Gaussian Quadrature with Weight Function x*
on the Interval (— 1, 1)

By Harry A. Rothmann

Most of the existent literature dealing with Gaussian quadrature formulas is
based on the assumption that the relevant weight function is of constant sign in
the interval of integration. This note deals with the weight function z" on the
interval (—1, 1) and indicates the extent to which the existent theory can be
generalized in that case.

Gaussian.quadrature formulas on the interval (—1, 1) have the form

1 m
) [ w@i@) ds = Wasa) + B

where the weights and abscissas are chosen to ensure a degree of precision 2m — 1
(i.e., exactness for all polynomials of degree not exceeding 2m — 1).

One method of determining the abscissas 2 involves obtaining a set of poly-
nomials, ¢, ¢2, é3, * - -, such that each is orthogonal to all polynomials of 'inferior
degree relative to the weight function w(z) over the interval (—1, 1). That is, for
the mth-degree polynomial ¢.(z),

@) [ #@)om(@)gur(z) dz = 0

where g is an arbitrary polynomial of degree m — 1 or less. The m abscissas
z;; then are the zeros of the polynomial ¢.,, .
Upon defining

(3) 0(z2)gm(z) = LY

dx

the requirement that ¢. be of degree m implies that Un(z) must satisfy the dif-
ferential equation

(4)

a* [ 1 d"‘U,..(x)] ~0
dz"+ | w(z)  dzm

in the interval (—1, 1). From expression (2), the 2m boundary conditions

(5) Un(£1l) = Un'(£1) = --- = U."""(£1) =0

can be obtained. When w(x) = z", the solution of (4) is found to be of the form
Un(z) = 2™w(x)eo+ ez + - +enx™ +do+ iz + - + dpya™ !

from which ¢ can be obtained. It is convenient to impose the additional normalizing
property
(6) om(l) = 1.
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From the theory as given in [1], the weight corresponding to the abscissas
for the N-point formula is

- dm(x) dz
) Was = s [ wia) 22122

When the weight function w(2) is of constant sign, (7) reduces to

Ay YN-1 sz+1 YN
8 Wy = = —
(8) YT A on () pn—1(x) Ay on' (Te) pwsa (k)

where Ay is the coefficient of r¥ in ¢» and

(9) v = Ax _[_iw(x):cN(ﬁN(x) dx .

The error function for the N-point formula can be expressed as

(10) Ey = ‘[i w(z)f &, 21, , 20, 2v, 2wy (z) dz

with wx(z) = (z — 21)(x — 22) -+ (¢ — rxy) where the z; are the zeros of ¢x .
The expression (10) reduces in the case when w(x) is of constant sign to

(11) Ey = —:’1%;2%%’1,2

where f(x) is assumed to have 2N continuous derivatives in (~1, 1) and 7 is some
value in that interval.

When w(z) = z, the procedure outlined above can be employed to obtain
the following

P =1 @1(33) =X

#:(2) = L[20+3)2" = (20 + 1)]

2y(z) = é[(zn +5)2" = (20 + 3)2]
®(%) = 55 [(2n+ ) (20 + 5)2" = 220 + 5) (20 + 3)2" + (20 +3) (20 + 1)]
®s s [(2n+9) (20 +7)2° = 220 +7) (20 +5)2° + (20 + 5) (20 + 3)al.

From these, the forms
N N
(12) ¢2N(x) V'2NZ( )(__1)1H[2n+2(N_z)+2]__1]x2(N—;)
1=( j=1
(m =2N)
N
(13)  Poyqalz) = V‘ T Zo( ) H [2n + 2(N —4) + 2j + 1] 2N

i=

(m=2N+1)
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can be deduced [2] by an inductive procedure and shown to satisfy the desired
properties (2) and (6). Since the weight function is of constant sign in the interval
(=1, 1), a known theorem [1, page 171-2] states that the zeros of the polvnomials
are all real, distinet, and lie in the interval (—1, 1).

To display the formulas for the weights and error, the values Ay and y» must
be obtained. From (12) and (13), it is easily seen that

1 N

Aoy = mg(2n+2N+2j— 1)
(14) L
A2N+1 = mg(zn+2N+2]+1).
‘The value
2
(15) T N F 1

can be established by an inductive proof [2]. Thus, the weights are now expressed
in the form

1 -2
N&s v (2) Bow—i (1) T (2n+2N + 1)®on(2) B2t (k)
W _ 2 _ -1
BNALE T (90 4 2N 4 1) @gwpr (2) Ban(26) — (N 4+ 1) oyya(22) Bowse(s)

Since w(z) is of constant sign, the error is given by (11) which can be written
in the form

IV‘.’N.k =

2(N1 2" (n)
N
(4N)!1(2n + 4N + 1) [] (2n + 2N 4+ 25 — 1)*

=1

Ez.-v =

2(N12%)" f 4 ()
N
AN +201@n+ 4N +3) 1 e+ 28 +2/+1° (=1<n<D).
=

E2N+1 =

When w(z) = ™", it is found [2] that the formulas for an odd number of
abscissas do not exist, but that the polynomials of even degree satisfying properties
(2) and (6) do exist, and have the form

1 &N T ) . (¥
(16)  6ax(2) =m§0<i )(~1) g[zn + 2(N = 1) +2j + 1] 857,

Since z0v(x) = ®Pon1(z), the zeros of 6x are all real and distinct and lie in the
interval (—1, 1), and, in fact, are the zeros of ®;5,1 when the zero x = 0 is sup-
pressed.

