were also included, provided that a suitable
auxiliary series could be found of the desired slowly convergent type and simply re-
lated to the original divergent series. The essential idea in both ecases is to regard
the sequence S;, the sum of the first j terms of the series, as the values for .+ = 1
of an interpolable function S(zx) to which the slight extrapolation from specified
Sj,toj = o (x =0)ortoj =k (x = 1/k), k > j, where S, is the last speci-
fied S;, yields good accuracy. The approximating formula for S(.r) was an m-point
Lagrange polynomial of the (m — 1)th degree in & which at & = 1/; assumes the
prescribed value S;, for the last m values of j ending at j, = 5, 10, 15 or 20, from
which we extrapolated to eitherj = © (x = 0) orj = k& > jo(x = 1/k). Numerous
examples which yielded surprisingly high accuracy for a variety of sequences S, in
both complete and incomplete cases, attested to the wide applicability of consider-
ing S; a smooth function of 1/j, even when we were in complete ignorance as to the
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actual analytic expression for S; = S(1/7) or of a theoretical justification for con-
sidering S(1/7) as an approximate polynomial in 1/;.

However, a still further improvement in m-point formulas for both complete
and partial summation is applicable to a wide class of sequences where S; = S(1/5)
behaves like an even function of 1/5. Thus by taking 2’ as argument instead of z, in
an m-point Lagrangian extrapolation formula for z = 0 (complete summation) or
a value close to 0 (partial summation) based upon those same final m values of S;,
we should get accuracy equivalent to (2m — 1)th degree instead of (m — 1)th
degree. As will be seen from the illustrations below, the resulting improvement is
often quite impressive.

There is no hard and fast classification of all the varied problems to which these
newer formulas are applicable. The reason is that even if a problem does not seem
offhand to involve a sequence of that even-function type, often with a very slight
transformation, regrouping, or alteration, one sees that it really is amenable to this
more accurate treatment.

Of course, every sequence to which these improved extrapolation formulas for
arguments 1/7° are particularly applicable can also be handled by the earlier formulas
employing arguments 1/4, because any polynomial in z* is also a polynomial in z,
but with considerably less accuracy for the same number m of points and the same
last 7 = 7o . But the converse is not true—we cannot in general expect these newer
summation formulas to work well when applied indiscriminately to sequences where
the earlier method may give very high accuracy. One way of realizing this is to
think of the non-constant part of a well-behaved function of x near z = 0 being
approximated by Cz. Extrapolation employing 2° = y as the variable, near z = 0, is
like extrapolation for 4/ based upon a polynomial approximation in the variable y.
But, as anybody who has attempted to interpolate in a table of square roots near
zero has found out, 4/, although continuous at y = 0, possesses a singularity due
to an infinite derivative.

2. Other Related Articles. The idea of the extrapolation to z = 0 for argument
y = 2 has been employed for just the linear case in the well-known “A’*-extrapola-
tion process”’, or “deferred approach to the limit”, which has been extensively
treated in the literature on the numerical solution of differential equations (first
introduced by L. F. Richardson [3, 4]). The argument x or h corresponds to two
conveniently small values of a mesh-length, say k; and A, . Richardson’s process has
been generalized to higher powers beyond &’ by several writers, notably G. Blanch,
[5] and H. C. Bolton and H. I. Scoins [6]. However, the only reference that was en-
countered by the writer which was concerned with problems where the approxima-
tion might be considered as a purely even function of 4 having more than a single
term, has been M. G. Salvadori [7]. Besides some sets of 2-point coefficients for h’-
and h'-extrapolation, Salvadori tabulates 3-point coefficients for (k°, A*)- and (&',
1°)- extrapolation, and 4-point coefficients for (A%, &%, h®)- and (h', R®, h%)-extrapola-
tion. The values of 4 are in the form 1/n;, where n; are sets of small integers rang-
ing from 2 to 8. Salvadori gives applications to numerical differentiation and inte-
gration, as well as to some boundary value problems and characteristic value
problems.
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3. Formulas for Complete Summation. In choosing a j, suitable for most com-
plete summation purposes, we wish to obtain a substantial increase in accuracy
over the use of the earlier formulas in [1], which has already been proved to be very
accurate, without having coefficients that might be too cumbersome. It is also de-
sirable to give exact values rather than decimal values, because in highly accurate
formulas the theoretical or truncation error might be considerably smaller than the
computing error arising from the use of rounded decimal entries. But we must also
take account of the fact that the fixed points 1/5° in place of the older 1/ makes
the exact fractional form of the extrapolation coefficients have around twice as
many digits in both numerator and denominator, which adds considerably to the
amount of time to do an example.

