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1. Introduction. Chandler Davis [1] established the following theorem: If 
voI vl ... *, v,, are real numbers such that vo > v1, v1 < v2, v2 > v3, , then there 
exists a unique polynomial P of degree n and a set of points yo, Y, . , y. such that 

(1) stvs~~~~~~~11y) =-,i i = , 1, ..., n 

(2) P'(y1) = ?= 1,2,.* , I 

= YO < Y1 < ... < Yn . 

The main result of this paper is an algorithm for the calculation of this polynlomial, 
which is first motivated by an indepenidenit proof for the existence of P. 

A funietion f is said to be finitely oscillating if it has at most a finite niumher of 
relative extrema. The following mode of approximating a continuous finiitely oscil- 
lating function f in the uniform norm so that the oscillations are preserved, is dis- 
cussed: first obtain a polynomial P of minimal degree which has the same variation 
as f and then obtain an increasinig polynom-ial Q such that P(Q) agrees with f at 
all its relative extrema. Two theorems are given in the last sectioIn, to show that 
this method of approximation is always possible. 

2. Proof of Theorem. Let D and Do (lenote the set of all nt + I thples 
X = (xo, xl, - *, x,) such that 0 = xu < xi < ... < x, = l aiid 0 = xo < 1 < 
* < x,. _ 1 respectively. Let (P denote the class of all polyniomials p of degree t, 

for wvhich there exists an element X E I, such that p(xi) = vi (i = 1, 2, , n). 
A polynomial p e (P can be written in the followvinig form: 

(3) p(x) = [xel + [xo, xi1(x - Xo) 

+ * * * + [X3 X XI, X' (x - X0) ... (x X,n-I) 

where the bracket funietion is defined by 

[xi= vi 

(4) [XiI Xi+, = [x1 , , Xk]I- [X, , * Xi?+k-1l 
[Xx, Xi+l, * * *, Xi+k] 

=X'+k -Xi 

LEMMA 2.1 If X E Do and n ? 1 then [X] > 0 for n even and [XI < 0 for n odd. 
Proof. The proof proceeds by induction. The lemma cani be shown to hold for 

it = 1 by direct computation. Assuming it trute for n = k - 1, one has [xo , xIl, . . * * 
Xk-11 < 0 ( >0) and [xI, X2, , xkJ > 0 ( <0) for k even (odd) . The lemma is 
therefore true for n = k by (4). 
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LEMMA 2.2. a) If n is even (odd), the function [XI] assume8 itS minimum (maxi- 
mum) in D. 

b) Let I [X] I attain its minimum valuefor X E D, at Y = (yD, Yi, 

Y , *en)- Then the pOlynomial p(Yk) = (k = 0, 1, , n) is the desired poly- 
nomial P. 

Proof. By lemma 2.1, [XI is of constant sign in D. The function I [XI I approaches 
infinity as.X approaches the boundary of D, and is continuous in the compact set 
xo + c xi,xi+ e - x2 *,- -,x,-I + e ? x,1forarbitrarilysmalle > 0. 

The following notation is introduced, to simplify the proof of part b: 

a(p, i) = min {x:x E I(p, i) } 

p(p,i) = max,x:nxlc I(p,i) 0 

whlere 

rp(x) 2 v, if vt > v.i1 1 
I(p, i x:J and x,... < x < xi+,j 

_ p(X :- Viff Vi < Vi+1_ 

i=.1,2,*--,n-1 I(p,O)=O I(p,n) = 1 and pe3(P. 

Let Y be a vector in -D at 'which I [X] I attains its minimum and let p be the poly- 
nomiilin ? which satisfies p(yi) = v,. If p does not satisfy (2), then there exists 
an integer k, such that a(p, k) # fl(p, k). Iet xk = j{a(p, k) + P(p, k)I and con- 
sider the following two polynomials 

p(x) = h(x) + [Ykyk(x, Y) 

pi(x) h(x) + [yo 2... * -1, Xk, Yk+L, ... *, y31gb(x, Y) 

where h(x) is a polynomial of degree n -1, and 

(5) gb(X, Y)(X - Yb) = (x - y). 
i-s 

By coiistruction onie has I pi(xk)l < I p(xk)l. Investigation of the possible cases 
conitradicts the hypothesis that Y is a relative extrema of [XJ. 

