Polynomial Approximations to Finitely
Oscillating Functions

By William J. Kammerer
1. Introduction. Chandler Davis [1] established the following theorem: If

Vo, V1, -, Uy are real numbers such that vo > v1, 1y < v2, 02 > v3, -+ -, then there
ex1sts a unique polynomial P of degree n and a set of points yo, Y1, - -+ , Ya Such that
(1) P(ys) = v i=01,--,n
(2) P'(y;) =0 i=1,2,+-,n—1

O=yp< < <iya=1

The main result of this paper is an algorithm for the calculation of this polynomial,
which is first motivated by an independent proof for the existence of P.

A function f is said to be finitely oscillating if it has at most a finite number of
relative extrema. The following mode of approximating a continuous finitely oscil-
lating function f in the uniform norm so that the oscillations are preserved, is dis-
cussed: first obtain a polynomial P of minimal degree which has the same variation
as f and then obtain an increasing polynomial € such that P(Q) agrees with f at
all its relative extrema. Two theorems are given in the last section, to show that
this method of approximation is always possible.

2. Proof of Theorem. Let D and D, denote the set of all » 4+ | tuples
X=(2,21, -+ ,zs)suchthat 0 = xy <2y < -+ <u,=1land 0 = 1, < a0; <
--- < x, < 1 respectively. Let ® denote the class of all polynomials p of degree n,

for which there exists an element X ¢ D, such that p(z;) = v;(: = 1,2, -, n).
A polynomial p € ® can be written in the following form:

3) p(2) = [z + [0, 2:)(2z — o)
Fo o, (e = w) e (8 = o)
where the bracket function is defined by

[z] = v

(4) T R
[, Zipr, -y zind] = o, x';ik _[J;;’ » ivio] .
Lemma 2.1 If X e Dyand n = 1 then [X] > O for n even and [X] < 0 for n odd.
Proof. The proof proceeds by induction. The lemma can be shown to hold for
n = 1 by direct computation. Assuming it true forn = k — 1, one has [ro, a1, -+ -,
Licy) < 0 (>0) and [x1, 22, - -, ;] > 0 (<0) for & even (odd). The lemma is
therefore true for n = k by (4).
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LEmMA 2.2. a) If n is even (odd), the function [X] assumes its minimum (maxi-
mum) in D.

b) Let |[X]] attain its minimum valuefor X ¢ D,at Y = (yo, w1,
«++ yYn). Then the polynomial p(ys) = vi(k = 0, 1, --- , n) s the desired poly-
nomial P.

Proof. By lemma 2.1, [X] is of constant sign in D. The function | [X] | approaches
infinity as. X approaches the boundary of D, and is continuous in the compact set
Tot eSSz, 01+ €= 22, -+, Ta1 + € £ z, for arbitrarily small e > 0.

The following notation is introduced, to simplify the proof of part b:

a(p,?) = min {z:z & I(p, 1)}

i=0,1-,n
B(p, ©) = max.{z:z & I(p, 1)}

where

p(z) = viif v; > vy
I(p, %) = {z: ] and z;3 <z < Zin
p(z) £ viif v; < vin

i=12----,n—-1 Ip,0) =0 Ilpn)=1 and peoc.

Let Y be a vector.in D at which | [X]| attains its minimum and let p be the poly-
nomial in ® which satisfies p(y;) = v;. If p does not satisfy (2), then there exists
an integer k, such that a(p, k) # 8(p, k). Let - = ${a(p, k) + B(p, k)} and con-
sider the following two polynomials

p(x) = h(z) + [Yig(z, Y)
p(x) = h(x) + Yo, - - Yaers Ty Yer, -+, Yalga(z, V)

where h(z) is a polynomial of degree n — 1, and

(5) 0@ V= w =11 G - .

By construction one has | pi(ze)| < | p(x:)|. Investigation of the possible cases
contradicts the hypothesis that Y is a relative extrema of [X].