In the present paper it seems that a very convenient choice is jo = 10, for all
cases ranging from the 2-point through the 7-point. In other words we give formulas
for linear through sextic Lagrangian extrapolation formulas for functions of the
variable y = 2’ takenat z = 1/, or arguments y = 1/;° atj = 10,9, ---, 10 —
m + 1 for m = 2(1)7. This is equivalent to quadratic through twelfth degree
accuracy for even functions in z = 1/j. The extrapolation formula to obtain the

complete sum S from the partial sums Sy, Sy, - -+, Siw—m41 is the very simple
m—1
(1) S~ Z Aimo—ism-i .

T=0

The coefficients A {njo—; are given in Table 1 in exact fractional form Bigo_:/Ds,
so that (1) may be most conveniently employed as

m—1

(2) 8~ (1/Di") 2, BiSio-sSuu-

In no case through m = 7, does D{7” have more than ten digits exclusive of final
zeros, which is convenient in the division. The values of Aﬂ.’fio_,» are given also to 20
decimals in Table 2.

Although the 7-point formulas for jo = 10 are very accurate, as will be apparent
from the examples below, we give also in Table 3 for possible use in some kind of
isolated key calculation where extreme accuracy is sought, even at the expense of
considerable computing labor, the coeflicients in the 11-point formula, ending at
S20 , given exactly, to be employed in

10

(3) S ~ (1/D$V) ; Bt 90—iSz0—s .

Formula (3) is exact for any even polynomial in x = 1/7 up to the 20th degree. To
avoid too much non-essential numerical work, no illustrations were given of the
use of Table 3, since the resulting accuracy is so high by comparison with the results
of using Table 1 or 2, that an excessively large number of significant digits is needed
to reveal its full extent. But Table 3 should be kept in reserve for a summation
problem requiring unusual precision.

The formula for A{7},_; is obtained rather simply from the well-known defini-
tion of the m-point Lagrangian interpolation coefficients where we have fixed points
1/j¢,1/Go — 1) ++-, 1/(jo — m + 1)* and set the variable y = 2* = 1/ equal
to 0 to correspond toj = .
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TaBLE 1

Ao = BlOlO—t/Dl

(4)

m =2 m=25
(2),
P = -8 B{s = 2034 43488
010 = 100 B3; = —23001 55599
10 19 B, = 82879 44704
m =3 B{Yy = —1 17517 54833
. } B§§?m = 56875 00000
e l)ggzg DY = 1269 77760
10,9 — T Ju.
B{o = 42500 m=6
DY 2007
Bty = —75703 12500
m =4 B® = 17 57751 73632
) 67 05993 Boy = —123 97838 67861
BO _ a08 ansss B{$y = 350 05026 50456
BOY _ 717 a4sas Bigo = —448 74915 24087
B — 400 00000 Bifs= 200 20000 00000
@ _ 3 05360 D = 3 35221 28640
m =7
B{, = 54190 40768
B{); = —31 54296 87500
B{ls = 474 59296 88064
B(: = —2761 33679 65995
B = 7181 18531 89120
Bh’,’g = —8388 15723 34857
B®, = 3575 00000 00000
Dy 50 28319 29600
A = - (=1)""Go — )™

where in [T/, ¥ = i is omitted.