It should be observed that the above theorem and proof are valid for poly- 
nomials of the form Fk'mO0aft(x)b where f is a strictlv increasing differentiable 
funictiotn on [O 1J. The proof is identical except for notation. 

3. An Iterative Procedure. 
Step 1. Choose an arbitrary element XI = (xot, xl1, -, x.') in D. 
Step 2. With one of the standard interpolating formulas construct the polynomial 

pi c (P, such that pi(xbk) - Vk, k = O, 1, * * *n. 
Step 3. Determine the vector X2 = (xo 2, xi2, x *, x2) in D such that pl,(XI2)= 

fori = 1,2, . n-1. 

We now have a new element X2 e D. To obtain p2, repeat this process beginning 
Nith step 2, using X2 in place of X, and making the obvious change in subscripts. 
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Continuing this procedure, we obtain a recursive process for obtaining a sequence 
{pi.} 

THEOREM 3.1. The sequence {p4 converge8 uniformly to P. 
Proof. The proof will proceed by a series of lemmas. 
LEMMA 3.2. If p E ,, then 

[xo x * * * a a(p, k), xk+1 , , x,,] - [xo ' * k , #(p, k), x +l, .., x,J 

k=1, 2, * , n-1. 

Proof. By (3), p can be written in the following two forms 

(6) p(x) = h(x) + [xo, x * , ci, c(p, k) , x , xJ gk((X, X) 

(7) p (x) = h(x) + [xO, Xk-. ,B(p, k), x?k+1, . , Xn 9AIgk(X X) 

where h(x) is a polynomial of degree n - 1 anid gt(x, X) is definled as in (5). To 
obtain the desired result, subtract (6) from (7). 

LEMMA 3.3. Let p be an element of 6' and let N(p) = maxi I m, - vi I where 
Mi = max I p(x) I for x e [a (p, i), (3(p, i)] and i = 1, 2, , n - 1. Then the 
fullowinig ineqTtalities hold for the seqence pi) 

a) If N(pi) 0 then I [X+1jI < I [Xi]I 
1)) I pi(x) - pi+, (x) I I [Xi- [Xjiljj I for evlery x c l0, 11 
c) N(pi) _ max^o5?1 | pi(x) - pi+, (x) I - 
Proof. Let i be any positive integer and let Ihkl, k = 1, 2, *. , u - I be the 

polynomials of degree n such that 

hk (X.ni v, for tn = 0, 1, , l 

hk (Om) Vumn for mn = k + 1, , ft 

where (, = 0(p, i m). Let Zk denote the vector (?oi?l, Xk +2?1 1+? , (3+) 
Then I(h , m) c I(h*?+ , m) for m = k + 2, - - *, n, for otherwise hk (X) -hk ?1(x) 
would be identically equal to zero, instead of having n - 1 simple roots in [0, 1]. 
As in the proof of lemma 2.2, we have I [Zd] I > I [Z1l I > . > I {Zn I with at 
least otne of the iie(elualities being strict, since by assumptioll, N(pj) 0. This 
proves part a. 

For k =O, 1,* *, n-- lone has I hA (x) - h+, (x)I=I[Zt- [Zkh*+ 
91g (x, Zk) I 1 I [Zkl -Zk?l1 I . Now apply the triangle law to obtain b. 
The proof of part c follows from the existence of anl integer k, such that N(p,) 

Pi(Xkg1) - Pi+1 (Xkl) 1 
To complete the proof of theorem 3.1, observe that lemmas .1 anld 3.3.a imply 

that 1X2]} is a Cauchy sequence. Lemma 3.3.b implies {pid also forms a Cauichy 
sequence in the uniform norm on [0,. 11 and therefore convergent to a polynomial 
P of degree n. Part c of lemma 3.3 implies that P satisfies conditions I and 2. 

