
TECHNICAL NOTES AND SHORT PAPERS 

Numerical Integration Using Sums of 
Exponential Functions 

By F. C. Ledsham 

Let y be a function of the independent variable x, and let 

dy 

( 1 ) q dx 

Suppose that the numerical values of q be known for the n + 1 discrete values 
of x given by x = xo + rh, where r runs through the integers from zero to n and h is 
some fixed increment. Let f(x) be some function of x chosen to coincide with q at 
these particular x-values. For convenience we shall denote q(xo + rh) by qr, with 
a similar convention for other functions. In order to obtain a numerical estimate 
of the increment of y over any chosen range of x, say yk - y., one may then use 
the approximation 

x~r+kh x r+kh 

(2) k -dYin' fkdx f dx, 
0r+mnh ;~to~h 

the accuracy of which will depend upon the choice of the function f(x). Note that 
k and m may have any real values (positive, negative or zero) and, in particular, 
are not confined to the integers nor to the region from zero to n. 

It is customary to take f(x) to be the lowest order polynomial satisfying the 
conditions specified above. As is well known, it is not then necessary to determine 
this polynomial, and it is possible to write 

xo+kh n n 

(3) I f dx = h E AA(k, m, n; r)fr h A(k, m, n; r) qr, 
20+mh T-O rTWO 

where the A's are constants satisfying the equation 
n 

(4) A(k, m, n; r) = k-rm, 
r-O 

and which may be tabulated once and for all as functions of k, m, n and r. 
If m = 0 and k = n, then this last procedure leads to the Newton-Cotes series 

of formulae, of which Simpson's rule (for n = 2) is probably the best known. If we 
put k = m + 1, and also let this quantity equal n + 1 or n, then we get, respec- 
tively, extrapolation and check formulae which may be used for step-by-step 
numerical integration of first order differential equations. Other combinations of 
m and k also lead to useful formulae, and a selection of these (for various values of 
n) is included in a paper by Bickley [1]. 

It has been pointed out by Greenwood [2] and by Brock and Murray [3], that a 
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polynomial form of f(x) does not always provide the best approximation to q(x). 
In particular, these authors give examples in which f(x) is better taken as a sum 
of exponential functions, in the form 

n 

(5) f(x) = ai exp(aix), 

where the ai are chosen to suit the problem concerned, and may be complex or 
zero. 

Greenwood considers two particular forms of equation (5), both involving real 
values only of the ai. For his first type he puts as = i; while, for the second, he 
puts ai = i - 'n where i, in both cases, runs through the integers from zero to n. 
The second (symmetric) case is only applied by Greenwood to even values of n. 
He also takes m = 0 and k = n, to produce formulae analogous to those of the 
Newton-Cotes series. 

Brock and Murray are concerned with the step-by-step numerical integration 
of first order differential equations. They consider more general cases in which the 
ai are complex, and tailored to fit the particular problem to hand-with the help of 
earlier (and less accurate) solutions of the differential equations concerned. 

The papers of Greenwood and Brock and Murray both contain practical ex- 
amples of uses of the ideas expressed above, and discuss the magnitudes of the 
errors involved. 

Using equation (5), with particular values given to the coefficients as, we may 
obtain an equation of the form 

A xo+kh n n 

(6) 1 f dx = A B(k, m, n; h, r)f, = A B(k, m, n; h, r)q,. 
x0+mh r-O r-O 

Unlike the corresponding equation (3), h does not occur naturally as a factor on 
the right hand side of this equation, and the coefficients B have to be recalculated 
for every change in this quantity. Incidentally, Brock and Murray, in their work, 
do take out a factor h-and consequently calculate coefficients equivalent to B/h 
in our notation. 

If one of the as be zero, then we have the relationship 
n 

(7) Z B(k, m, n; h, r) = h(k-m), 
rhO 

corresponding to equation (4). If none of the as be zero, then this last equation 
does not hold exactly-though it remains approximately true, and serves as a 
useful check during the calculation of the B's. 