4. Illustrations of Complete Summation.
A. Example 1. Considering the circle as the limiting case of inscribed regular
polygons of j sides, as j — o, the quantity = is the limit of the semi-perimeter,
jsin @, where @ = 180°/j = n/j, as j — = .* Now the approximation S; = j sina =

H (o — &) = (jo —14)° ]

* Although this example affords a splendid illustration of the improvement of (1/52)-
extrapolation over (1/j)-extrapolation, it suffers from the aesthetic defect of having the value
of = occurring implicitly in every S; in the various powers of « needed to compute sin . In

other words, there is definitely something “‘circular” in this example.
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()
~I

TABLE 2

y . .
A{§lo—i in Decimal Form

m = 2 m=6
APy = —4.26315 78947 36842 10526 . .
A — 526315 78047 36842 10320/ hi0s =  —0-22583 03039 55308 95530
: ' Ay = 5.24355 64435 56443 55644
m =3 A, = —36.98404 36201 18987 76605
(6) _ Lrd = i
A®, =  6.60281 04575 16339 seos iy =  107.11111 74954 31220 92112
@ _ 1109 — —133.86654 41631 80008 84564
APy = —20.31269 34984 52012 38390' >
m = 4 m =1
@ _
Aior = —4.80592 32026 14379 0849714, — ¢ 01077 70418 88152 99926
Afds = 28.55599 12854 03050 108934 D _  _ 69730 63998 75844 32029
Afgy = —51.41650 54179 56656 34675 4 _ g 43810 1598+ 01598 40160
(4) — y .
Aiho = 28.66643 73351 67985 32278 4 (1 _ 54 91570 11329 03951 53140
™ =3 Ag;s = 142.81482 33272 11627 89522
AD, = —166.81830 92541 16626 40765
As = 1.60219 78021 97802 19780/, (B _ 1?.? ggﬁ;‘; 38"{93 630 42 92:322
A®, = —18.11463 36098 54198 08949 ‘
A8y = 65.27083 72237 78400 24899
Aig’._, = —02.54970 97523 21981 42415
A, =  44.79130 83361 99977 06685
TABLE 3
ASi%_; = B$Re—i/ DS

Bt
B é(l)l X 1
B,
Bhs
BGRs
B
Bisis
B4
Biis
Bihs
B3
Dy

74096 20000 00000 00000 00000

—35 37615 48335 31708 54782 90644

649 45974 08685 61313 24915 22048

—6200 60319 26092 91850 74192 35023

34801 60376 52150 35629 23772 47744

—1 21941 46052 37160 60638 42773 43750

2 73659 70208 28851 47761 53823 64160

—3 92511 27655 98026 11495 97941 97770

3 47343 22454 05086 94470 03616 05120

—1 72481 59320 99496 29170 21217 51885

36718 51008 00000 00000 00000 00000
(32124 40751)(38698 35264)(23 58125)

2 93153 05663 14310 15219 20000

S(1/7) is seen to be an even function of 1/j which equals = for 1/j-= 0. Theretore
we expect an m-point Lagrange polynomial approximation for variable 1 /Jj* to be
considerably more accurate than a polynomial in 1/j. Following are the values of
the semi-perimeters j sin « to 25D, which were obtained from a table of sin « to
30D originally published by Herrmann [8]. For j = 4(1)6, 9, 10, sin « was copied
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from Herrmann’s table, and for j = 7, 8, sin a was computed by Taylor’s theorem
employing Herrmann’s entries as key values:

S;j: Semi-perimeter = j sin &

.

2.82842 71247 46190 09760 33774
2.93892 62614 62365 64584 35298
3.00000 00000 00000 00000 000CO
3.03718 61738 22906 84333 03783
3.06146 74589 20718 17382 76799
3.07818 12899 31018 59739 68965
3.09016 99437 49474 24102 29342

[e-RUoNo LN Narlv) Bt

In the above values of S; , as well as S; given in the other examples, the accuracy
of the last few places, although highly probable, is still not absolutely guaranteed.
However, in every example the values of S; are certainly correct up to the number
of places needed to guarantee that the “computational error” in the final answer
(which is due to the error in the S; multiplied by the extrapolation coefficients
A{M) is appreciably less than the deviation of the answer from the true value. This
latter “truncuting error” is thus made to stand out clearly, and it indicates the
theoretical accuracy of the extrapolation formula, regardless of the number of places
carried in the work. In practice we do not often know at the outset of an example
just how many places are needed in the S; to assure us that the computing error will
be dominated by the truncating error. Sometimes when the theoretical accuracy
turns out to be unexpectedly fine, the example must be done again, carrying more
places, to prevent the computing error from obscuring the truncating error.