This iterationi can be carried out by the use of standard subroutines available inl 
most computer libraries, and from all empirical evidence the convergence seems 
quite rapid. To illustrate, we shall -calculate the third-degree Chebyshev poly- 
nomial on [0, 1] by the use of this method, starting with X1 = (0, .25, .5, 1). 
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pi(x) = 1 - 22x + 68X2 - 48x3 
X2 = (0, .20723911, .73720533, 1) 

P2(X) = 1 - 18.400541x + 48.970905X - 32.570364x3 

X3 = (0, .24979357, .75256767, 1) 

p3(x) 1 - 18.000432x + 48.002138 2- 32.001707x3 

X4 = (0, .24999339,..74999783, 1) 
p4(X) = 1 - 17.999999x + 47 .999999 c2 - 31.9999993 

4. Approximation by Composition. 
THEOREm 4.1. Let X = (xo, xi,1 ,. * *x ), Y = (yo , y, , y,* ) be any two ele- 

ments in D. Then there exists a polynomial Q such that Q'(x) ? 0 oni [0, 11 and 
Q(xi) = yi, i = 0, 1, , n. 

Proof. Define the elements Z, and Z2 in D as follows: 

Zl = (z1, z1 . . I z. ) = (YO , I(Y2 - Y1) + Y1 I (Y3 - 12) + Y2 Y.) 

Z2 = (Z02, Zi,2 . * ** , 2) = (YO ,1 {(Yl - YO) - Y1I, 14(Y2 - YI) - Y2 , * ) 

Let *fi for i = 1, 2, 3, , 2"' be distinct piecewise liniear funletions, Nvhich are linear 
oIn the intervals [yi-i , yi] i = 1, 2, , n and such thatfi(Xk) = Zk1 or Zk2, k = 0, 
1, , n. Definie e imin mink I zik - yI for i = 1, 2, , n - 1, k = 1, 2. 
Usilng the fact that the Bernstein polynomials of a continuous increasing function 
are increasing and uiniformly convergent, there exist increasing polynomials Q4(x) 
on [0, 1] such that Ifi(x) - Qi(.) I < 2e for i = 1, 2, ... 2-' (see Lorentz [71 
p. 20-23). The vector Y is contained in the convex hull of the vectors (Qi(xo), 
Q,(xr),--- , Qj(.,)), i = 1, 2, , 2n-lx and therefore there exists a conlvex linear 
combination of the Qi's which will give rise to a desired polynomial Q. 

THEOREm 4.2. Let f be a continuous finitely oscillating function on [0, 11 and let 
E > 0 be given. Then there exist polynomials P(y) and Q(x), such that 

a) f(x) and P(y) are equal at their correspanding relative extrema. At the relative 
extrema of f, 

P(Q) = f and dP(Q) = 0. 
dx 

b) The polyniomial Q is increasing and If(x) - P(Q(x)) I < e on [0, 11. 
Proof. Let the partition X = (xo, xi, , x,) be the points of the relative 

extrema of f onl [0, 1]. By a previous theorem, there exists a polynomial P(y) and a 
partition Y = (yo , y, , . , Y,,) such that P(yi) = f(xi), i = 0, 1, *, n and 
P'(yi) = 0, i- 1= 2, * - n-1. Let X' be a refinement of the partition X which 
satisfies the followving condition xi = xi1 < x,2 < ... < xsA, = xi+1 such that 
NiIf(x,j) - f(xj+,) I = If(xi) -f(xi+,) I < Niefor i = O, 1, .., n - 1, 
ji= 1, 2, .., Ni. Defille Y' to be the refinement of the partition Y such that 
yjij E [yi 1yi?+] and f(xi,) = P(yij) for i = 0, 1, * , n - 1, j = 1, 2, * * * , Ni . By 
theorem 4.1 there exists an increasing polynomial Q(x) on [0, 1], such that Q(xij) = 

yij, and therefore by construction J p(Q(x)) -f(x) I < e on [0, 1]. 
As a concluding remark, let C represent the class of all composite polynomials of 

the form P(Q), where both P and Q are of degree greater than unity and Q' > 0 



POLYNOMIAL APPROXIMATIONS TO FINITELY OSCILLATING FUNCTIONS 119 

on [0, 11. Not every polynomial of degree four or larger can be so written (see 
H. Ievi 161). Hovever, since every continuous function on [0, 11 can be uniformly 
approximated by a polynomial, (i.e., a finitely oscillating function) one finds that 
the completion of C in the uniform norn- on [j, 11 is the set of ail contimnious func- 
tions on [0, 11. 

The question of the existence of variation preserving approximations arose from 
the investigation of syntonic futnctions by Professor I'. C. Hammer in [21 and [31. 
I would also like to thank the referee for pointing out that the ideas in references 
[41, [.I and [81 bear a relationi to the problem treated here. 
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