It should be observed that the above theorem and proof are valid for poly-
nomials of the form 2 i af(z)* where f is a strictly increasing differentiable
function on [0, 1]. The proof is identical except for notation.

3. An Iterative Procedure.

Step 1. Choose an arbitrary element X, = (zo', 2", -+, za') in D.

Step 2. With one of the standard interpolating formulas construct the polynomial
1 € @, such that py(2') = v,k =0,1,---,n.

Step 3. Determine the vector X; = (z¢°, zi°, - -+ , «') in D such that p/(z*) = 0
fort=12,:--,n—1.

We now have a new element X, £ D. To obtain p , repeat this process beginning
with step 2, using X, in place of X, and making the obvious change in subscripts.
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Continuing this procedure, we obtain a recursive process for obtaining a sequence
{pi}.

THEOREM 3.1. The sequence {p converges uniformly to P.

Proof. The proof will proceed by a series of lemmas.

LemMma 3.2. If p e ®, then

[Zo, <oy Tty a(Py K)y Tany -+ @] = (20, ~ -+, Taca, B(D, K), Tuwry <, Tl
k=1,2,---,n~1.
Proof. By (3), p can be written in the following two forms
(6) p(z) = h(z) + [2o, -+, Tur, &P, k), Tetr, -+, Tl g2, X)
(7 p(&) = h(z) + (20, -+, Tt , B(D, k), Betr, -+, 2] go(z, X)

where h(.t) is a polynomial of degree n — 1 and gi(x, X) is defined as in (5). To
obtain the desired result, subtract (6) from (7).

LemMa 3.3. Let p be an element of ® and let N(p) = max;|m, — v;| where
m; = maz | p(z) | for zelalp, ©), B(p, )] and v = 1,2, ---, n — 1. Then the
Sollowing inequalities hold for the sequence {p.}:

8.) If N(p,) #= 0 then ‘ [‘Yi+1] | < ’ [X,] '

b) | pi(z) — pin (2) | £ |[X — [Xiual | for every x €0, 11

¢) N(p:) S mazog.1 | pi(z) — pina (2) |-

Proof. Let 7 be any positive integer and let {h}, £ = 1, 2, .-+, n — 1 be the
polynomials of degree n such that

hlc(irm"‘*-‘) = Um f()r m = O, l, ey, s
h‘\‘(BM) = Un f()r m = A; + l’ :. “,n

where 8 = B(p., m). Let Z; denote the vector (20", -, '™, Bewr, -+, Bu).
Then I(hy ,m) C I(hiyy, m) form =k 4+ 2, --- , n, for otherwise hi(2) — hepi ()
would be identically equal to zero, instead of having n — 1 simple roots in [0, 1].
As in the proof of lemma 2.2, we have |[Z)]| 2 |[Z]]| = -+ 2 | [Z.]] with at
least one of the inequalities being strict, since by assumption, N(p;) # 0. This
proves part a. i

Fork = 0,1,---, n — 1 one has |k (2) — by (2) | = | [Z] — [Zesa] | -
| gx (z, Zi) | £ | [Zi] — [Zisa] | . Now apply the triangle law to obtain b.

The proof of part ¢ follows from the existence of an integer k, such that N(p.) =
pae™) — po (@) |

To complete the proof of theorem 3.1, observe that lemmas 2.1 and 3.3.a imply
that {[X.}} is a Cauchy sequence. Lemma 3.3.b implies {p;} also forms a Cauchy
sequence in the uniform norm on [0, 1] and therefore convergent to a polynomial
P of degree n. Part ¢ of lemma 3.3 implies that P satisfies conditions 1 and 2.