The results of the extrapolations employing (1) or (2), for m = 7, gave for =,
(whose true value to 20D is 3.14159 26535 89793 23846), the answer 3.14159
26535 89793 179 ... which is correct to within a unit in the 16th decimal. The
extent of the improvement over the earlier (1/7)-extrapolation formulas is appar-
ent from the result of 3.14159 280 . .. obtained by the corresponding 7-point (1/5)-
extrapolation coeflicients, which deviates from = by 13 units in the 7th decimal. In
other words, the error in the use of this newer formula is only around 0.4-107° of
that in the older one. The greater power of this newer method in this present exam-
ple may be further illustrated even for m = 4, where (1/1%)-extrapolation yields
3.14159 2650 ..., or aceuracy to around } of a unit in the 8th decimal, whereas
the corresponding 4-point (1/j)-extrapolation formula gives no better than 3.1411

., which is off by % of a unit in the 3rd decimal. In fact, the answer even by
2-point (1/j°)-extrapolation, namely 3.1413 ..., is still better than the above
3.1411. ...

It is interesting to note that the use of (1/. ';%)-extrapolation on the semi-perim-
eters gives this great improvement only for the inscribed polygons, and it will not
work well for the circumscribed polygons, upon which it was also tried. A reason
that would lead us to expect poor extrapolation results, even though the corre-
sponding semi-perimeter j tan « is still an even function of 1/j, is that the series
for tan a converges poorly by comparison with sin a. Thus for & = /4, occurring
in S; = Si, the remainder after the term involving the sixth power of 1/5%, is con-
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siderably greater for j tan «, so that the use of (1) or (2) for m = 7 is not nearly
so good as for j sin a.
B. Ezample 2. The sequence for Euler’s constant

J
vy = limpw {Z (1/r) — log j} — 0.57721 56649 01532 86061 to 20D
r=1 )

has been treated earlier by (1/7)-extrapolation ({1], p. 358). Applying (1) or (2),
for seven points, directly to S; = Zi,,l (1/r) — log j yields the very inaccurate
0.593, the reason being that S; does not behave like an even function of 1/j. The
older (1/7)-extrapolation formulas, employing j, = 10, gave 0.37721 41 ... and
0.57721 56695 ... by the 4- and 7-point formulas with respective errors of around
12-107° and £-107%. To improve upon these results we must modify our S; se-
quence into an even function of 1/ having the same limit v. This is easily accom-
plished by replacing the last 1/r in the summation, namely 1/r = 1/j, by half its
value, or 1/27. At first sight there is an apparent motivation in that the new finite
summation is suggestive (at one end anyhow) of the more accurate trapezoidal

i
rather than rectangular approximation to the integral [ (1/r) dr. This trapezoidal
1

motivation happens to lead to the correct choice in this present example, but in
general it does not yield a sequence that is even in (1/5). The true motivation lies
in the Euler-Maclaurin summation formula applied to log 7. The general formula
is expressible as

L[ fayin = (Yo fo - fob oo+ b 305) =2 G = 1)

wJe 2 = 27’ 12
(5) ) s

w 111 27 w

+ ?—26 (fz - fo ) - ~——-302_10
Now (5) does not denote a complete equality, since the Euler-Maclaurin formula
is an asymptotic expression that is given with a remainder term. Employing (5)
heuristically for w = 1, a = 1 and f(z) = 1/z, the right member of (5), exclusive
of the (3fo + fi + -+ + fi + %f;) and an undisclosed remainder term, is an even
function of 1/(j + 1), from which, replacing j by j — 1,

(" = f7) + ----19].