If one of the as be zero then let this be a, . We then have 
xo+kh 

f dx = ah(k - m) 
( 8 ) xo+mh 

+ E ' [exp {ai(xo + kh)} -exp {a (xo + mh)fl. 
1=0 <Yi 

(ids) 

If none of the ai be zero then the first term on the right hand side of this equation 
drops out, and the restriction i # s is omitted from the summation. 
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From the n + 1 equations 
n 

(9) fr = qr =E ai exp{ai(xo + rh)I, 
t-0 

the a1, or rather ai exp(aixo), may be found in terms of the q7, enabling us to put 
equation (8) into the form of equation (6). In previous applications of these ideas 
[2, 3] this step, or its equivalent, has been carried out numerically. It is therefore 
considered that there may be some interest in analytical formulae into which one 
might substitute directly in order to obtain the required coefficients B(k, m, n; h, r), 
such as those given below. 

Write 

(10) bi = ai exp(aixo),J 
ti = exp (aih) J 

so that equations (9) may be written in the form 
n 

(11) fr = qr = E bi tir (r = 0, 1, *-- n). 
i-O 

For any value of n, it may be verified that the solution of these n + 1 equations 
leads to the following symbolic equations for the bi: 

(12) b- = HI'i (-q) 

where, after expansion, the powers of the q's are lowered to represent suffixes, and 
the term of the numerator originally independent of q is taken as the coefficient of 
qo. For example, if n = 2 we would have 

b= (t - q)(t2 - q) (symbolically), 

which would be interpreted as giving 

b - tlt2qo - (tl + t2)q + q2 
? h 

- 
W ot(t2 Qo 

and similarly for bi and b2. 
If, as in equation (8), a, be zero then a. = b. and that equation becomes 

xo+kh n b 
(13) f dx = bsh(k - m) + E Lt_ tim). 

xo+mh .O ai 
(Fis8) 

Substituting into equation (13) the values of bi calculated from equations (12) 
leads immediately to the required form (6). It will be noted that the bi do not 
involve k and m, so that they do not have to be recalculated if integrations are 
required over ranges corresponding to more than one pair of values of these param- 
eters. 

If two of the ai be complex conjugates, then so also will be the corresponding 
terms of the summation on the right hand side of equation (13). Instead of cal- 
culating both those terms completely, it is therefore only necessary to find the real 
part of one of them and then to double it to obtain the sum of the two. 

Equations (12) and (13) have been used to recalculate some of the coefficients 
quoted in the papers mentioned above. The first example taken was Greenwood's 
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symmetrical case with n = 6. The second was taken from the paper by Brock and 
Murray, with n = 3 and the ai consisting of two pairs of complex conjugates. 
Using the full 10-figure capacity of a desk machine, cancellation reduced the 
accuracy of the results obtained to some four significant figures in the first example 
and six in the second. The procedure given here should, however, be readily adapta- 
ble to electronic digital computers, and the increased capacity of those machines 
should enable the coefficients B(k, m, n; h, r) to be calculated to any accuracy 
likely to be required in practice. 

Sevenoaks 
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New Factors of Mersenne Numbers 
By Edgar Karst 

I have tested for prime factors all the Mersenne numbers 2P -1 corresponding 
to prime exponents p in the interval 3000 < p < 3500. The limit of the search for 
factors was 9p2 when no factor was previously known; otherwise the limit was 3p2. 

The nineteen new prime factors of Miersenne numbers found by this search are 
displayed in the following table. Factors corresponding to smaller values of p have 
been listed in a paper by Brillhart and Johnson [1]. 

P New factors of 2P -1 

3037 145 777 
3041 5 565 031 
3067 22 063 999 
3083 15 914 447 
3119 230 807-14 222 641 
3121 31 509 617 
3167 12 237 289 
3181 127 241 
3191 40 895 857 
3253 46 452 841 
3257 4 0329 167 
3299 19 873 177 
3329 665 801-1 005 359 26 295 863 
3391 1 519 169 
3433 5 952 823 12 688 369 

An extensive table by Riesel [2] includes smaller prime factors of Mersenne 
numbers corresponding to p = 3037, 3041, 3119, 3121, 3181, 3257, 3299, 3329, 
3391, and 3433 in the preceding table. 
Brigham Young University 
Provo, Utah 
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