This iteration can be carried out by the use of standard subroutines available in
most computer libraries, and from all empirical evidence the convergence seems
quite rapid. To illustrate, we shall caleulate the third-degree Chebyshev poly-
nomial on [0, 1] by the use of this method, starting with X, = (0, .25, .5, 1).
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pi(z) = 1 — 22z + 684° — 482°

X, = (0, 20723911, .73720533, 1)
pe(x) = 1 — 18.400541r + 48.970905." — 32.5703642°

X5 = (0, 24979357, 75256767, 1)
ps(x) = 1 — 18.000432x + 48.002138:" — 32.0017072°

X, = (0, 24999339, 74999783, 1)
pe(z) = 1 — 17.999999c + 47.999999.% — 31.999999.°

4. Approximation by Composition.

THEOREM 4.1. Let X = (2o, @1, -+ ,20), Y = (Yo, %1, -+, Yn) be any two ele-
ments tn D. Then there exists a polynomial Q such that Q’'(z) = 0 on [0, 1] and
Q(’C,) = yi:i = 0: L.y m

Proof. Define the elements Z; and Z; in D as follows:

Zy= (a2, o,z = W, ¥ — ) F o, 2Ws — ) F v, o, Ua)

Zy = (202, 212, Tty 2°) = (o, ¥ — 90) — v, ¥ — y1) — o, - » Un)-
Let fifori = 1,2,3, -, 2" " be distinct piecewise linear functions, which are linear
on the intervals [y.—y, ]% = 1,2, - -+, n and such that f;(x:) = 2 or 2.’ k = 0,
1, -, n. Define ¢ = min; min; | 2* — y;|fori =1,2,---,n — 1,k = 1, 2.

Using the fact that the Bernstein polynomials of a continuous increasing function
are increasing and uniformly convergent, there exist increasing polynomials Q.(x)
on [0, 1] such that | fi(z) — Qi(x) | < 3efori =1,2,---,2"" (see Lorentz [7]
p- 20-23). The vector Y is contained in the convex hull of the vectors (@Q;(x),
Q.(x1), -, Qi(x), 7 = 1,2, --- , 2", and therefore there exists a convex linear
combination of the @,’s which will give rise to a desired pelynomial Q.

THEOREM 4.2. Let f be a continuous finitely oscillating function on [0, 1] and let
& > 0 be given. Then there exist polynomials P(y) and Q(x), such that

a) f(z) and P(y) are equal at their corresponding relative extrema. At the relative
extrema of f,

PQ) =/ and L—i%xg—) = 0.

b) The polynomial Q s increasing and | f(z) — P(Q(z)) | < eon [0, 1].

Proof. Let the partition X = (x¢, 21, -+-, @.) be the points of the relative
extrema of f on [0, 1]. By a previous theorem, there exists a polynomial P(y) and a
partition Y = (yo, %1, - -+, ¥») such that P(y.) = f(z;),7 = 0,1, ---, n and
P'(y;)) =0,7=1,2,---,n — 1. Let X’ be a refinement of the partition X which
satisfies the following condition z; = 24 < 2 < +++ < Ziv; = Ziy1 such that
Nilf(z)) = f(zijn) | = [f(2:) — f(zina) | S Niefori = 0, 1,---, n — 1,
7=1,2,---, N;. Define Y’ to be the refinement of the partition ¥ such that
yiielyiyyi+i] andf(xij) = P(yu) fors = 0,1,---,n— 1»] = 1>2) rNi~ By
theorem 4.1 there exists an increasing polynomial () on [0, 1], such that Q(z;;) =
yi;, and therefore by construction | p(Q(z)) — f(z) | < eon [0, 1].

As a concluding remark, let C represent the class of all composite polynomials of
the form P(Q), where both P and @ are of degree greater than unity and @' = 0
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on [0, 1]. Not every polynomial of degree four or larger can be so written (see
H. Levi {6]). However, since every continuous function on [0, 1} can be uniformly
approximated by a polynomial, (i.e., a finitely oscillating function) one finds that
the completion of C in the uniform norm on [0, 1] is the set of all continuous func-
tions on [0, 1].

The question of the existence of variation preserving approximations arose from
the investigation of syntonic functions by Professor P. C. Hammer in (2] and [3].
I would also like to thank the referee for pointing out that the ideas in references
[4], 5] and [8] bear a relation to the problem treated here.
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