’ 1,11 1 1

is an even function of 1/7, so that the same is true of the sequence

.= 1.1, .. 1 1) — log
S,—(l+2+3+ +j—1+2j log j
whose limit, as j — «, is also equal to v.*

Since the older m-point (1/j)-extrapolation formula is linear in S; (or S;) and

* The reader is cautioned that the above heuristic demonstration is not to be understood
as a proof that we have a convergent infinite series in (1/72) from which we can ‘“prove’’ that
the “constant’’ term in §;’ is v by taking the limit as j — «. The fallacy there would be in
that there is no “‘constant’’ term because the fo , fo/, fo' ', - -+ terms in (5) yield for f(z) = 1/z
a divergent sequence. Actually S;’ is defined only up to any fixed order derivative, say f}f{ ,

and it then consists of terms in 1/52, constant terms and an integral formula for the remainder.
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yields exactly zero for any polynomial in 1/ having no constant term, up to the
(m — 1)th degree, the above-mentioned 4- and 7-point results will not be changed
by use of S, instead of S;. But the improvement is very noticeable when S/ is
employed with (1/j°)-extrapolation. Following are the terms in the modified
sequence S;’ to 20D:

. 1 .
i Si’-}’:l;+—~-log:

4 0.57203 89722 13442 71450
5 0.57389 54208 99232 95873
6 0.57490 71974 38611 66585
7 0.57551 84223 73258 12347
8 0.57591 56011 77306 92889
9 0.57618 81210 76479 02991
10 0.57638 31609 74208 28424

The use of the 7-point formula in (1) or (2), where jo = 10, upon S/, gave an an-
swer of (.57721 56649 0143 ... which is correct to a unit in the 13th decimal
(i.e., 5 places more than (1/j)-extrapolation). Use of just the 4-point formula in
(1) or (2) gave an answer as good as 0.37721 56647 5 ... which is correct to
within 1} units in the 10th decimal (i.e., 4 places more than (1/5)-extrapolation).

C. Example 3. A (lillferent type of scquence is encountered in the evaluation of
the definite integral _/; 1 _:_ ,cd.v = log 2, whose value to 20D is 0.69314 71805
59915 30942. One obvious sequence to consider is S; which is formed by dividing
the interval (0, 1) into j equally spaced intervals and letting S; be the sum of the
rectangles of height 1/[1 4+ (r — 1)/j] and width 1/j, for r = 1(1)j, but that fails
ta behave as an even function of 1/j. However, the trapezoidal rule, or

1(1 1 1 1 1
s = G+ et reas s )

A VAL WS V/ B P 1+G-1/ 4
according to the Fuler-Maclaurin formula (5), where now w = 1/4, @ = 0, and
both f;* is fixed as well as fo'”, being at the endpoints 1 and 0, is seen to have a
truncating error that is formally a series in 1/5°. The values of S/, in either exact
form, or to 20D, are as follows:

-1
4 1171/1680 = 0.69702 38095 23809 52381
S 1753/2520 = 0.69563 49206 34920 63492
6 0631/13860 = 0.69487 73448 77344 87734
7 2 50241/3 60360 = 0.09441 94694 19469 41947
8 2 00107/2 88288 = 0.069412 18503 71850 37185
9 5 66803/8 16816 = 0.69391 76020 05837 29995
10 1615 04821/2327 92560 = 0.69377 14031 75427 94323

The 4- and 7-point (1/j)-extrapolation, jo = 10, gave values of 0.69314 86 ... and
0.69314 7176 ..., correct to 1% umits in the 6th decimal and % unit in the 8th
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decimal respectively. The (1/5*)-extrapolation was performed for every m-point
formula from m = 2 through m = 7, with the following results:

m value of S deviation il m | talue of S ! deviation
2 | 0.69314 81... 106 5 ! 0.69314 71805 67... ! 101
3 | 0.69314 7188... 108 6 | 0.69314 71805 6054... | 3-10712
4 | 0.69314 71807 1... 13-10-9 | 7 ' 0.69314 71805 60046... ! 10-1

The improvement over (1/7)-extrapolation in the 4- and 7-point results is by four
and five places respectively.
D. Ezample 4. A somewhat more sophisticated application of (1/;°)-extrapola-
tion is in the summation of the series for Catalan’s constant, or
1 1 1
L=l-zts-=n
H. T. Davis [10] gives a full discussion of Catalan’s constant, including an account
of the earlier work of J. W. L. Glaisher, and he also reprints Glaisher’s 32-decimal
value of T: = 0.91596 55941 77219 01505 46035 14932 38. Since the series for
T. is absolutely convergent, it may be regrouped as