The weights for the 2N-point formula involve the polynomial &y, in the
following manner

l »
Wy = _,_1_* [ S de
Oan () 41 T Xk
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1
- 1 [ 2 Boni1() dz
Oan(zi) $1 T = Tk

which reduces to

(17) va'k = ""fizm-z Y2N+1 - Al‘lzzv+1 Yen
Asnfon () Bonye(zi)  Aawbon(zi) Bon(zs)
where the 4’s and 4’s refer to the polynomial ® and are given by (14) and (15).
After the substitution of (14) and (15), (17) reduces to
-1 - 2
(N 4+ 1)ban(ze) Bowsa(e) (20 + 2N + 18w (zi) Bon(mi)
From (10), the error term E.y can be written as

u’zw,k =

1
E2N = [‘ x2ﬂ+l,f[xl y 3 y Ty Tay Py Ton ’ x] T%N(x) dx
TaBLE 1
Gaussian Quadrature with Weight a2
m » Weights Abscissas Error Coefficients
2 0 1.0000000 + .5773503 7.4 x 1073
1 .3333333 £ 7745967 1.9 x 103
2 .2000000 + .8451543 7.6 x 10
3 . 1428571 4 .8819171 3.7 x 10—
4 111111 + .9045340 2.1 x 10
5 .09090909 + .9198662 1.3 x 10
3 0 .8888889 0 6.3 X 10—%
.5555556 + .7745967
1 .1066667 0 2.5 X 108
. 2800000 + .8451543
2 .03265306 0 1.2 X 108
.1836735 + .8819171
3 .01410935 0 7.1 X 10—*
.1358025 =+ .9045340
4 .007346189 0 4.4 x 10
.1074380 =+ .9198662
3 .004303389 0 2.9 X 10—
.08875740 + .9309493
4 0 .3478548 + .8611363 2.9 x 107
.6521452 + .3399810
1 .1945553 + .9061798 7.3 X 10°®
. 1387780 + .5384693
2 .1343622 + .9290483 2.5 x 1078
.06563784 + .6399973
3 .1024498 + .9420254 1.0 X 10°¢
.04040730 + .7039226
4 .08273203 + .9522526 4.9 x 10—
.02837808 + .7482524
5 .06935661 + .9589554 2.6 x 10~
.02155248 =+ .7809074
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which reduces after one integration by parts to
1 z .
+1_2
EzN = —llf[xl y XL, ", Ton ,ﬁgy,x,x] f " 72N(x) dz dz.
~1
Now consider the function
T
2
Alz) = [ " i (z) do .
1

Since A’(x) is negative for # < 0 and positive for x > 0 and A(=1) = 0, it follows
that A (z) is of constant sign in (—1, 1) and hence

1 T ,
E?N = '_f[xl9 et 13;2N)E;E] [‘ -[] x-n‘H‘R’;v(QI) dx (-._]_ < E < 1)
(18) (48+1) 1
N (f4N +(117))1 L 2" Kinsa(3) d (-1<n<1)

where f(x) is assumed to have 4N + 1 continuous derivatives in (—1, 1).
The function K,yy, is the monic polynomial consisting of the linear factors of
®,511 and therefore (18) reduces to

_ f(w-H)("l)‘YzNH
E?N - 2
(4N 4+ 1)! Aovps
i.e. 2(‘\” 2N\2f(4N+“(17)
Egy = - yoa .
AN + D2 +4N +3) 1 2n+ 2N + 25 + 1)°
i=1
TABLE 2
Gaussian Quadrature with Weight x>+

m n Weights Abscissas Error coefficients
2 0 + .4303315 =+ .7745967 3.8 x 10
1 + .2366432 =+ .8451543 1.5 x 10
2 =+ .1619848 =+ .8819171 7.5 X 1073
3 =+ . 1228380 +.9045340 4.2 x 1073
4 =+ . 09882860 =+ :9198662 2.6 x 1073
3 + . 08262864 =+.9309493 1.7 x 10—
4 0 =+ .2577268 =+ .5384693 8.1 X 107

+ .2146984 =+ .9061798
1 +.1025596 <+ .6399973 2.8 x 10

=4 1446234 =+ .9290483
2 +.05740305 + .7039226 1.1 x 107°

=+ .1086511 =+ .9429254
3 +.03792714 =+ . 7482524 5.5 x 10710

+ . 08688035 +.9522526
4 +.02759928 =+ . 7809074 2.9 x 1010

+.07232517 =+ .9589554
3 =+ .02137648 <+ .8060023 1.6 X 10-10

+.06192242 =+ . 9640060
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InTables 1 and 2, the weights and abscissas are given for m = 2, 3, 4, forw(z) =
«*" and for m = 2, 4, in the case w(x) = 2’"*". The values for the weights and
abscissas are correct to the 7 figures given. The coefficient of f*(7) in the error
term is also given. These error coefficients are correct to the two figures given.
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