1 1 1 1 1 1

Tz—- 1+(—§2+5_2>+(—7é+§-2)+ +<—(‘}r — l)2‘*‘(4:"_*_ 1)2> +
— 16r
(1672 — 1)2°
of r or 1/r. Thus, as in the preceding example, employing (5) with w = a = 1, the
modified sum
= 16 1( 16j
P =8 = Lly=1— -z
8/ =8 —tu=1-2, 162 — 1 _ 2\(167 — 1)?)

is again seen to be formally an even function of 1/j, having the same limit S which
is approached by S;.* The values of S, to 20D are as follows:

+...

The general term u, , r > 0, of T: is equal to which is an odd function

LS e e
Sit=1-= & Wer—1r 2z \Ter-12

0.91798 69831 73330 85103
0.91724 36100 54163 02747
0.91684 71757 66868 06945
0.91661 06554 47552 03321
0.91645 81601 71966 79489
0.91635 40724 61230 31205
0.91627 98501 91732 37910

SO WD O

1

J
* Although in Example 4 we know the explicit formula for f f(x) dx, we may expect this
1

i
principle to be applicable also in cases where f f(z) dz, f(z) odd, or for that matter also f;(?)
1

for odd p, is not known in closed form, and where S;’ may still be regarded formally as a series
in 1/52.
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TUse of the 7-point (1/j)-extrapolation, jo = 10, upon either S; or S;/, while not
identical in accuracy, because now the difference of (16;/(16;° — 1)?) is no longer an
exact polynomial in 1/j, gave results very close to each other, namely 0.91596
55973 ... and 0.91596 53980 ... with respective deviations of 4-107° and $-107°.
The use of (1/5°)-extrapolation, i.e., (1) or (2), for m = 7, while giving the poorer
answer of 0.91596 74 ... with a deviation of 2-107° in working with the S; se-
quence (as was to be expected ), gave upon working with the S;’ sequence the highly
accurate 0.91596 55941 7714 ..., which is correct to 4-107", showing a gain in
accuracy of around 5 places.

5. Formulas for Partial Summation. Given the first ten terms of a sequence
S, which behaves as an even function of 1/7, we might wish to find by (1/;*)-extrap-
olation S,, n > 10, instead of going to the limit as j — . The purpose of this
section is to improve what was accomplished in [2] where just (1/7)-extrapolation
was employed. The m-point formula for S, which occurs usually as a sum of the
form 7o u, , is obtained by setting z = 1/n’ in the Lagrange interpolation coeffi-
cients whose fixed points are 1/5%, 1/(Go — 1) -++, 1/(Jo — m + 1)° In the
present instance, in order to avoid too much tabulation, since now besides j, and
m, n is also a variable, being no longer just «, we consider a choice of jo and m
which shall be suitable for most problems and which shall give a substantial in-
crease in accuracy over the (1/5)-extrapolation formulas previously given which
were based upon jo = 10 and m = 7 [2]. Thus it is natural to take jo = 10 and
m = 7 for these present formulas also. The argument n = 11(1)25(5)100, 200, 500,
1000, and all coefficients are given exactly. This range of n is not quite so extensive
as in the previous paper because the arguments 1/7* in place of 1/7,7 = 4,5, -,
10, n, increase the labor in computing the exact forms, which also have consider-
ably greater bulk in figures. To find S, = S(n), we employ the extrapolation
formula in the following form:

10

(6) S(n) =2 A;(n)8;.

J=4

Every set of coeflicients A,(n) is given in the exact fractional form of C;(n)/D(n)
where D(n) is the least common denominator for each n. Thus it may help the
computer to have

10
(7) S(n) = (1/D(n)) 12:3 Ci(n)8; .

In (6) and (7) the jo = 10 is understood as well as m = 7. When also n is under-
stood, we may employ for (7) the somewhat more concise

10
(7) 8, = (1/D) 2 C,S;.
In (7), or (7’), the D{n), or D, is given also in the form of factors having no more

than 10 digits, exclusive of terminal 0’s, to facilitate the divisions on a ten-bank
desk calculator. The C;(n) and D(n) are shown in Table 4.
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36 HERBERT E. SALZER AND GENEVIEVE M. KIMBRO
The coefficients A j(n) = Cj(n)/D(n) were calculated directly from the formula

o I (2 = )
(8) A;(n) =Lk

oz 10

II' " - ¥

k=4
where k = j is absent from []’. Both the calculation of 4;(n) and the determina-
tion of D(n) was facilitated by expressing each of the factors in the right member of
(8) in terms of powers of primes.

To facilitate the use of (8) for desired values of n other than in this present
table, we notice that we may express 4;(n) as
10

’ 2 _ 2
(9) Aj(n) = B; - kI-IA (n k) , where
iz
72
S U
(10) BJ H/ (]2 _ kz)

k=4

is independent of n. The exact, as well as 30 decimal, values of the fundamental
quantities B; are given in the following Schedule 1.

SCHEDULE 1
10
j B; ‘J"’/ o Gr— &
k=4
65536 .
4 S eo330 = 0.01077 70418 88152 99926 41103 75221
o7 65625 o
5 — o025 ~0.62730 63998 75844 32028 87647 33209
6 -2—;’%(1)%2 = 9.43840 15984 01598 40159 84015 98402
1 38412 87201
-_—— = P-4 D} 5
7 e 54.91570 11329 03951 53140 25117 94669
2634 35456 _ . .. .
8 B S o 142.8148 33272 41627 80522 26664 64497
3 13810 59609
—_— T T T = - )
9 i = —166.81830 92541 16626 40764 80794 74705
390 62500 ) _ _
10 B e = 71.00731 48193 65042 96325 41775 64463

6. Illustrations of Partial Summation.

A. Ezxample 5. Suppose that in Example 1 above, instead of passing to the limit
as j — « to obtain 7, we wished to calculate Sx, or the semi-perimeter of a 20-
sided regular polygon from the semi-perimeters of the 4- through 10-sided regular
polygons. We have S; = 20 sin 9°, whose value to 20D is 3.12868 93008 04617
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38020. Using the same values of S; as in Example 1, we find by the earlier method
of (1/7)-extrapolation [2] Sx = 3.12868 93076 ... which is correct to around a
unit in the 8th decimal. But use of the present tables for (1/5*)-extrapolation in (6)
or (7), for n = 20, yields the highly accurate Sy = 3.12868 93008 04617 359 ...,
correct to about 2 units in the 17th decimal, showing a gain of around 9 places.

B. Ezample 6. As an illustration of a different type of problem that does not
correspond to one in complete summation, consider the case where from the first
few known zeros of some higher mathematical function, we wish to obtain the value
of some later zero, say the nth. As will be seen below, there are circumstances when
it is preferable to choose as the sequence S;, j < 7o, from which to extrapolate,
some suitable even function of 1/7 which may not be a function of the jth root, and
yet from S;, 7 > jo, the jth root, is readily obtainable.

Consider the problem of finding the later zeros of the spherical Bessel functions
Jem14(2) from either tabulated earlier zeros or some other suitable function of m.
In the general asymptotic formula for 2, the nth zero of J,(z) cos @ — Y,(z) sin a,
namely,

z<n>_<n+1y_1>r_a_ 4 — 1
v 2T 1 8{(n + 3 — Hr — o}

(4" — 1)(28" — 31)
TS —Dr—ap D

(11)

set « = 0and v = 2m + }. Then from (11) it is apparent that
(12) Spam = (n 4+ m)ehmis — (n + m)x]

has a formal expansion in even powers of 1/(n + m), which could serve as the basis
of an extrapolation formula.

However, after searching for ready-made tables of zimky , none were found capa-
ble of testing the full potentialities of Table 4. To avoid extra labor, we shall first
illustrate this principle of (1/+*)-extrapolation with a smaller example limited to
the available published 6D values of 2§} as far as n = 6 [12]. The problem is to
calculate z§7 for n = 6, whose published value is 24.727566, from the four preced-
ing values of 2§ = 11.704907, 2§72 = 15.039665, 2§/, = 18.301256 and 2§ =
21.525418. In other words, since m = 2, the problem is to find S; from S;, S;, Se
and S; , from which 2§}} is found from (12). From (8), with TT:2, replaced by
II'%s, we find Au(8) = —zits, 45(8) = 13-$885, 46(8) = —1334¥and 4;(8) =
$23843 from which S = D js 4;(8)8; = —3.241393. Finally, from (12), 247 is
found to be 24.727567, which deviates by only 10™° from the published value.*
Comparing with (1/v)-extrapolation based upon those same values of Sy — S:.
and where A4(8) = —}, 45(8) = 138, 4¢(8) = —33, 4:(8) = 243, we find S =
—3.241225, from which z§}} is found to be 24.727588, which deviates by 0.000022
from the published value.

* Since we started with 6D values, it is not possible to estimate from this example the
possibly higher theoretical accuracy in (1/»%)-extrapolation, which is just the truncation error
when the example is done with a sufficiently large number of places both initially and in the
course of the work.
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For a similar example employing Table 4, and revealing the full accuracy of (6)
or (7), we choose a modification of S,4n, say S,,m , where

(13) Suim = (n + m)[Enhs — (n + m)xl,

and where now i}, , instead of being the nth zero of J 2m+4(Z), is defined as a pre-
assigned number of terms of the right member of (11) (fora = 0, v = 2m + %)
which is the same for every n. For the lowest values of n, there will be considerable
deviation between the true value of the root z§nt4 and the function Z$n)4 which is
(n + m)r + an exact odd polynomial in 1/(n + m), making S,;n an exact even
polynomial in 1/(n + m). But at the inconvenience of having to compute S, for
the initial values of n, we may employ (6) or (7) to extrapolate for S,,. for some
larger n to get Zim}y which will agree with the true value of the root z$n}y to very
high accuracy. Taking (11) as far out as 1/{(n + 3» — })r — o}°, we have for
a=0,v=2m+ Land p= 4" = (4m + 1)},

S = =B =1 (r= 17w = 31)  (s—1)(834" — 982 + 3779)

23 3 - 2'7%(n + m)? 15 - 2%5(n + m)*
_ (b — 1)(69494° — 1538554 + 1585743u — 6277237)
(14) 105 - 215 - 77 -(n + m)s

(p — 1)(701974* — 24 793164° + 480 10494’
— 5120 62548y + 20921 63573)*
40320 - 21 - x°(n + m)8 )

Suppose that the problem is to calculate the 14th zero of Js;2(z) or zé}?. Then
m = 1, and we should want to find Sy using Table 4 upon S, — S0, after which
we obtain 22’ from (13).** From (14) and then (13), z{J2’ which is equal to 2§}3
to around 14D, is found to be 47.06014 16127 6054. A quick examination of the
ratios of successive terms in (14) indicates without having to compute the
1/(n + m)" term that, to 14D, 2{}7 is actually 47.06014 16127 6053. Following
are the calculated values of S;, forj = n + 1 = 4(1)10, to 16D (last figure ap-
proximate):

S

.

—0.97371 85140 72535
—0.96680 12788 75286
—0.96311 73960 26803
—0.96092 04667 12625
—0.95950 42113 72512 2
—0.95853 75688 13022 8
—0.95781 82845 01448 5

Q0 Q0 00 00

LW U >

[y

Employing the older (1/j)-extrapolation, we find Sis = —0.95622 28677 507 ...
and from (13), 7512 = 47.06014 16126 6 ... which agrees with the true value of

* The coefficients through 1/(n 4+ m)® are from Watson [11], and the coefficient of 1/(n + m)?
is from Bickley and Miller [13].

** This particular problem could, of course, be set up equally efficiently computationwise
by writing Sas1 = @0 + ai/(n + 1)2 + -+ + a./(n + 1)¥, where &; is independent of n. But
this present method works as long as we know <omehow the values of S; .
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242 to a unit in the 10th decimal (12th significant figure). But the (1/7*)-extrapo-
lation yields S;; = —0.95622 28662 9517 ... and from (13), 23’ = 47-06014
16127 6055 ... which almost agrees with the true value of z{2’ to 14 decimals (16
significant figures).
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